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Increasing exercise capacity promotes healthy aging and is strongly associated with lower
mortality rates. In this study, we analyzed skeletal muscle transcriptomics coupled to
exercise performance in humans and rats to dissect the inherent and response
components of aerobic exercise capacity. Using rat models selected for intrinsic and
acquired aerobic capacity, we determined that the high aerobic capacity muscle
transcriptome is associated with pathways for tissue oxygenation and vascularization.
Conversely, the low capacity muscle transcriptome indicated immune response and
metabolic dysfunction. Low response to training was associated with an inflammatory
signature and revealed a potential link to circadian rhythm. Next, we applied bioinformatics
tools to predict potential secreted factors (myokines). The predicted secretome profile for
exercise capacity highlighted circulatory factors involved in lipid metabolism and the
exercise response secretome was associated with extracellular matrix remodelling. Lastly,
we utilized human muscle mitochondrial respiration and transcriptomics data to explore
molecular mediators of exercise capacity and response across species. Human
transcriptome comparison highlighted epigenetic mechanisms linked to exercise
capacity and the damage repair for response. Overall, our findings from this cross-
species transcriptome analysis of exercise capacity and response establish a foundation
for future studies on the mechanisms that link exercise and health.

Keywords: skeletal muscle, exercise, transcriptome (RNA-seq), aerobic capacity, response to training, human
studies, rat models of exercise
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INTRODUCTION

Large-scale clinical studies reveal a strong link between low
exercise capacity and a shorter lifespan and a higher
probability of developing complex metabolic diseases (1, 2).
Representing up to 40% of human body weight, skeletal muscle
is an obvious and important target to explore the molecular
connections between exercise capacity and human health (3).
Adaptations to exercise include transient transcriptome changes
following a bout of exercise and sustained changes in gene
expression induced and maintained by training (3). These
changes are orchestrated by the combinatorial activity of
transcription factors, coactivators, and other signalling
mediators that regulate specific gene programs to induce
exercise-induced adaptations (3, 4).

Exercise capacity is a complex trait resulting from the sum of
genetic and environmental factors. The former can be further
divided into intrinsic (already present in the untrained state) and
extrinsic (acquired) components, which are able to explain up to
50% of the total phenotypic variance observed in humans (5–7).
Animal models developed for each component opened new
avenues to investigate their associations with physical fitness and
complex diseases. To model the intrinsic component of aerobic
exercise capacity, high and low capacity runner rat lines (HCR and
LCR, respectively) were derived from a heterogeneous founder
population of rats (N:NIH) with breeder selection based on
untrained treadmill running capacity (8). As previously shown in
humans, cross-generational genetic studies revealed that these rats
display aerobic capacity as a heritable trait (9), and that the LCR rats
are more susceptible to a variety of diseases, particularly metabolic
disorders (10). Interestingly, studies with earlier generations of
HCR rats suggested that the primary driver of the high capacity
phenotype is improved skeletal muscle oxygenation (11–13).

In humans and rodents alike, some individuals show clear
responses to endurance training, whereas others show lower or
no improvement in certain physiological traits, such as maximal
oxygen consumption (10, 14). Although early studies in humans
showed that this entails a genetic component, accounting for
47% of the variance in the improvement of VO2max (7, 15), the
factors underlying responsiveness to aerobic exercise remain
largely unknown. In rats, the proportion of aerobic capacity
variation explained by genetic factors is around 45% (9). To
model the acquired component of exercise capacity in rats, a
similar breeding strategy to the HCR model was developed, but
based on the high and low response to exercise training (HRT
and LRT, respectively) (16). Across generations, this artificial
selection for trainability yielded two lines with same baseline
capacity that contrast in their response to the same endurance
training program.

