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Two-dimensional monolayer salt nanostructures
can spontaneously aggregate rather than dissolve
in dilute aqueous solutions
Wenhui Zhao1,7, Yunxiang Sun1,7, Weiduo Zhu2,7, Jian Jiang3, Xiaorong Zhao1, Dongdong Lin1, Wenwu Xu 1,

Xiangmei Duan1, Joseph S. Francisco 4,5✉ & Xiao Cheng Zeng 3,6✉

It is well known that NaCl salt crystals can easily dissolve in dilute aqueous solutions at room

temperature. Herein, we reported the first computational evidence of a novel salt nucleation

behavior at room temperature, i.e., the spontaneous formation of two-dimensional (2D) alkali

chloride crystalline/non-crystalline nanostructures in dilute aqueous solution under nanos-

cale confinement. Microsecond-scale classical molecular dynamics (MD) simulations showed

that NaCl or LiCl, initially fully dissolved in confined water, can spontaneously nucleate into

2D monolayer nanostructures with either ordered or disordered morphologies. Notably, the

NaCl nanostructures exhibited a 2D crystalline square-unit pattern, whereas the LiCl

nanostructures adopted non-crystalline 2D hexagonal ring and/or zigzag chain patterns.

These structural patterns appeared to be quite generic, regardless of the water and ion

models used in the MD simulations. The generic patterns formed by 2D monolayer NaCl and

LiCl nanostructures were also confirmed by ab initio MD simulations. The formation of 2D

salt structures in dilute aqueous solution at room temperature is counterintuitive. Free energy

calculations indicated that the unexpected spontaneous salt nucleation behavior can be

attributed to the nanoscale confinement and strongly compressed hydration shells of ions.
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Aqueous solutions under nanoscale confinement have
attracted considerable interest over the past few years,
owing to their unusual structural, dynamical, and physi-

cochemical properties (different from those of their bulk coun-
terparts), as well as to their broad significance for nanoscale
chemical, biological, and physical systems such as ion channels/
batteries and water desalination1–15. For instance, numerous
experiments and molecular dynamics (MD) simulations revealed
that nanoconfined water may freeze into various one-dimensional
(1D) and two-dimensional (2D) polymorphous and poly-
amorphous structures at low temperatures4,8,10,16–29. Fast mass
transport and high proton conductivity were also observed for
water confined inside nanotubes2,7,30. Notably, previous compu-
tational and experimental studies demonstrated that the static
dielectric constant of water can exhibit marked decrease under
strongly confined conditions31–33, which may induce unusual
behaviors of ions in the strongly confined water. Jiang and co-
workers reported that when the Na+ ion was hydrated by three
water molecules, its diffusion on the NaCl (001) surface was
orders of magnitude faster than that of other hydrated ions34.
Very recently, based on in situ graphene liquid cell transmission
electron microscopy measurements, Wang et al. found that when
a saturated NaCl solution was confined into graphene nanoca-
pillaries, it formed rock salt NaCl with an intriguing hexagonal
morphology35. In addition, a metastable hexagonal NaCl phase
was detected during the crystallization process. These novel
crystallization behaviors reflected a delicate interplay between
graphene–solute interactions and thermodynamic behavior under
nanoscale confinement.

It is well known that alkali chloride salts can dissolve sponta-
neously in bulk water and form hydrated ions36,37. Previous MD
simulations provided molecular-level insights into the dissolution
dynamics of NaCl nanocrystals in water38–41. Wang and
co-workers found that upon placing a NaCl nanocrystal in bulk
water, the water coordination number of the surface ions fluc-
tuated with considerable amplitude during the hydration process,
and the hydration interaction was the microscopic driving force
for the dissolution of the NaCl nanocrystal in water39. The
authors found that Cl− ions at the corner of the NaCl nanocrystal
tended to dissolve into water first, followed by an adjacent Na+

ion39,40. This sequence of ions with alternating charge dominated
the dissolution process of the NaCl nanocrystal in bulk water.
Their results also showed that ion dissolution was accompanied
by dynamical transformations of the hydration shells and
instantaneous fluctuations of the local water density39. Ab initio
molecular dynamics (AIMD) simulations also showed that the
dissolution of NaCl nanocrystals started at corner sites41.

