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Research involving autism spectrum disorder (ASD) most frequently focuses on its
key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory
perception, and communication impairments. These core criteria, however, are often
accompanied by numerous comorbidities, many of which result in severe negative
impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and
GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress
is among the most prevalent co-occurring symptom complex, manifesting in upward of
70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family
foundations that represent genetically distinct, molecularly defined forms of ASD have
identified GI symptoms as an understudied area with significant negative impacts on
quality of life for both individuals and their caregivers. Moreover, GI symptoms are also
correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity,
and sleep disturbances, suggesting that they may exacerbate the defining behavioral
symptoms of ASD. Despite these facts (and to the detriment of the community), GI
distress remains largely unaddressed by ASD research and is frequently regarded as
a symptomatic outcome rather than a potential contributory factor to the behavioral
symptoms. Allowing for examination of both ASD’s impact on the central nervous
system (CNS) as well as its impact on the GI tract and the associated microbiome, the
zebrafish has recently emerged as a powerful tool to study ASD. This is in no small
part due to the advantages zebrafish present as a model system: their precocious
development, their small transparent larval form, and their parallels with humans in
genetics and physiology. While ASD research centered on the CNS has leveraged
these advantages, there has been a critical lack of GI-centric ASD research in zebrafish
models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly,
high-throughput ASD drug screens have recently been developed but primarily focus on
CNS and behavioral impacts while potential GI impacts have not been investigated. In
this review, we aim to explore the great promise of the zebrafish model for elucidating
the roles of the gut-brain-microbiome axis in ASD.
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INTRODUCTION

The contribution of the gut-brain-microbiome axis to health
and disease states is a relatively new field of research (Figure 1)
with increasing interest from both public and scientific spheres
(Drossman and Hasler, 2016). An understanding of this
axis draws on a range of disciplines including neurobiology,
gastroenterology, microbiology, endocrinology, and psychology
(Liang et al., 2018; Neuhaus et al., 2018). This breadth of
subjects relevant to the gut-brain-microbiome field speaks
to the diversity of its potential applications. Specifically, its
relevance to research on neurological disorders like autism
spectrum disorder (ASD) is of particular interest, as such
disorders often cause a wide range of symptoms involving
multiple body systems. Furthermore, the interconnected
aspects of the gut-brain-microbiome offer alternative causal
explanations and treatment strategies for symptoms traditionally
understood to be strictly caused by deficits within the central
nervous system (CNS) (Neuhaus et al., 2018; Lefter et al., 2019;
Srikantha and Mohajeri, 2019; Tye et al., 2019). While ASD is
still diagnosed by deficits in social communication, repetitive
behaviors, and/or restrictive interests, comorbidities (co-
occurring symptoms) like seizures, epilepsy, sleep disturbance,
hypotonia, and GI distress are also common with significant
negative impacts on quality of life (Christensen et al., 2018;
“IACC, 2019 Strategic Plan For Autism Spectrum Disorder
2018–2019 Update,” 2019; Leader et al., 2020). Here, we review
how recent studies of the gut-brain-microbiome axis have
changed our understanding of ASD related symptoms and
highlight the important role the zebrafish model can play in
future research.

Since it was first described in a small subset of patients in
1943, the clinical definition of ASD has been subject to an ever-
changing set of criteria in an attempt to capture a condition that
is both common and heterogeneous. Likewise, estimates of the
prevalence of comorbidities associated with ASD have changed
(Geschwind, 2009; Chaidez et al., 2014; Bresnahan et al., 2015; De
Rubeis and Buxbaum, 2015; Tye et al., 2019). This shift in criteria
likely stems from diverse causal factors including hundreds
of implicated genes, environmental, and gene-environment
interactions that contribute to ASD prevalence (Chaste and
Leboyer, 2012). Our current understanding is that ASD impacts
more than 1% of the population and is both etiologically and
clinically heterogeneous. Given this heterogeneity, addressing
underlying mechanisms to develop treatment strategies has
been difficult (Manoli and State, 2021). Moreover, the field
would greatly benefit from determining how body systems
work cooperatively and/or antagonistically to produce both core
behavioral symptoms of ASD and the comorbid symptoms like
gastrointestinal (GI) distress (McElhanon et al., 2014; Pellicano
et al., 2014; Frye et al., 2015; Latorre et al., 2016; Rao and
Gershon, 2016; Rose et al., 2017; Goodspeed et al., 2020). GI
distress occurs at a disproportionately higher rate in individuals
with ASD than the general population, and symptom severity
ranges from relatively low-impact to severe (Bresnahan et al.,
2015). As research into these GI symptoms has expanded,
mounting evidence suggests that they also contribute to the

behavioral symptoms associated with ASD, a finding well-
recognized even in patients without ASD and explained by
the biopsychosocial model of disorders of gut-brain interaction
(Klarer et al., 2014; Mayer et al., 2014; Drossman and Hasler,
2016; Sharon et al., 2019). With this in mind, it becomes
apparent why the gut-brain-microbiome axis is a critical focal
point for studying both the pathophysiology of ASD-related GI
dysfunction and ASD as a whole.