To date, transcriptional analysis of HCR muscles was
performed by targeted approaches or using probe-based gene
expression arrays and the exercise response model has not been
studied as extensively (17–19). Transcriptome-wide comparison
of the intrinsic and acquired capacity profiles in skeletal muscle
could offer novel paths to unravel the link between exercise
capacity and health. In this study, we performed a comparative
analysis of skeletal muscle transcript profiles linked to specific
Frontiers in Endocrinology | www.frontiersin.org 2
measures of exercise performance in rats and humans. Our data
identifies molecular pathways and specific genes as potential
mediators of exercise capacity and trainability.
MATERIALS AND METHODS

Animals
All animals were housed, selectively bred and experimental
procedures carried out in accordance with the Institute for
Laboratory Animal Research Guide for Care and Use of
Laboratory Animals and in compliance with guidelines of
University Committee of Use and Care of Animals at the
University of Michigan.

Selective Breeding for Exercise Capacity Model
The models for low and high exercise capacity, LCR (low
capacity runners) and HCR (high capacity runners), have been
previously described in detail (8). Briefly, the rats were subjected
to two-way selective breeding for untrained aerobic capacity as
measured by endurance running. Starting from a genetically
heterogeneous founder population (N:NIH stock), 13 pairs of the
lowest and the highest running capacity rats from each sex were
randomly matched for mating. Subsequently, for each generation
the offspring from each family were tested for treadmill running
capacity at 11 weeks old age and subjected to selection in the
same manner. In this study, archived frozen gastrocnemius
muscle samples taken from 3 males each from generation 33
HCR and LCR rats were used. The exercise capacity phenotype
was confirmed with a treadmill exercise protocol as described (8).

Artificial Selection for Acquired Capacity Models
Low response trainer (LRT) and high response trainer (HRT) male
rats were housed andmaintained as described in detail before (16).
In brief, 10–11-week-old males and females from the genetically
heterogeneous N:NIH stock were subjected to incremental
treadmill running test identifying their pre-training capacity
(DIST1). Then each rat took on a treadmill running training
program (3 days/week for 8 weeks). The program progressively
increased speed by increments of 1 m/min and duration by
0.5 min in each session, starting at 10 m/min for 20 min in the
1st week and finishing at 21 m/min for 31.5 min in the 8th week.
At the end of the training program, post-training exercise capacity
of each rat was evaluated (DIST2) and the response to training
measured as the change in maximal running distance
(DDIST =DIST1 – DIST2). At each generation, 10 males and 10
females with the highest response were selectively bred for HRT
line and separately 10 pairs with the lowest training response were
bred to develop LRT line. Nearly 100 offspring per line per
generation were evaluated for response to training. All training
sessions and the maximal exercise capacity tests were performed
on a motorized treadmill at a 15° incline.

Endurance Training of High and Low Responder Lines
For this study, male rats from generation 15 responder lines
underwent exercise capacity testing at 10–12 weeks of age. A
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subset of rats then was subjected to the 8-week exercise training
protocol as described above. A separate group of rats acted as
baseline controls and did not undergo any training, represented
as LRT and HRT groups (n = 3 per group). At the end of the
training period, all rats (both trained and untrained) were tested
for exercise capacity to measure exercise response as described.
Trained rats are represented as LRTT and HRTT (n = 3 per
group). Gastrocnemius muscles were dissected from animals 48
hours after the last exercise test, flash-frozen in liquid nitrogen
and stored at -80C◦ for later analysis.

RNA Sequencing
Frozen gastrocnemius muscles were pulverized using mortar-
pestle. Total RNA from 50-100mg tissue powder was isolated
using Trizol reagent. RNA was treated with DNAse and purified
using NucleoSpin RNA II columns (Machery Nagel) and
integrity was confirmed using an Agilent Bioanalyzer. RNA-
sequencing was performed at GATC Biotech (Konstanz,
Germany). Illumina Stranded TruSeq mRNA Library preparation
kit was used with 1 ug of total RNA for the construction of
sequencing libraries, which were loaded onto Illumina HiSeq 2500
High-output flow cell and sequenced in a 1 × 50 bp single
read format.

Human Training Study
Human study design is detailed in Robinson et al. (20). Briefly,
the study randomly assigned young and old healthy participants
to three groups: resistance training (R), high-intensity interval
training (HIIT), and combined training (C). Participants trained
for 12 weeks followed by repeated testing days. In this study, only
the data from young participants were included in the
analysis. HIIT protocol consisted of 3 days per week cycling
and 2 days per week walking on a motorized treadmill. An
interval session was designed to achieve 16 min of training time
at a high intensity (> 90% VO2max). The treadmill walk was at a
self-selected pace for 45 min at 70% VO2max. The combined
training program was 5-days per week, 30 min of cycling,
followed by 30 min of resistance training. The cycling at 70%
VO2max was 20 min.