For aqueous ionic solutions confined into nanopores, previous
computational and experimental studies demonstrated that the
nanoscale confinement can result in the ion hydration shells to
be partially broken (i.e., leading to ion dehydration)5,34,42–45. The
restricted hydrated structure of Rb and Br ions confined in car-
bon nanospaces was detected by using the extended X-ray
absorption fine structure (EXAFS)46. The dehydration of ions
within the nanopores may lead to unusual physical behaviors, not
observed in the corresponding bulk solutions34,42–50. Either
suppressed or enhanced ionic mobilities were reported for aqu-
eous ionic solutions confined into nanopores of different
size7,45,50,51. MD simulations showed that Li+ and Na+ ions can
diffuse faster than water molecules in nanoslits, owing to frequent
lateral hopping of the ions inside the bilayer solid-like water
phase44. Local ion accumulation under inhomogeneous nano-
confinement was observed at the boundaries between coexisting
water phases48. On graphene surfaces, strong hydrated cation–π
interactions can induce the spontaneous formation of 2D NaCl
crystals with unconventional non-1:1 stoichiometries (i.e., Na2Cl

and Na3Cl) from dilute solutions at room temperature13. In
addition, exotic hexagonal NaCl thin films were observed on the
(110) diamond surface in absence of water52.

In this work, we reported the spontaneous nucleation of
monolayer NaCl and LiCl nanostructures within water confined
between two smooth hydrophobic walls at room temperature.
Interestingly, monolayer NaCl nanocrystals adopted a square-unit
pattern, while monolayer LiCl nanostructures exhibited
non-crystalline hexagonal ring and/or zigzag chain patterns. The
stability of the monolayer NaCl and LiCl nanostructures was
confirmed by classical MD simulations with several different
force fields, as well as AIMD simulations. To the best of our
knowledge, this was the first computational evidence of nanoscale
confinement inducing spontaneous nucleation of monolayer salt
nanostructures in dilute solutions at room temperature.

Results
The spontaneous nucleation of monolayer NaCl and LiCl
nanostructures within confined water. First, microsecond-scale
MD simulations of dilute alkali chloride (i.e., NaCl or LiCl)
aqueous solutions confined between two smooth hydrophobic
walls were performed in the NPxyT ensemble. The system con-
tained 1520 water molecules, 40 anions (Cl−), and 40 cations
(Na+ or Li+), corresponding to a concentration (molality, m) of
1.46 mol/kg. The latter (expressed in molion/kgH2O) was much
lower than the experimental solubility of sodium chloride
(6.15 mol/kg) at room temperature. Initially, the ions randomly
dissolved in the confined water at room temperature (as shown in
Supplementary Fig. 1). After equilibration for 1 μs, spontaneous
formation of phase-separated NaCl (or LiCl) domains was
observed within the confined water, as shown in Fig. 1 and
Supplementary Movies 1 and 2. Remarkably, Fig. 1a showed that

Fig. 1 Monolayer salt nanostructures. a, b Top views of snapshots of
a monolayer NaCl nanocrystals (polycrystals) and b LiCl non-crystalline
nanostructures formed within confined water at the end of 1 μs simulations
using the TIP4P53 and Charmm27 force fields for water and ions,
respectively. c, d Enlarged views of c polycrystalline domains of 2D NaCl
nanocrystal and d non-crystalline nanostructure of 2D LiCl monolayer.
Water molecules were displayed as red-white lines, whereas Na+, Li+, and
Cl− ions were represented as blue, pink, and cyan spheres, respectively.
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Na+ and Cl− ions aggregated to form monolayer nanocrystals
with square units, identical to the typical monolayer structure of
bulk B1-NaCl crystals. In stark contrast to the square-unit pattern
of the NaCl nanocrystals, the LiCl domains were composed of
hexagonal rings and/or zigzag chains (as shown in Fig. 1b),
suggesting non-crystalline rather than crystalline nanostructures.
Interestingly, the LiCl domain with hexagonal pattern was similar
to the hexagonal NaCl monolayer formed on the (110) diamond
surface52. Moreover, no isolated ions were observed in the aqu-
eous solution in the final configuration of the simulation; in other
words, the ions were fully dehydrated. The transverse density
profiles (TDPs, Supplementary Fig. 2) showed that the ionic
nanostructures within the confined water exhibited a unimodal
distribution, while the water layer showed a bimodal distribution
indicating a puckered structure.