Addressing GI symptoms within neurological disorders is
challenging because the regulation of GI function is complex
and full of redundant feedback mechanisms involving multiple
body systems (Holtmann and Talley, 2014). Adding to this
complexity is the fact that the luminal space of the GI
tract is technically “outside” of the body and not sterile,
lending itself to microbial and chemical exposure which could
influence regulatory mechanisms. Under normal conditions,
communication between the GI tract and the CNS is modified
by contributions from immune, microbial, hormonal, motor,
and sensory inputs (Grundy et al., 2006; Vanner et al., 2016).
The GI tract also exerts a large amount of autonomous
control over its own functions, with the enteric nervous system
(ENS) interfacing with various mechanosensory, chemosensory,
endocrine, immune, and secretory cells, altering GI function as
needed to deal with threats and maintain homeostasis (Holtmann
and Talley, 2014). These typical functions may be altered in
ASD (Hsiao, 2014), and recent findings from both clinical and
rodent model studies have begun to frame the importance of the
gut-brain-microbiome axis in ASD (Hsiao, 2014).

Viewing autism as a disorder of the brain, without
consideration of gut/microbiome can have unintended negative
consequences; a prime example is the use of antipsychotics to
reduce aggressive behaviors, since these also suppress GI motility
and thus are likely to increase GI distress (de Alvarenga et al.,
2017). In this review, we contend that the zebrafish presents
unique opportunities to approach to autism research holistically.
In particular zebrafish ASD models are amenable to genetic
modification, in vivo visualization of multiple organ systems,
and high-throughput studies, providing an ideal model system
to address a multidisciplinary gut-brain-microbiome approach to
ASD research (Brugman, 2016; Kozol et al., 2016; Phelps et al.,
2017; Kozol, 2018; James et al., 2019).

GASTROINTESTINAL ISSUES AND
THEIR LINK TO NEUROLOGICAL
DISORDERS

Gastrointestinal distress is a pervasive co-occurring ailment in a
wide range of neurological disorders, including Parkinson’s
(Mulak and Bonaz, 2015; Liddle, 2018; Brudek, 2019),
schizophrenia (Severance et al., 2015, 2016; Dickerson et al.,
2017), and Alzheimer’s (Hill et al., 2014; Jiang et al., 2017;
Kowalski and Mulak, 2019; Goyal et al., 2020; He et al., 2020).
Only in the last 5 years has GI distress been more widely
recognized as an ASD-related comorbidity, and the potential
causes have been the subject of considerable and ongoing debate.
Although a comprehensive discussion on the clinical prevalence
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FIGURE 1 | Publication trends as listed by PubMed/NLM over the last two decades, search criteria for each is “gastrointestinal + autism” and
“gastrointestinal + zebrafish.” Including all three search terms (GI + ASD + zebrafish) only resulted in three publications, the earliest in 2014.

and significance of GI distress in ASD is outside of the scope of
this review, we believe reviewing a few critical points are helpful
in framing the current state of zebrafish-based research as it
relates to ASD and GI comorbidities.

Broadly speaking, the link between psychological and
gastrointestinal states has been acknowledged for centuries
(Wolf, 1981), though this understanding has not been applied
to neurodevelopmental disorders like ASD until recently. In
fact, while research from the late 90s and early 2000s explored
links between ASD and GI distress, no thorough categorization
or treatment of ASD-related GI distress was attempted until
2010 (Buie et al., 2010). This interdisciplinary panel was
unable to link a specific GI pathophysiology to individuals
with ASD; nonetheless, they agreed that the prevalence of GI
abnormalities was not completely understood, GI symptoms are
frequently linked with negative behavioral manifestations, and
that more research was required before coming to any definitive
conclusions on evidence-based treatment recommendations.
Current clinical research into the ASD-GI link is still hindered
by many of the same obstacles that were identified over a
decade ago: inconsistent or varying criteria used to define GI
phenotypes, inconsistent or varying methodology (including
differences in the reporting and measuring of GI phenotypes),
and inconsistent criteria for patient participation and selection.
This explains, in part, the wide variation in reported prevalence
of ASD related GI symptoms, which ranges from 23% to 70%
(Chaidez et al., 2014; McElhanon et al., 2014). Recent work has

attempted to address these issues (Bresnahan et al., 2015). In
a prospective population-based cohort study with well-defined
methodology and participation criteria, Bresnahan et al. (2015)
has shown that individuals with ASD are not only more likely to
experience GI-related problems when compared to their typically
developing counterparts, but that the type of GI distress varies
with age. Encompassing a 10-year period, 95,278 mothers (with
114,516 children) from the Norwegian Mother and Child Cohort
Study (MoBa) were recruited to participate, with “ongoing
follow-up [including] health, behavioral, developmental, and
nutritional questionnaires and collection of clinical and biological
data” and maternal reports of GI symptoms. Additionally,
by simplifying the categories of GI distress to only include
constipation, food allergy, and diarrhea, the study focused on
easily identifiable symptoms and limited the possibility of over
or underreporting. This is a particularly important consideration
when dealing with children who have communication deficits,
or with non-verbal autistic individuals, irrespective of age. This
study represents the first large-scale prospective cohort study on
ASD-related GI symptoms that confirms GI distress existing at
a higher rate within the ASD population. It also underscores
the need for not only more GI-related ASD research, but for
unified and consistent approaches to measuring GI distress
(Margolis et al., 2019).