Mitochondrial respiration measurements were used as a proxy
of aerobic exercise capacity. As explained in Robinson et al.,
mitochondria were isolated from pre- and post-training skeletal
muscle biopsies and analyzed by high-resolution respirometry.
Mitochondria were added to a 2mL chamber (Oxygraph-2K,
Oroboros) followed by sequential additions of substrates and
inhibitors. For this study, State 3 respiration through Complex I
+II (Glutamate-malate-succinate) was used as mitochondrial
respiration. Biopsy samples from m. vastus lateralis muscle were
collected in rested and fasted state at 72 h post-exercise to avoid
acute effects of exercise on gene abundance.

Bioinformatic Analysis
For RNA sequencing analysis, quality control of raw reads was
determined using FastQC tool kit (http://www.bioinformatics.
babraham.ac.uk/). The reads were then aligned with reference
genome of Rattus Norvegicus (Rnor_6.0) downloaded from
ENSEMBL using Tophat2 aligner (21). Alignments were
Frontiers in Endocrinology | www.frontiersin.org 3
assembled into transcripts using Cufflinks and list of differentially
expressed genes (DEGs) was obtained by quantifying transcripts
using Cuffdiff program (22).

Pathway analysis was carried out with the Ingenuity Pathway
Analysis tool (QIAGEN Inc., https://www.qiagenbioinformatics.
com/products/ingenuitypathway-analysis, version 8.6) and
PANTHER Gene Ontology classification (23). Differentially
expressed genes were analyzed for statistical overrepresentation
of GO Slim Biological Processes with Fisher’s Exact test and
Bonferroni correction for multiple comparisons.

Raw counts for RNA-seq dataset from Robinson et al. (20)
were downloaded from NCBI (GSE97084).

For the human aerobic capacity analysis, we correlated gene
expression levels at untrained state with pre-training
mitochondrial respiration measurements. Since this analysis is
based on only the untrained state (intrinsic aerobic capacity),
participants from all three groups (HIIT, C, and R) were included
for statistical power.

For human exercise response analysis, after sorting the response
rates of participants based on the change in mitochondrial
respiration, four participants who showed highest improvement
were designated as high responders. Four participants with the
lowest change in mitochondrial respiration were designated as low
responders. Next, we used DESeq2 package to normalize the data
as well as to identify the DEGs in pre- and post-training states of
high and low human responders (24). Finally, we investigated the
overlap of DEGs with same directionality of change between
humans and rats for further analysis.

To explore the putative upstream regulators, we used Distant
Regulatory Elements of co-regulated genes (DiRE) analysis (25).
Briefly, DIRE program identifies 3 top evolutionary conserved
regions (ECRs) and the promoter ECRs for each gene in the
submitted dataset. After defining these regions and corresponding
sequences, it feeds this information into an algorithm that searches
for the known transcription factor binding motifs (TFBMs) and
how enriched these are in the submitted gene set. In parallel, the
algorithm uses 5000 randomly selected genes and runs the same
analysis as background.

Secretome Analysis
For the secretome prediction, we took the Emanuelsson et al.
(26) protocol as a baseline for sequence-based subcellular
localization prediction. We applied the following package with
default settings for the pipeline (the code is available publicly at
https://travis-ci.org/github/fmaguire/predict_secretome). Briefly,
after converting the gene names to amino acid sequences using
Uniprot, the pipeline starts with SignalP to identify proteins
containing signal peptides. After that, to filter proteins with
transmembrane domains it uses TMHMM2.0. (If the signal
peptide contains a TM domain, it will still pass this stage).
Next, the pipeline identifies N-terminal sorting peptides via
TargetP. Lastly, using WolfPsort, it identifies sequences likely
to be in the extracellular compartment.

Statistical Analysis
For the transcriptome profiling, from the output of Cuffdiff
program all genes showing p-value < 0.05 (two-sided, adjusted
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by Benjamini-Hochberg method) were further examined for
differential expression and functional processes.