To gain further insight into the structural features of the
monolayer salt nanostructures, we calculated the lateral ion–ion
radial distribution functions (RDFs) displayed in Fig. 2 and
Supplementary Fig. 3. The calculated RDFs showed sharp peaks,
indicating long-range order (Fig. 2a) and further confirming the
nanocrystalline structure of the 2D NaCl monolayer. The
Cl–Na–Cl angle distribution function (ADF, Fig. 2b) exhibited
two peaks around 90° and 180°, corresponding to the square-unit
pattern characterizing the 2D nanocrystalline structure of NaCl.
The first peak of the Na–Cl RDF was located at ~0.26 nm, which
was close to the Na–Cl bond length in the bulk B1-NaCl crystal
(Fig. 2a), while the second peak was located at ~0.58 nm,
corresponding to

ffiffiffi

5
p

´ 0:26 nm. Moreover, Supplementary Fig. 3a
showed that the first peaks of the Na–Na and Cl–Cl RDFs were
both located at ~0.38 nm (=

ffiffiffi

2
p

´ 0:26 nm). These results
confirmed that the square-unit pattern dominated the underlying
lattice structure of 2D NaCl nanocrystals.

The RDFs of the 2D monolayer LiCl nanostructures, in
contrast, exhibited broad peaks (except for the first one),
reflecting non-crystalline features (Fig. 2c). Moreover, the
Cl–Li–Cl angle distribution function exhibited only one broad
peak at ~120° (Fig. 2d), suggesting that the non-crystalline
structure comprised numerous hexagonal rings. The first peak of

the Li–Cl RDF was located at ~0.23 nm, close to the Li–Cl bond
length in the bulk LiCl crystal (Fig. 2c), while the second peak was
observed at ~0.45 nm, approximately equal to 2 × 0.23 nm.
Furthermore, Supplementary Fig. 3b showed that the first peaks
of both the Li–Li and Cl–Cl RDFs occurred at ~0.39 nm
(=

ffiffiffi

3
p

´ 0:23) nm, consistent with a Cl–Li–Cl angle of 120° (i.e.,
the non-crystalline monolayer LiCl nanostructure contained
numerous hexagonal rings).

If the 2D LiCl domains exhibited a square-unit pattern similar
to NaCl ones, the Cl–Cl distance would be expected to be equal to
ffiffiffi

2
p

´ 0:23 nm (i.e., 0.32 nm), much smaller than 0.4 nm (≈L–J
parameter σ of the Cl− ion, as shown in Supplementary Table 1),
indicating a strong repulsive interaction. This analysis may
explain why the LiCl solid domains favored hexagonal rings
rather than a square-unit arrangement.

Once all cations/anions in the dilution solution were used up,
no further growth of the monolayer nanostructures was possible
in the MD simulations. Nevertheless, the nanostructures still
behaved like Brownian particles and self-diffused within
the confined water, as indicated by the calculated lateral mean
square displacements (MSDs), which increased linearly with time.
The lateral diffusion coefficients of the ions were ~10−5 cm2/s;
this value was lower than that of the water molecules, owing to
the nucleation of ionic nanostructures (as shown in Supplemen-
tary Fig. 4).

Note that previous computational studies have shown that
computed diffusion coefficients based on the mean-square
displacement (MSD) can be dependent on the simulation-box
size54,55. Here, we also analyzed the effect of the simulation-box
size on the quantitative values of diffusion coefficient of ions and
waters, and the structure of final assemblies. Consistent with
previous studies54,55, the mean-square displacements exhibited
system size dependence. However, the behavior of nucleation and
growth of the monolayer ionic nanostructures was independent
of the simulation-box size (Supplementary Fig. 4).