In addition to prospective studies, severe GI symptoms
have been reported in at least eighteen molecularly identified
forms of ASD (Table 1), many of which have corresponding
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zebrafish and/or rodent models that exhibit reduced intestinal
tract motility (Figure 2). Because many of these molecularly
identified forms of ASD are rare, caused by sporadic de novo
genomic changes, clinical needs of these individuals can often
go unmet (SHANK3; Figure 2B). Interestingly, gene expression
analyses have shown that many of these ASD-linked genes are
expressed in the intestine in both mammals (Sauer et al., 2019)
and zebrafish (Lavergne et al., 2020; Wen et al., 2020; Willms
et al., 2020) raising the possibility that GI distress is caused by
gut-intrinsic mechanisms. Because GI homeostasis is maintained
through a concert of influence from the CNS, the microbiome,
and the GI tract itself, studies focusing on how the three interact
stand to provide the most comprehensive explanations for why
GI distress is prevalent within ASD populations.

THE ROLE OF THE CNS IN THE
GUT-BRAIN-MICROBIOME AXIS

Gastrointestinal function is regulated by crosstalk between the
nervous system, the gut, and the microbiome (Stengel and
Tache, 2010; Drossman and Hasler, 2016; Zhao and Pack, 2017;
Ganz, 2018) and, as such, disruptions to this cross talk can
contribute not only to GI distress (Bielefeldt et al., 2016) but
also to core behaviors used to diagnose ASD (Chaidez et al.,
2014; McCue et al., 2017; Penzol et al., 2019). The brain tracks
gut luminal contents via sensory enteroendocrine cells (EECs)
scattered throughout the gut lining. EECs signal using hormones
like serotonin and cholecystokinin (CCK) released into the
bloodstream; EECS also use both hormones and fast-acting
neurotransmitters to regulate activity of the gut-intrinsic ENS
and the gut-extrinsic the parasympathetic vagus and sympathetic
dorsal root neurons. These nerves provide a physical, fast-acting
conduit that modifies activity across the CNS (Bohorquez et al.,
2015; Bellono et al., 2017; Kaelberer and Bohorquez, 2018).
Therefore, visceral stimuli influence not only visceral function
via gut and brainstem reflexes but also homeostasis, reward,
affect, and executive function (Kaelberer et al., 2020). While genes
linked to ASD have been extensively studied for their roles in
brain and behavior (Kozol et al., 2016), their function along the
gut-brain axis has received much less attention. Underscoring the
importance of visceral signals, recent studies in zebrafish have
been able to accurately predict behavior sequences by integrating
environmental stimuli and internal state (Johnson et al., 2020;
Marques et al., 2020). Below we discuss the brain regions most
relevant to the Gut-Brain axis; we also describe opportunities in
zebrafish to better understand the gut-brain axis as it relates to
symptoms in ASD.

For studies of the gut-brain axis, visceral sensory and motor
pathways in diverse taxa are marked by their expression of the
Paired-like homeodomain Phox2b transcription factor (Pattyn
et al., 1999; Bertucci and Arendt, 2013; Nomaksteinsky et al.,
2013; Harrison et al., 2014). When Phox2b function is disrupted
in rodents, motor neurons that would normally innervate the
viscera, find muscle targets, indicating that Phox2b functions
to make specific CNS nuclei attend to the viscera (D’Autreaux
et al., 2011). While this marker is conserved, one pronounced
difference between mammals and zebrafish is that zebrafish and

their relatives taste with sensory cells on their skin and lips and,
as such, the first CNS relay for visceral sensations, the solitary
tract nucleus (nTS), is lobed to accommodate expanded vagal,

TABLE 1 | Molecularly-defined forms of ASD with GI symptoms.

Genetic locus Foundation: Reported GI
distress

Publications reporting GI
distress case reportsCR

ADNP ADNP Kids Research Foundation:
GERD, reflux, cyclical vomiting,
constipation, diarrhea, delayed
digestion, stomach
ulcers/scarring, IBS

Van Dijck et al. (2019)

CDKL5 International Foundation for
CDKL5 Research: Abdominal
distension, constipation, diarrhea,
reflux, slow gastric emptying, low
motility, risk of life-threatening
volvulus and intussusception

Amin et al. (2017)

CHD8 SPARK: Gastrointestinal issues Bernier et al. (2014)

CNTNAP2 Pitt Hopkins Research
Foundation: Syndrome 1
constipation

Gregor et al. (2011)

Dup Chr 15q Dup 15 Q Alliance: Feeding
issues in infancy, encopresis, acid
reflux, some with G-tube

Shaaya et al. (2015)

FOXG1 International FOXG1 Foundation:
Constipation

McMahon et al. (2015)

FOXP1 Siper et al., 2017 found that of 9
people with FOXP1 syndrome, 3
had feeding issues and 4 had
constipation.