Statistical significance was attributed to p < 0.05 (two-sided)
and FDR < 0.05 where applicable. For statistical analysis of
pathway analysis, Fisher’s exact test and Bonferroni’s correction
for multiple comparisons were applied. GraphPad Prism was
used for statistical analyses of the physiological data which are
presented as means ± SE.

For human aerobic capacity analysis, we ran Pearson
correlation for gene expression of human exercise transcriptome
and corresponding mitochondrial respiration using cor.test
function in R programming language. From the ouput, genes
with correlation p-value < 0.05 (two-sided) were intersected with
DEGs in rat aerobic capacity dataset (HCR-LCR) to check the
directionality of change. Genes changing in the same direction
were reported.

For human exercise response analysis, after sorting the
response rates of participants based on the change in
mitochondrial respiration, we determined the DEGs for pre-
and post-training states of high and low responders. Overlap of
DEGs with same directionality of change between humans and
rats were selected for analysis.
RESULTS

Muscle Transcriptional Signature of
Aerobic Exercise Capacity Highlights
Enhanced Vascularization and
Oxygenation
To investigate the molecular mechanisms underlying intrinsic
aerobic capacity, we used skeletal muscle from male rats
selectively bred based on their running capacity (Figure 1A).
Without any exercise training, the HCR group largely
outperformed the LCR group on a maximal treadmill
performance test (Supplementary Figure 1A). To identify
molecular pathways associated with this intrinsic difference in
exercise capacity, we performed global analysis of gene
expression by massively parallel RNA-sequencing on
gastrocnemius muscles from these animals (Figure 1A). We
observed a similar range and distribution of reads across all
samples confirming a comparable transcriptomic coverage.
Despite the heterogeneous nature of these models, individual
transcriptomes clustered according to exercise capacity (Figure
1B). By comparing the skeletal muscle transcriptomes of both
groups, we identified 434 differentially expressed genes (DEGs),
out of which 257 were increased in HCR and 177 were elevated in
LCR (fold change > 1.5, q < 0.05) (Figure 1C). Among the top 10
transcripts with higher expression in HCR were genes linked to
metabolism (Pik3c2g and Mup4), cell proliferation and
differentiation (Fam163a, Fosb, and Cyp2J4), and regulation of
blood vessel function and oxygen supply (Msln, Cyp2J4, and Hb-
b2) (Figure 1C and Supplementary Figure 1B). Conversely,
several of the top genes with higher expression in LCR muscle
(i.e., 10 lowest in this analysis), were related to myogenesis and
Frontiers in Endocrinology | www.frontiersin.org 4
muscle regeneration, including Tmem8c (also known as
Myomaker), Ranbp3l, and Ppm1h. Igfn1, a negative regulator of
protein synthesis, was highly expressed in LCR. Also, Ifit1
expression was higher in LCRs, which encodes for a component
of interferon-induced protein complex that was previously linked
to obesity-related inflammation (27).

To have a global view of the muscle gene programs associated
with enhanced intrinsic capacity, we performed gene ontology
(GO) analysis on the DEGs. The transcripts increased in HCR
muscle revealed enrichment for genes associated with muscle
structure, contractility and vascularization (Figure 1D). On the
other hand, immune response-related genes were overrepresented
within the LCR transcriptome. In parallel, we used Ingenuity
Pathway Analysis (IPA) to further uncover pathways and
functions that may contribute to the divergent phenotypes of
these models (Figure 1E). Based on the differential gene
expression, IPA predicts whether a specific biological function is
activated (positive z-score) or inhibited (negative z-score). In this
context, an inhibition of a function for HCR means an activation
for LCR. Consistent with the GO analysis, angiogenesis and
contractility related functions were heavily represented among
the biological functions that were predicted to be activated in HCR
muscles. One interesting biological function highlighted in the
IPA analysis was fibrogenesis, representing genes associated with
extracellular matrix remodelling (e.g., Plat, Serpine1, Thbs1, and
F2) and that were elevated in high capacity runner transcriptome
(Supplementary Figure 1C). Biological functions activated in the
LCR muscle transcriptome involved cardiovascular disease terms
and mortality reflecting the metabolic problems reported in these
animals (28).