The nucleation dynamics analysis of forming NaCl and LiCl
monolayer nanostructures. To better understand the growth of
the ionic monolayer nanostructures, the time evolutions of
size distribution of the ion nuclei were displayed along with
representative snapshots of ion domains extracted at various
times from the MD simulations (as shown in Fig. 3a–g for NaCl
and Fig. 3h–n for LiCl). We also investigated the number of
cations with different Cl− coordination number (Nc) formed over
the course of the simulation (Supplementary Fig. 5). As shown in
Fig. 3a, most dissolved Na+ and Cl− ions nucleated into ion
dimers during the first 0.2 ns. In addition, small ion clusters
(trimers, tetramers, pentamers, and hexamers) were observed
within the confined water during the first 1 ns, as indicated by the
rapid increase in the number of Na+ ions with Nc= 1 or 2
(Supplementary Fig. 5a). The ion tetramers and hexamers were
arranged in a square-unit pattern comprising the same number of
Na+ and Cl− ions (Fig. 3c). The lifetimes of even-numbered ion
clusters (dimers, tetramers, and hexamers) were of the order of
tens of nanoseconds, while those of odd-numbered clusters (tri-
mers and pentamers) were lower than 2 ns (Fig. 3a). Over the
course of the simulation, the NaCl domains grew rapidly, as
indicated by the rapid increase in the number of Na+ ions with
Nc= 4 (Supplementary Fig. 5a). At ~310 ns, all 80 ions were
aggregated into a sizable monolayer NaCl nanocrystal. This
nanocrystal can be viewed as a polycrystal, composed of smaller
crystallites with a square-unit pattern. Although the lifetime of
the largest NaCl nanocrystal was only several nanoseconds, the
smaller nanocrystals remained thermodynamically stable over
tens to hundreds of nanoseconds. Interestingly, at the end of

Fig. 2 Structural features of monolayer salt nanostructures. Radial
distribution functions (RDFs) (a, c) and angle distribution function (ADFs)
(b, d) for NaCl (top) and LiCl (bottom) monolayer nanostructures. The
black and red curves were obtained from classical molecular dynamics
(MD) and ab initio molecular dynamics (AIMD) simulations, respectively.
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simulation we also observed a NaCl nonamer including five Na+

and four Cl− ions. Although the nonamer domain was not
electrically neutral, its lifetime was longer than 150 ns, owing to
its unique 3 × 3 structure arranged in a square pattern (see the
950 ns snapshot in Fig. 3g and Supplementary Movie 1). Overall,
the crystalline domains of monolayer NaCl nanocrystals appeared
to be thermodynamically stable within the confined water.

For the LiCl solution, Fig. 3h showed that small-sized ion
clusters (i.e., dimer, trimer, tetramer, pentamer, etc.) were formed
in the first several nanoseconds of the MD simulation, as
indicated by the rapid increase in the number of Li+ ions with
Nc > 0 (Supplementary Fig. 5b). Unlike the NaCl solution,
however, some isolated ions remained intact within the confined
water during the first 75 ns (i.e., Nc= 0). These small-sized ion
clusters only persisted for several nanoseconds, after which they
aggregated into larger nanostructures composed of zigzag chains,
hexagonal rings, or both (Fig. 3i–n). In particular, two types
of structures were observed for the hexamers, i.e., a hexagonal
ring and a zigzag chain composed of three Li+ and three Cl−

ions (Fig. 3k). The zigzag chain hexamer remained intact for the
first several tens of nanoseconds, whereas its hexagonal ring
counterpart persisted for over hundreds of nanoseconds,
indicating the higher dynamic stability of this structure in the
classical MD simulation. The largest LiCl domain (including 27
Li+ ions and 27 Cl− ions, and composed of both zigzag chains
and hexagonal rings) was observed at ~210 ns. This large non-
crystalline LiCl nanostructure remained stable for 200 ns.
During the final several hundred nanoseconds, a hexagonal
ring and two larger non-crystalline nanostructures formed
within the confined water. Supplementary Fig. 5b showed that
the number of Li+ ions with Nc= 2 slowly decreased while that
with Nc= 3 increased after 100 ns, indicating the growth of
assembled hexagonal rings. Whether the formation of mono-
layer LiCl nanocrystal with hexagonal structure from the

mixture of zigzag chains and hexagonal rings would occur or
not require much longer simulation beyond 103 ns, and this will
be a subject of future study.