Frohlich et al. (2016, 2019),
Siper et al. (2017)

KCNQ2 KCNQ2 Cure Alliance: GI issues
seen commonly

Inagaki et al. (2019)

MECP2 Rett syndrome/Rett Syndrome
Research Trust: 92% prevalence
of GI dysmotility

Motil et al. (2012)

NRXN1 Pitt Hopkins Research
Foundation: Syndrome 2
constipation, reflux

Zweier et al. (2009);
Harrison et al. (2011)

PTEN PTEN Hamartoma Tumor
Syndrome Foundation: Intestinal
hamartomatous polyposis

Shaco-Levy et al. (2017)

SCN1A Dravet Syndrome Foundation:
Constipation, dysmotility

Villas et al. (2017)

SCN2A Families SCN2A Foundation:
Reflux and constipation

Tian et al. (2019)

SHANK3 Phelan McDermid Syndrome
Foundation: Constipation, reflux,
some with G-tube

De Rubeis et al. (2018)

SYNGAP1 Bridge the Gap SYNGAP1 ERF:
Constipation, reflux, links btn GI
and aggression, some with
G-tube.

Parker et al. (2015);
Prchalova et al. (2017)

TCF4 Pitt Hopkins Research
Foundation: Gastrointestinal
issues

Peippo and Ignatius (2012)

TSC 1 and 2 Tuberous Sclerosis Alliance:
Rectal bleeding, papillomas in GI
tract, constipation

Moulis et al. (1992)

UBE3A Angelman Syndrome Foundation
Inc.: Constipation/possibly due to
low truncal tone, reflux/gagging

Williams et al. (2010)
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FIGURE 2 | Human genetics has identified 100s of sporadic, de novo genetic changes that can cause ASD; shown are a subset of these that report GI distress as a
major symptom. (A) The Venn diagram shows genes linked to GI distress in ASD in the orange circle, those which have extant zebrafish models in the blue circle,
and those in which reduced GI motility has been reported in an animal model. (B) The map shows where families caring for individuals with Phelan McDermid
Syndrome are scattered across the globe making a standard of care challenging. This Google map image was generated by the Phelan McDermid Syndrome
Foundation and is reproduced above with their permission.

glossopharyngeal and facial inputs; nonetheless these lobes are
thought to be functionally homologous to the gustatory portion
of the nTS in mammals (Coppola et al., 2012). Work using tract
tracing in zebrafish has helped to map the connectivity of largely
conserved fish visceral brain circuits (Yanez et al., 2017).

SETTING THE STAGE

Even in advance of eating, sensations of external food stimuli as
well as internal hunger or satiation states activate hypothalamic
nuclei and play a highly conserved role in setting the stage
(Sternson and Eiselt, 2017). Indeed hormonally regulated states
of hunger, motivation to eat, satiety are similar in zebrafish and
mammals (Jordi et al., 2015), though metabolic differences exist
in leptin signaling associated with mammals being endotherms
and fish being ectotherms (Gorissen and Flik, 2014). The ability
to query the involvement of brain-wide circuits in zebrafish has
been used to link behavioral states to brain activity (Randlett
et al., 2015; Vanwalleghem et al., 2018). For example, seeing
paramecia, a favored food of larval zebrafish, is sufficient to
activate neural activity in the hypothalamus (Muto et al., 2017).
Moreover, the transition between hunger and satiety can be
mapped to activity in the ventromedial hypothalamus and lateral
hypothalamus, respectively (Wee et al., 2019). In addition to
hypothalamus, brainstem nuclei also respond to appetitive smell
and taste in both fish and mammals (Vendrell-Llopis and Yaksi,
2015; Vincis and Fontanini, 2019) and sensorimotor integration
during prey pursuit in zebrafish is modulated by feeding state
(Filosa et al., 2016; Henriques et al., 2019). Due to the prevalence
of eating disorders and sensory symptoms in ASD, an imbalance
in sympathetic/parasympathetic tone is one of the hypotheses put
forward to potentially explain these symptoms (Fenning et al.,
2019). Currently, the physiological basis/es for eating difficulties
in individuals with ASD is not well understood and is plagued by
heterogeneity both in study design and how symptoms manifest

across the spectrum (Margari et al., 2020). Recent studies show
that while children with ASD are generally pickier about their
food than neurotypical children (Babinska et al., 2020; Li C. et al.,
2020), other symptoms may be unique to specific genetic forms of
ASD. For example, in people with SYNGAP1 mutations, there is
a correlation between eating and seizures (Vlaskamp et al., 2019).

GUT-BRAIN CONNECTIVITY

Innervating the gut, parasympathetic and sympathetic neurons
link directly to the CNS and convey information about
digestive and microbiome status as well as mechanical and/or
chemical insult (Browning and Travagli, 2014; Niu et al., 2020).
Vagus and sympathetic nerves have both sensory/afferent and
motor/efferent components that carry out visceral reflexes as
well as integrating and conveying information to and from
widespread brain regions across the CNS.