To explore how these gene programs are orchestrated, we
interrogated the DEG sets for putative upstream regulators.
Searching for coordinated expression patterns in the DEGs
against co-expression databases, IPA retrieved several
transcription factors known to be important for muscle function
(Mef2c, PPARg, SRF, and STAT3) as activated in HCR (Figure
1F). On the LCR side, the DNA methylases Dnmt3a and Dnmt3b
scored high among the potential regulators. Although with less
significance, we also spotted regulators that may play a role in
oxygenation state and injury recovery (Nos2 and Egln). Another
way to identify putative upstream regulators, is to scan the close
vicinity of co-regulated genes for known transcription factor
binding motifs (TFBM). To that end, we used DiRE (distant
regulatory elements of co-regulated genes) (25) to analyze the
regulatory regions of DEGs (Figure 1G). With this approach, we
observed again an association of STAT and PPARg motifs with
HCR-related genes and identified additional TFs, some of which
are recently shown to modulate myogenesis (Zfp238) (29) and
muscle regeneration (Zfp423) (30).

Reduced Response to Endurance Training
Is Associated With Inflammatory Gene
Signature and Circadian Rhythm Regulation
The large inter-individual variation in response to exercise
training poses considerable challenges in the design of
standardized exercise interventions. To map the exercise
October 2020 | Volume 11 | Article 591476
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response transcriptome of skeletal muscle, we used the selectively
bred HRT-LRT model system and trained them on a treadmill
for 8 weeks, generating the HRT-Trained (HRTT) and LRT-
Trained (LRTT) groups (Figure 2A and Supplementary Figures
2A–C). A separate cohort of untrained HRT and LRT animals
underwent a maximal running capacity test before and after the 8
weeks training period. While the pre-training performance of HRTs
and LRTs were the same, HRTTs significantly outperformed the
LRTTs in the post-trained condition (Supplementary Figures 2B–
C). Reflecting this, the HRTT and LRTT transcriptomes clustered
separately (Figure 2B) with 255 differentially expressed genes (fold
change > 1.5, FDR < 0.05). Of these, 68 were enriched in HRTT and
187 were decreased in HRTT (i.e., enriched in LRTT). Among the
top increased transcripts in HRTT muscles were some genes
Frontiers in Endocrinology | www.frontiersin.org 5
involved in training-induced pathways, such as calcium signalling
(Sln and Adcy1) but also some novel ones (Kcna10 and Lgi3).
(Figure 2C and Supplementary Figure 2D). Interestingly, Lgi3 has
been reported to activate Akt although in other cell types (31). Top
LRTT enriched transcripts included negative regulators of
calcineurin signalling (Rcan3), positive regulators of NMJ function
(Wnt16 and VAT1l), and slow twitch fibres (Myh6). To investigate
pathways and functions that potentially contribute to training
response, we explored enriched gene sets with GO analysis and
biological functions (Supplementary Figures 2E, F). High response
transcriptome revealed a blood pressure related signature while low
response signature included circadian regulation (specifically Per1,
Bhlhe40, Ciart, Dbp expression induced, and Nfil3 repressed) and
was overall more diversified. When we looked at the potential
A B