A key question was why all the largest nanostructures observed
in the MD simulations had a size no larger than 80 ions and a
very short lifetime (only a few nanoseconds). To address this
question, we carried out two independent larger-scale MD
simulations with 250 ion pairs (i.e., 250 anions and 250 cations)
and 9500 water molecules (i.e., corresponding to the same
molality of 1.46 molion/kgH2O). As shown in Supplementary
Fig. 6, the largest NaCl nanocrystal formed during a MD
simulation of 1 μs contained 292 ions arranged in a square-unit
pattern. We also observed that the largest LiCl nanostructures
included 104 ions, arranged in both hexagonal ring and zigzag
chain patterns (Supplementary Fig. 7). The two larger-scale
simulations thus showed that larger monolayer ionic nanostruc-
tures with longer lifetimes can form in larger systems.

To confirm that the spontaneous formation of ionic nanos-
tructures within water confined between two walls was indepen-
dent of the molecular model selected for the simulations, we
performed a series of nine independent MD simulations using
Charmm27, OPLS, and Amber03 force fields for the ions, along
with TIP4P53, TIP3P56, and SPC/E57 models for water. These
simulations were performed both as benchmark tests and to
compare their results with those obtained using the TIP4P and
Charmm27 force fields for water and ions, respectively.
Furthermore, we performed two additional independent MD
simulations of ion solutions confined between two atomic-scale
graphene sheets (in the NVT ensemble). As shown in Supple-
mentary Figs. 8–10, all benchmark test simulations showed a
qualitatively similar behavior; in other words, the spontaneous
formation of ionic monolayers appeared to be a general
phenomenon occurring in highly confined dilute solutions,
regardless of the molecular models selected.
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Estimation the stability of the ionic nanostructures using
AIMD simulation. To further confirm that the stability of the
ionic nanostructures, AIMD simulations were carried out using
the Quickstep module implemented in the CP2K package58. The
initial configurations selected for these simulations were either a
square-unit nanocrystal or a hexagonal ring placed within water
confined between two graphene sheets (Fig. 4). For the NaCl
system, the square-unit nanocrystal was intact without structural
changes during the 25 ps AIMD simulation (see AIMD-I in
Fig. 4a and Supplementary Movie 3). Moreover, another inde-
pendent AIMD simulation starting from NaCl hexagonal ring
was performed, where the initial hexagonal ring was converted
into the apparently more stable square-unit structure within 1 ps
(see AIMD-II in Fig. 4a and Supplementary Movie 4). These
results indicated that the NaCl square-unit nanocrystal is likely
the most stable structure within the confined water, consistent
with the classical MD simulation results. For the LiCl system, the
hexagonal ring structure remained stable more than 10 ps, fol-
lowed by a structural conversion to the zigzag-like chain struc-
ture. During the remaining 10+ ps AIMD simulation, the zigzag-
like chain was well kept (see AIMD-I in Fig. 4b and Supple-
mentary Movie 5). Additionally, the LiCl square-unit nanocrystal
(as the initial structure) transformed into a zigzag-like chain
structure within 1 ps as well (see AIMD-II in Fig. 4b and Sup-
plementary Movie 6). Due to the small system size used in the
AIMD simulation (with only 3 ion pairs), the zigzag-like chain
structure turned into a small-sized cluster with can be still viewed
as a pre-critical cluster for the zigzag-chain structure. These
results suggested that the single LiCl hexagonal ring is likely a
metastable structure whereas the zigzag-like chain structure is a
relatively more stable structure. We also calculated the RDFs and
ADFs based on the AIMD simulations. As shown in Fig. 2, the

results were consistent with those obtained from classical MD,
further confirming the stability of the ionic nanostructures within
the confined water.