Most of the recent gut-brain axis literature has focused on
the vagus nerve. The cell bodies of the motor component of
the vagal neurons reside in dorsal motor nucleus (DMV) in the
caudal brainstem. Motor innervation of the viscera is denser in
the anterior GI tract (esophagus, stomach, and proximal small
intestine) and activity in these organs tends to promote regulation
of GI secretions and motility appropriate to the phase of digestion
(Tache et al., 2006; Browning et al., 2017). In zebrafish, islet1:GFP
transgenics label all the cranial motor neurons including the
vagal motor nucleus (Higashijima et al., 2000). The DMV is
functionally distributed from rostral to caudal, with the neurons
innervating the viscera enriched caudally (Barsh et al., 2017;
Isabella et al., 2020). Sensory vagus neuron cell bodies reside
outside the CNS in the Nodose ganglion, therefore, it is relatively
straight-forward to monitor neuronal activity in these cells to
identify salient gut stimuli (Bai et al., 2019; Tsang et al., 2020;
Zhang W. et al., 2020) and this approach that has recently been
used in zebrafish (Ye et al., 2020). Work in rodents supports a
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critical role for an intact vagus nerve in the ability of L. reuteri
bacteria to rescue social deficits in a Shank3 ASD mouse model
(Sgritta et al., 2019).

Sympathetic pre-ganglionic neurons when active during stress
generally inhibit GI motility and secretion and also causes
vasoconstriction that limits the blood supply to the viscera
(Browning et al., 2017). Sensory sympathetic spinal afferents
whose cell bodies reside in the dorsal root ganglia (DRG) also
innervate the gut with denser innervation caudally (Muller et al.,
2020). Sympathetic neurons are sensitive to digestion, injury, and
microbes. While sympathetic innervation as it relates to digestion
has not to our knowledge been studied in zebrafish, the DRG is
accessible to electrophysiological recordings (Won et al., 2012)
and both isl2b and ngn enhancers can drive expression of calcium
sensors/light-gated channels in this cell type (Wright et al., 2010;
Stil and Drapeau, 2016; Hall and Tropepe, 2018). Using these
tools in zebrafish larvae could help elucidate GI stimuli and
insults that activate sympathetic spinal afferents in vivo and how
this activity is impacted zebrafish ASD models.

The brainstem/medulla oblongata is rich in nuclei that receive,
process, and respond to sensory information from the GI tract.
Vagal inputs directly innervate the Area Postrema (AP) and the
Nucleus of the Solitary Tract (nTS) (Ma, 1997; Kaslin and Panula,
2001; McLean and Fetcho, 2004; Coppola et al., 2012). The AP
is one of the few areas of the CNS that is not protected by the
blood brain barrier and as such is responsive to factors/toxins
in the bloodstream; neuronal activity in the AP is linked to
the symptom of nausea (Zhang C. et al., 2020). Consistent with
functions established in mammals, the zebrafish AP has been
shown to be responsive to the pain-inducing Trp1A agonist AITC
(Haney et al., 2020). The nTS serves as the first CNS relay to
many other brain regions (Coppola et al., 2012; Yanez et al., 2017;
Han et al., 2018) including the secondary gustatory nucleus aka
parabrachial nucleus (PBN) as well as the DMV. Both nTS and
PBN are marked by Phox2b expression with transgenic drivers
available (Nechiporuk et al., 2007; Coppola et al., 2012). The
zebrafish nTS is dorsal and sheetlike and, as such, is amenable
to in vivo imaging studies (Vendrell-Llopis and Yaksi, 2015).
Taste and visceral inputs map to different regions of the nTS in
mammals (Vincis and Fontanini, 2019; Kaelberer et al., 2020) and
in fishes, including zebrafish, visceral inputs map to the caudal
part of the nTS in the adult brain (Kermen et al., 2013; Yanez
et al., 2017). As a nucleus that integrates direct inputs from both
viscera and CNS, the nTS holds promise for elucidating what
aspects of the gut-microbiome-brain signaling may be altered in
zebrafish ASD models.

GUT FEELINGS

In addition to visceral reflexes mediated at the level of
hypothalamus and brainstem, widespread CNS nuclei mediating
memory, emotion/affect, and motivation have been shown
in rodents to also be responsive to gut stimuli (Kaelberer
et al., 2020). Severing vagal afferents results in increased
exploratory behaviors and risk-taking, heightened auditory-
based fear conditioning, and altered neurotransmitters in the

limbic system (Klarer et al., 2014, 2018). Stimulation of vagal
afferents entering the brainstem on the right side engage a
PBN to nucleus accumbens to dorsal striatum reward pathway
and stimulating this pathway sufficient to elicit behaviors
consistent with reward (Han et al., 2018). Another pathway
activated through the vagus is the nTS to medial septum to
hippocampus that when disrupted interferes with spatial memory
(Suarez et al., 2018). Analogous zebrafish brain regions to those
mediating memory, emotion/affect, and motivation in mammals
are continuing to be elucidated in zebrafish, and anatomical
studies indicate similar connectivity between visceral circuits and
these brain regions in zebrafish (Yanez et al., 2017).

Elucidating the link between GI distress and negative
behavioral symptoms could improve symptom management. Not
only are GI symptoms common in ASD, but they correlate
with more pronounced irritability, social withdrawal, stereotypy,
hyperactivity, and sleep disturbances (De Rubeis and Buxbaum,
2015; McCue et al., 2017; Penzol et al., 2019). Such an intimate
link between gut and brain symptoms is well-established in
Parkinson’s disease where constipation often precedes the motor
disturbances (Fasano et al., 2015; Mayer et al., 2015; Liddle,
2018; Ramprasad et al., 2018). The possibility that gut symptoms
could contribute to the development of neurological symptoms
has also been suggested in ASD (Mayer et al., 2014; Eshraghi
et al., 2018) with recent studies providing empirical support
(Sgritta et al., 2019).