D E

F G

C

FIGURE 1 | Transcriptional signature of aerobic exercise capacity in skeletal muscle. (A) Comparison of transcriptional profiles with RNA-sequencing of
gastrocnemius muscles from High Capacity Runner (HCR) and Low Capacity Runner (LCR) rats. (B) Principle component analysis of HCR and LCR groups (n = 3).
(C) Volcano plot showing gene expression analysis, genes with FDR < 0.05 shown in blue, and highlighted genes in red. (D) PANTHER gene ontology analysis
showing top 5 biological processes (GO_BP) enriched in upregulated genes (red) and top 5 terms enriched in downregulated genes (blue). Hierarchically connected,
largely redundant GO terms are represented by the smallest set (Fold enrichment > 5, p < 0.05, Bonferroni correction for multiple comparison). (E, F) Ingenuity
pathway analysis for biological functions and upstream regulators (input FDR<0.05, z-score cut-off 1.5 on each side of the axis, only data with p < 0.05 plotted).
(G) Distant regulatory element analysis of the differentially regulated genes (set to target top 3 ECRs + promoter ECRs against 5000 random background).
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upstream regulators, transcription factors Foxo4 and Atf4 known
for their roles in skeletal muscle atrophy (32–35), were among the
predicted factors whose targets were enriched in the LRTT
transcriptome (Figure 2D). This is in line with the reports
showing lack of response to strength training in LRTTs (36). In
addition, immune response-related factors (Ccr2, TNF, IL10ra, and
p53) were also among the activating factors for the LRTT muscle
indicating a damage response. In support of this, a separate search
Frontiers in Endocrinology | www.frontiersin.org 6
for potential regulators revealed an enrichment of the TFBM for
NFkB50 (p50-p50 homodimer), a known transcriptional repressor
and regulator of immune and inflammatory responses (Figure 2E).

Comparing the individual effects of the intrinsic and acquired
components of exercise capacity could prove useful to investigate
common and unique underlying mechanisms. A Venn diagram of
the transcriptional profiles revealed the unique gene sets to each
component (Figure 2F). The intrinsic capacity unique transcripts
A B

D E

F

C

FIGURE 2 | Adaptive exercise response transcriptional profile in skeletal muscle. (A) High and low responder rats were trained on a treadmill for 8 weeks generating
low and high responder to training-trained rats (LRTT and HRTT). (B) Principle component analysis of LRTT and HRTT skeletal muscle transcriptomes (n = 3)
(C) Volcano plot showing gene expression analysis, genes with FDR < 0.05 shown in blue, and highlighted genes in red. (D) Ingenuity Pathway Analysis showing
predicted upstream regulators (input FDR < 0.05, z-score cut-off of 1.5 on each side of the axis, only data with p < 0.05 plotted). (E) Transcriptional factors for the
differentially regulated genes predicted by distant regulatory element analysis (set to target top 3 ECRs + promoter ECRs against 5000 random background).
(F) Venn diagram comparison of high capacity and high response transcriptional profiles and Panther gene ontology analysis for biological processes for
corresponding gene signatures. Hierarchically sorted GO terms (Fold enrichment >10, p < 0.05, Bonferoni correction for multiple testing) were ranked for the lowest
p-value, and top 5 were plotted.
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(n = 333) reflects a predominant muscle function signature
enriched with sarcomere organization, skeletal muscle
contraction, and regulation of Ca++ ion transport biological
processes. On the other hand, the signature for acquired
capacity (n = 163) displays a more fragmented signature with
associations to circadian regulation, proton transmembrane
transport and redox process. The 63 shared transcripts were
mostly associated with angiogenesis, ROS metabolic process, and
Wnt signalling, all of which are known exercise induced processes.

Since the HRT and LRT training response diverges, we next
considered if differences in exercise-induced changes in their
transcriptional profiles could uncover candidate genes linked to
enabling or inhibiting such exercise adaptations. To explore this
angle, we compared each group in the post-trained state to their
corresponding pre-training state (Supplementary Figure 2G).
Most training-induced genes common to low and high exercise
responders were regulated in the same direction. The unique
genes for low training response (n = 193) were enriched in GO
terms related to immune response (inflammation and interferon
responses and receptor internalization) and effects of exercise
(angiogenesis, synaptic vesicle transport, and ROS metabolic
process). Conversely, the gene signature unique to high
response was enriched in processes concerning ion transport,
Ca++ signalling, and oxidative respiration.