The nucleation mechanism through free energy computa-
tion and ion hydrate analysis. To elucidate the nucleation
mechanism of the ions within confined water, we calculated the
potential of mean force (PMF) of ion pairs in both bulk and
confined water. As shown in Fig. 5, the lowest free energy minima
were located at Na–Cl and Li–Cl distances of 0.26 and 0.23 nm,
consistent with the nearest-neighbor Na–Cl and Li–Cl distances
in monolayer nanostructures, respectively (i.e., the first peaks in
Fig. 2a, c). The aggregation kinetics of Na+ and Cl−, or Li+ and
Cl− ions within the confined water were significantly different
from those in bulk water. The PMF curves showed that the free
energy barriers for Na+ and Cl− or Li+ and Cl− ions
approaching each other (from an initial distance larger than
0.80 nm to the first local free energy minimum at an interionic
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distance of ~0.42 nm) were similar to those observed for ions in
bulk water. However, the local free energy minimum was much
lower in the case of confined water than bulk water, indicating
that the Na+/Cl− or Li+/Cl− ion pairs had a stronger tendency to
aggregate within the confined water. Moreover, because the local
free-energy barrier to ion pair dissociation was very low in the
case of bulk water, the two opposite-charge ions had a much
higher tendency to separate from one another than to form an ion
dimer; conversely, the free energy barrier to ion pair dissociation
was much higher in the case of confined water.

For confined water, the corresponding free energy barriers to
ion pair association and dissociation starting from the local free
energy minimum (at a distance of ~0.42 nm) were similar to each
other. The global free energy minima (at ~0.26 nm for NaCl and
0.23 nm for LiCl) corresponded to the size of critical nuclei for
the nucleation. The deeper free energy global minimum in the
case of confined water indicated that the ion dimer state was
more favorable. In other words, both the Na+/Cl− and Li+/Cl−

ion pairs had a higher tendency to spontaneously form an ion
dimer within confined water than bulk water. Finally, the free
energy barrier to reach the global free energy minimum was lower
for the Na+/Cl− than the Li+/Cl− pair. This explained why Na+

and Cl− aggregated faster than Li+ and Cl−, and a higher number
of fully hydrated Li+ ions persisted within the confined water
during the first 75 ns, while most Na+ and Cl− ions formed ion
dimers within 0.2 ns (Fig. 3).

To further understand the different ion dimer formation
tendencies of bulk and confined water, we investigated the
corresponding solvation structures by calculating the ion–water
RDFs and the water coordination numbers of the ions (Nw). For
this purpose, the interionic distance of the ion pairs was
constrained at 1 nm to avoid their aggregation. As shown in
Fig. 6, both coordination numbers in confined water (Nw= 4 for
Na+ and 5 for Cl−) were smaller than those in bulk water
(Nw= 6 for Na+ and 8 for Cl−). In addition, the Nw value of Li+

in confined water was 4. These reduced coordination numbers
were attributed to the nanoscale confinement, under which

the ion hydration shells became flattened. In other words, the
nanoscale confinement effectively weakened the ionic hydration
interaction, thereby inducing the spontaneous formation of ion
nanostructures.

Discussion
In conclusion, microsecond-scale MD simulations showed the
spontaneous nucleation of 2D monolayer NaCl and LiCl nanos-
tructures in highly confined dilute aqueous solutions at room
temperature. This counterintuitive behavior was in stark contrast
to that of bulk dilute solutions, in which salt NaCl crystals can
easily dissolve in water at room temperature. The simulation
results also showed that, in the confined water, NaCl tended to
form monolayer nanocrystals with a square-unit pattern, while
LiCl formed non-crystalline nanostructures composed of ran-
domly distributed hexagonal rings and/or zigzag chains. The
spontaneous formation of NaCl and LiCl nanostructures in
confined water appeared to be a generic phenomenon, irrespec-
tive of the specific molecular models employed to represent water
and ions. Three different force fields for ions (Charmm27,
Amber03, and OPLSAA) showed qualitatively the same phe-
nomenon, i.e., the spontaneous formation of monolayer NaCl and
LiCl nanostructures in 2D water. AIMD simulations further
confirmed the stability of the monolayer salt nanostructures in
the confined water. The calculated potentials of mean force for
cation/anion pairs showed that both the Na+/Cl− and Li+/Cl−