ZEBRAFISH AS A MODEL FOR
MICROBIAL STUDIES AND THEIR
POTENTIAL ROLE IN ASD

Humans are extensively colonized with microbial species,
resulting in several distinct microbiomes determined by
geographic distribution across the host’s body (Human
Microbiome Project Consortium, 2012). Interactions between
host and microbiome are complex, and our understanding of
the bi-directional influence between the two is evolving as the
scientific community adopts a less human-centric view (reviewed
in Wiles and Guillemin, 2020). Nonetheless, the microbiome has
long been understood to play an important role in host form and
function. While the GI microbiome was traditionally thought to
predominately interact with its host through nutrient processing,
further study has shown that it is capable of influencing the host
immune system and nervous system as well, and thus has direct
implications in disorders like ASD.

The composition of the human GI microbiome is largely
determined by functional, rather than taxonomic, qualification.
The gut microbiome does not need any particular species
profile to operate and maintain a commensal relationship
with the host. Rather, it requires certain functions to be
performed, which can be executed by any number of potential
microbial species. In humans, the microbiome is composed of
predominantly Firmicutes and Bacteroidetes species (Human
Microbiome Project Consortium, 2012). Much like an ecosystem
of macroorganisms, the human GI microbiome is influenced by
its physical habitat (gut morphology), resource availability (host
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diet), and interspecies interaction (both between microorganisms
and between the microbiome and host itself). Likewise, both
the development and the function of the vertebrate immune
and nervous system are affected by the GI microbiome. The
gut microbiome is capable of exerting an effect on neurological
functioning through several pathways, with metabolites able to
travel through the host bloodstream or act locally upon the vagus
(Schroeder and Backhed, 2016; Fulling et al., 2019). Immune
responses elicited by microbes or their metabolites can also have
implications on the brain and its function.

The GI microbiome also plays an important role in the
development of the host immune system. Early-colonizing
microbial species provide “training” to immune effectors,
allowing them to become accustomed to commensal
communities and to distinguish between them and pathogenic
microorganisms. Severe negative consequences can occur when
this process is interrupted or prevented. In germ-free mice,
colonic epithelial cells are incapable of raising an immune
response upon exposure to a bacterial pathogen (Lundin et al.,
2008). Similar dysfunction can be seen in germ-free zebrafish,
which display impaired differentiation of GI cell types such as
goblet and enteroendocrine cells along with impaired nutrient
uptake and death prior to adulthood if not conventionalized
(Bates et al., 2006; Melancon et al., 2017). Human infants that
avoid exposure to maternal microbiomes through cesarean
delivery and/or formula feeding display increased inflammatory
responses and autoimmune disorders (Toscano et al., 2017; Koch
et al., 2018). As the microbiome shapes the immune system,
the innate immune system of the host in turn shapes the native
microbiome to one tailored to the individual’s metabolic needs
(Thaiss et al., 2016).

The microbiome has been shown to be capable of affecting or
inducing multiple aberrant neurological phenotypes in various
study systems. Some of these alterations have been traced to
bacterial metabolites such as short chain fatty acids (SCFAs).
Elevated levels of SCFAs have been directly detected in fecal
samples from autistic patients (Wang et al., 2012). Although
it was undetermined if those levels were mediated by the
gut microbiome, other studies have likewise shown increased
numbers of the Clostridia family (enterobacteria that are key
producers of various SCFAs) in stool samples from individuals
with autism. Studies in rats have recapitulated a behavioral
phenotype resembling that of autistic patients by treatment with
propionic acid, a short-chain fatty acid produced by Clostridia
(MacFabe et al., 2007). Similar associations have been found
in models of Parkinson’s disease, where bacterial SCFAs were
sufficient to promote neuroinflammation in the mouse subjects
(Sampson et al., 2016). The microbiome has also been shown
to influence neurological conditions through modulation of the
immune system (Benakis et al., 2016; Schroeder and Backhed,
2016). Microbial attenuation of inflammatory cytokines has been
linked with reductions in anxiety (Cryan and O’Mahony, 2011)
and antibiotic treatment in a stroke mouse model has been
shown to confer neuroprotection post-ischemic injury through
a reduction in intestinal immune effectors (Benakis et al., 2016).
In addition to influencing immune activity, microbes in the gut
are capable of altering hormone signaling as well. Spore-forming

bacterial species in the gut have been shown to induce serotonin
production by enterochromaffin cells through the release of
several metabolites. This promotion of serotonin production was
found to ameliorate the reduced GI motility seen in germ-free
mice when the subjects were colonized with the spore-forming
species (Yano et al., 2015).