The Predicted Muscle Secretomes of
Exercise Capacity and Response Highlight
Lipid Metabolism and Extracellular Matrix
Remodelling
Muscle-derived secreted factors play an important role in
mediating the exercise-associated local and systemic adaptations
Frontiers in Endocrinology | www.frontiersin.org 7
(37). We used the transcriptomics data to identify known or novel
myokines involved in exercise capacity or response phenotypes
(Figure 3). To this end, transcriptome profiles were processed
through a well-established pipeline for protein sequence-based
prediction of putative secreted factors (26). The human secretome
andmembrane proteome resource compiled by the Human Protein
Atlas (HPA) initiative (38) allowing us to determine the location of
each candidate molecule (Figures 3A–C). Based on the capacity
and response transcriptomes, we were able to predict some known
secreted factors (Lpl, Plat, Adipoq, Lyz2, Igfbp6, and Tcn2) and
some putative ones. Interestingly, a considerable fraction of the
predicted capacity secretome is classified as potentially secreted to
blood. Nearly all the corresponding transcripts were significantly
increased in the HCR transcriptome (Figure 3A). Among these,
members of the plasmin system (F2/Thrombin, Plat, Serping1, and
Serpinf), lipid metabolism (ApoD, Adipoq, Ces1, Lpl, and
Pla2g12a) and immune function (Ccl21, Cfi, and Slpi) stand out.
Notably, nearly all predicted factors for response profile were
enriched in LRTTs (reduced in HRTTs). The largest fraction of
the predicted secretome profile for exercise response was
categorized to ECM as the HPA secretome localization, and
included Wnt signalling related factors (Wisp2, Wnt16, and
Sostdc) (Figure 3B). Interestingly, the shared factors between the
two profiles involved proteins related to ECM remodelling (Col1a1,
Col14a1, Ecm1, Thbs2, Cilp2, and Serpinf1), insulin sensitivity, and
metabolism (Igfbp6 and Pla2g2a) (39) (Figure 3C).

Gene Networks of Exercise Capacity and
Response in Humans
Next, we sought to determine the molecular factors that play into
an individual’s aerobic capacity and their potential to improve
A B C

FIGURE 3 | Secretome prediction for high exercise capacity and high response to exercise. Differentially expressed genes for high capacity and high response were
used to search for predicted secreted factors. Factors unique to (A) high capacity and (B) high response muscle secretomes are shown divided to locations based
on data from Human Protein Atlas: blood (pink), extracellular matrix (blue), intracellular and membrane (yellow), and other tissues/unknown locations (gray).
Upregulated transcripts are marked with a red arrow and a blue arrow marks the downregulated transcripts. (C) Factors that are common to high capacity and high
response muscle profiles are shown in boxes with the same color-code (blood in red, extracellular matrix in blue, and other in gray).
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endurance performance in a similar way to the rat models we
used for this study. For this, we used the RNA-seq datasets from
Robinson et al. (20) to find correlations between relative gene
expression levels, exercise capacity and response (Figure 4A). In
that study, healthy young and older participants were exposed to
different modalities of exercise and the multiple-omics approach
aimed to find molecular transducers of exercise benefits in
skeletal muscle.

Using the pre-training muscle mitochondrial respiration
measurements as a functional indicator of intrinsic aerobic
Frontiers in Endocrinology | www.frontiersin.org 8
capacity and RNA-seq from the same volunteers (Supplementary
Table 1), we looked for correlations between these two measures.
From this analysis, we identified 574 genes that positively correlated
with muscle mitochondrial respiration values. Within this group,
genes fell into biological processes related to muscle regeneration
(most notably notch signalling), metabolism, and calcium
homeostasis. A smaller number of genes correlated negatively
with mitochondrial function and grouped under Mitochodrial
RNA processing and Regulation of autophagy, among other
(Figure 4B and Supplementary Figure 3A). From the set of
A B