pairs had a higher tendency to spontaneously form ion dimers
within confined water than bulk water. This was because of the
lower free energy barrier to reach the global free-energy mini-
mum (PMF basin) and the deeper global free-energy minimum
for the ion dimer state in the case of confined water. We envi-
saged that the spontaneous formation of 2D monolayer NaCl
nanocrystals predicted in this study will simulate future experi-
ments, e.g., focused on dilute NaCl solutions confined between
graphene nanocapillaries35, to validate the present theoretical
findings.
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Methods
Classical molecular dynamics simulations. The classical MD simulations
were carried out using the GROMACS 4.5 package59. The modeled systems
consisted of aqueous ion solutions confined between two smooth walls (nano-
slits). The ions were modeled using the Charmm27, Amber03, and OPLSAA
force fields, to ensure that the results of the simulations were independent of the
model employed. Water molecules were represented by the TIP4P53, TIP3P56,
and SPC/E57 models. The Lennard–Jones (L–J) and electrostatic parameters of
the ion and water models were listed in Supplementary Table 1. The
solution–wall interactions were described by the L–J 10–4 potential function,
corresponding to the integral of the L–J 12–6 potential of the graphene
walls. Thus, a nanoslit with a width of 0.8 nm could accommodate one layer of
aqueous solution at ambient pressure. Rigid graphene walls were also used to
describe the ion–wall and water–wall interactions. The L–J parameters for car-
bon atoms were σc= 0.34 nm and εc= 0.3598 kJ/mol. Similar results from the
simulations of solution confined between two graphene walls showed that the
spontaneous formation of NaCl or LiCl nanostructures within confined water
was not affected by the solution–wall interactions (as shown in Supplementary
Fig. 10).

All MD simulations were performed in the constant lateral pressure and
temperature (NPxyT) ensemble, with periodic boundary conditions in the lateral
directions (x and y). The temperature and pressure were controlled by the
Nosé–Hoover thermostat60,61 and Parrinello–Rahman barostat62, respectively.
A cutoff of 1 nm was used for the L–J interactions, and long-range electrostatic
interactions were treated by the slab-adapted Ewald sum method63.

Free energy calculations. Potential of mean force (PMF) profiles for different ion
pairs were calculated using the umbrella sampling algorithm64. The force constant
adopted for the harmonic bias potential was 5000 kJ/(mol·nm), due to the strong
interactions between cation and anion. The harmonic force was used to constrain
the ions at distances of 0.15–1.0 nm, in increments of 0.01 or 0.1 nm to enhance the
resolution and smoothness of the PMF. Each distance interval was sampled for
10 ns, and the data obtained from the last 5 ns were analyzed using the weighted
histogram analysis method (WHAM)65.

Ab initio molecular dynamics simulations. AIMD simulations were performed
using the Quickstep module implemented in the CP2K package58. Ion–valence
electron interactions were represented by Goedecker–Teter–Hutter (GTH)
pseudopotentials66,67. The GTH-valence double-zeta-polarized Gaussian basis
combined with a plane-wave basis set (with an energy cutoff of 280 Ry) was
selected for the AIMD simulations. The Gaussian and augmented plane wave
(GAPW) scheme was applied to obtain well-converged forces for the Na+ ion47,68.
The BLYP exchange–correlation functional was used together with the Grimme
dispersion correction (D3)69. A time step of 0.5 fs was used to ensure sufficient
energy conservation for highly confined water systems. The temperature was
maintained at 300 K in constant-temperature and constant-volume (NVT) AIMD
simulations.

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request.
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