Zebrafish are powerful model organisms for experiments
involving microbiome contribution. As they are initially
colonized by microbes via their environment, it is possible to raise
them in sterilized conditions that result in germ-free individuals
(Rawls et al., 2004). Once germ-free subjects are generated,
experiments involving selective colonization, introduction of
metabolites, and conventionalization effects are possible. The
zebrafish gut is able to be imaged in vivo in the early life
stages due to the optical transparency of larvae. This allows for
examination of gut function like motility, and barrier function
(Marjoram et al., 2015), as well as location and interspecies
dynamics of fluorescently labeled bacterial species (Wiles and
Guillemin, 2020). The gut is also easily dissectible, allowing for
extraction of the microbiome for 16S sequencing.

ZEBRAFISH AS A MODEL FOR GI FORM
AND FUNCTION, AND MODELING
ASD-RELATED GI DYSFUNCTION

The use of zebrafish models for GI research has increased
considerably over the last three decades (Figure 1), with
publications exploring conserved and unique aspects of GI
form and function, as well as more nuanced topics including
specific disease models (reviewed in Zhao and Pack, 2017)
and external impacts like microplastic exposure (Qiao et al.,
2019) and chemotherapy treatment (Van Sebille et al., 2019).
Like the animal model as a whole, the zebrafish GI system
has many physiological similarities and differences with its
mammalian model counterparts. There is conservation of
key GI cell types in the zebrafish GI tract, with absorptive
enterocytes, mucus producing goblet cells, chemo/mechano-
sensitive enteroendocrine cells, and the innervation by the ENS
(Roy-Carson et al., 2017) filling similar functional niches. The
digestive tract and its accessory organs similarly form from a strip
of endodermal tissue in early development (as early as 21 hpf in
zebrafish) (Wallace and Pack, 2003). While there is some debate
as to whether these organs develop individually or from the same
interconnected endodermal strip (Ng et al., 2005), the differential
expression of conserved genes key to GI development begins as
early as 18hpf. Expression of these orthologs, such as pharyngeal
endoderm associated gene axial, liver development gene hhex,
pancreas development gene pdx, and esophageal gene gata-6,
suggest that GI development in zebrafish differs slightly from
mammals, with progenitors for the liver, pancreas, and pharynx
existing before morphogenesis of the GI tract itself is complete.
Similarly, small differences exist for the roles of morphogens
like sonic-hedgehog (shh); required as a negative regulator for
pancreatic development in mammals, in zebrafish it appears to be
a positive regulator (Wallace and Pack, 2003). Like in mammals,
the zebrafish GI tract has distinct functional layers, with an
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epithelial mucosal layer, and an underlying muscular layer
innervated by the ENS. Unlike mammals, however, zebrafish
lack a submucosal layer, villi are replaced by broad folds in the
mucosal layer, the ENS is not organized into ganglia (acting
instead as a nerve net), and the proliferative crypts of Lieberkuhn
are absent (though proliferating cells still expand from stem cell
niches at the base of the mucosal folds) (Wallace and Pack,
2003; Ng et al., 2005; Wallace et al., 2005; Uyttebroek et al.,
2010). From a functional perspective, the zebrafish also has other
simplifications when compared to mammalian models; they lack
a true stomach (separated by sphincters and containing acid-
producing Paneth cells) and instead have an intestinal bulb. This
bulb likely acts as a reservoir for food, and motility patterns in this
region are both anterograde and retrograde, acting to mix and
break food down mechanically (Holmberg et al., 2004). These and
other differences point to an overall simplification of the GI tract
in zebrafish. Although components of the GI tract (including
development, cell types, and molecular signaling) are conserved
between zebrafish and mammals, there are important differences
that need to be acknowledged when using zebrafish as a model
for GI research.

From a GI-research prospective, zebrafish offer a key
advantage over mammalian models: their external fertilization,
development, and early transparency make studying GI function
in vivo significantly easier. Measurements of digestive transit,
peristaltic rate, and general ontogeny of GI motility can be
made before the larvae begin feeding (with spontaneous motility
developing before 5 dpf) (Holmberg et al., 2004), and do
not require any complex or potentially variable-confounding
surgical procedures. The measurement of motility in zebrafish
also has its disadvantages; since this is a relatively new
branch of zebrafish research, the approaches have not been
standardized, with multiple labs (including our own) creating
their own software for measurements of motility and transit
(Field et al., 2009; Rich, 2009; Jordi et al., 2015; James et al.,
2019). Although these different models share similar components
and aims, the differences could present possible complications
when comparing results. For instance, in our own model, while
measuring transit and motility are relatively straightforward,
determining the force of muscular contraction is difficult, and
potentially confounding variables (such as food particles in
the GI tract) mean that measuring GI motility specifically
(and excluding the movement of particulates) becomes difficult.
Additionally, as most motility software was developed for in-
house use, the user-interface and technical aspects of each model
present possible speedbumps for researchers unfamiliar with the
software. The field, as a whole, would benefit from a unified
method for GI motility measurement, especially when attempting
to tackle questions on ASD-related GI distress.

While there is increasing interest in zebrafish-based GI
research, and similarly, increasing interest in the relationship
between ASD and GI dysfunction in non-zebrafish models
(Figure 1), there has not been a coupling of the two. In fact, to
our knowledge and excluding our own work, there have only been
three publications that include data on ASD-related GI symptoms
using zebrafish models, one of which is technically not ASD-
specific (focusing on CHARGE syndrome, which has overlap with

ASD but is distinct) (Bernier et al., 2014; van der Vaart et al., 2017;
Cloney et al., 2018). This represents, in our view, a significant
shortcoming that should be addressed in future studies. Previous
work from our lab (James et al., 2019) attempts to address this
shortcoming, and utilizes some of the aforementioned zebrafish
GI assays to look at GI dysfunction in a monogenic ASD model.
In this work, we focus on GI dysmotility found in CRISPR mutant
of ASD related gene shank3ab. We found that while there was
no difference in enteric neuron count, there was a significant
decrease in the expression of serotonin-positive enteroendocrine
cells in shank3ab mutants. We also note that RNA-seq data from
a collaborating lab has found that shank3ab expression is detected
in this population of cells (Wen et al., 2020). Interestingly,
recent work in mouse models has found that enteroendocrine
cells (specifically serotonin producing enterochromaffin cells)
synapse directly with the ENS (Bellono et al., 2017). Taken
together, this suggests that changes in GI physiology can have
profound impacts on GI-CNS communication, and that there
may be a non-CNS role for genes like shank3ab, which are
largely understood and studied through their context in the
CNS. To add further complexity to the picture, we also found
increased goblet cell populations when comparing adult WT
and shank3ab mutant fish, a difference not present in larval
fish and indicative of possible age-related GI inflammation;
we are currently exploring the microbial implications behind
this finding. This work, coupled with the previously mentioned
ASD-GI publications presents possible venues for establishing
ASD-related GI pathophysiology, and it sets a foundation
for future studies.

DISCUSSION: DRAWING CONCLUSION
AND LOOKING FORWARD

In this review, we have discussed some of the important research
in the gut-brain-microbiome field, as well as presented the
zebrafish as an ideal model for future multidisciplinary ASD
studies. Moving forward, we hope research in zebrafish models
increasingly integrates behavioral phenotypes and comorbidities
of sleep, seizure, and GI function to obtain a more complete
understanding of how genetic changes that can cause ASD
impact the organism as a whole. To this end, there have been
recent advances in the development of social assays that have
helped characterize the neural circuits involved in social behavior
(Dreosti et al., 2015; Stednitz et al., 2018). Additionally, adult
social behaviors in a zebrafish ASD model have reduced shoaling
behavior (Liu et al., 2018). While the bulk of current zebrafish
ASD models are caused by indels that result in premature
stop codons, recently developed CRISPR/Cas9 technologies in
zebrafish are making tissue-specific mutagenesis and knockins
that replicate patient-specific mis-sense mutations more broadly
feasible (Albadri et al., 2017; Li J. et al., 2020). These technological
advances continue to make the zebrafish an increasingly valuable
model for ASD research.

It is also important to briefly highlight the role zebrafish are
playing in high-throughput drug screening and drug discovery
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for treating ASD comorbidities. The zebrafish is becoming a
well-established model for drug screening (Haesemeyer and
Schier, 2015; Hoffman et al., 2016; Cassar et al., 2020), and is a
particularly powerful model for high-throughput screens aimed
at tailoring integrative care on a patient-symptom basis. The
broad heterogeneity within ASD warrants an equally broad scope
of research on different palliative drugs. It should be noted,
however, that this heterogeneity also complicates the treatment
of comorbidities along with the core behavioral phenotypes
associated with ASD. Many current drugs are aimed at treating
behavioral problems such as irritability and aggression (Stachnik
and Gabay, 2010; Coleman et al., 2019), and in doing so
frequently overlook downstream side-effects that might also
be contributing to the initial behavioral issue. Risperidone, for
example, is often used to treat problematic behavioral issues
associated with ASD by inhibiting dopaminergic D2 receptors
and serotonergic 5-HT2A receptors and can lead to constipation
in human patients, which can in turn lead to a worsening of
non-verbal behaviors such as agitation and anxiety. Similarly,
common GI medications used to treat delays in gut transit
(such as Metoclopramide) can lead to changes in behavior in
zebrafish due to a compensatory mechanism following weakened
dopamine signaling (Shontz et al., 2018). To further complicate
the issue, the relationship between the GI microbiome and
drug application is not well understood. As such, we believe
the zebrafish also serves as an ideal model for ASD drug
screening, not only for behavioral impacts, but for GI and
microbiome impacts as well (Cassar et al., 2015). As their
power in translational ASD research is already well established
(Ijaz and Hoffman, 2016; Sakai et al., 2018), zebrafish could
serve as an intersection between patient care and foundational
exploratory research, with pre-clinical trials of newly discovered
drugs helping to inform which treatments have the best benefit
for multiple symptoms.

Autism spectrum disorder research has largely been
compartmentalized, whether into behavioral, molecular, or

microbial aspects. Given the interconnected regulatory pathways
and feedback loops existing between the CNS, GI tract, and
microbiome, we believe this compartmentalization acts to
the detriment of a broader understanding of the disorder.
Consequently, if the current lack of ASD-related GI research
is filled, it could stand to provide critical components to
both CNS and microbiome research, while also producing
important foundational information on potential ASD-related
GI pathophysiology.
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