D E

F G

C

FIGURE 4 | Molecular mediators of intrinsic capacity and response to exercise in humans. (A) Scheme showing the dataset and workflow used for the analysis
using data from Robinson et. al. (B) Pearson correlation analysis of pre-training skeletal muscle mitochondrial respiration measurement and gene expression levels
for healthy, young adults (n = 29, p < 0.05, only samples with normal distribution were plotted). (C) The subjects are ranked based on change in mitochondrial
respiration after aerobic exercise training. Top 4 individuals are designated as high responders (red) and bottom 4 subjects are grouped as low responders (blue).
Skeletal muscle transcriptomes of high and low responder subjects were compared by re-analysing RNA-seq data. (D) Comparison of pre-training transcriptome
profiles is shown in volcano plot (n = 4), transcripts with FDR < 0.05 shown in blue. (E) Venn diagram comparison of pre-trained muscle transcriptomes of high
responder rats and humans. (F) Volcano plot for differentially expressed genes between post-training skeletal muscle transcriptomes of high and low responder
humans. (G) Post-trained transcriptome comparison for high responder rats and humans.
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genes that showed a correlation with mitochondrial respiration
(either positive or negative), we could find 16 amongst the HCR/
LCR DEGs (Supplementary Table 2). Eight of these genes were
regulated in the same direction in both humans and rats (Figure 4B
and Supplementary Table 2). MUTYH, encoding for an enzyme
called MYH glycosylase involved in the repair of oxidative DNA
damage, showed the highest correlation estimate. In addition,
transcript levels of the transcription factor Kruppel like factor 2
(KLF2) and Protein Kinase 1D (PRKD1/PKD1) also showed a
positive correlation with mitochondrial function and the capacity
for aerobic exercise. Notably, a cluster of correlated genes (TRIO,
COL1A1, and THBS2) hinted toward a role for ECM and
cytoskeleton reorganization in determining exercise capacity.

To investigate genes and networks associated with the
adaptability to exercise, we used the change in muscle
mitochondrial respiration after the 12-week training program
as an indicator for the response to exercise. Participants were
ranked according to the change in mitochondrial respiration and
grouped as high and low responders (Figure 4C and
Supplementary Figure 3B). By comparing the transcriptional
profiles of these groups at their pre-training states, we identified
four genes differentially expressed in individuals highly
responsive to exercise (DYNC1I1, HSPA4L, AC008014.1, and
FOXO1) (Figure 4D). When cross-compared to the
transcriptional signature of high responder rats at their pre-
training state, FOXO1 emerges as the common factor according
to this model for adaptability to exercise (Figure 4E). At the
post-training state, the differential expression analysis of the high
and low responder individuals yielded eight genes, four of which
had increased transcripts (NEU4, HSPA4L, ND2, and SETD9)
and the other four decreased (PIWIL2, MYZAP, VWA7, and
GCOM1) (Figure 4F). By comparing the post-training DEGs to
the trained high responder rat transcriptional profile and
identified Vwa7 as a shared factor (Figure 4G). Vwa7 is a
ubiquitously expressed gene encoding a putatively secreted
protein on unknown function.
DISCUSSION

The interplay between intrinsic and acquired exercise capacities,
both of which have high inter-individual variability (7, 40),
represents an obstacle to identifying the exact mechanisms
connecting aerobic exercise capacity and human health. By
using rat and human gene expression data associated with a
specific exercise-related functional measure, we uncovered
muscle transcriptional signatures underlying the inherent
aerobic capacity and responsiveness to training in both species.

The transcriptional profile of HCR muscle was strongly
associated with pathways that regulate vascularization and
oxygen transport. These molecular signatures echo previously
reported functional data from the same model showing
enhanced oxygen uptake and higher capillary density in HCR
muscle (11–13, 41), and both are well-known adaptations to
aerobic exercise both in rodents and humans (42). In contrast,
gene expression patterns in LCR muscle displayed an enriched
Frontiers in Endocrinology | www.frontiersin.org 9
profile for immune response-related functions. Importantly,
there is an established link between physical inactivity and
chronic low-grade inflammation. In fact, inactivity is linked to
increased morbidity and mortality due to chronic pathologies (2,
43). Interestingly, the muscle transcriptome of LCRs associates
with biological functions related to cardiovascular disease,
further reflecting their poor health condition as previously
documented (28, 44–48). Remarkably, the same analysis also
pointed out a curious association to morbidity/mortality. Taken
together, all of these suggest that the transcriptional signatures
we determined are reflective of some verified functional outputs
and therefore can be used to gain new insights on the
mechanisms critical to aerobic exercise capacity.

Transcriptional profiles can be useful gateways to explore
how particular gene programs are regulated in a concerted way.
Identifying potential transcription factors and coregulators
associated to the extreme capacity and response phenotypes
could give us clues about the drivers of divergent mechanisms.
One such example were the DNA methylases Dnmt3a and
Dnmt3b, whose activity was predicted to be reduced in the
HCRs (activated in LCRs). Interestingly, Dnmt3b activity has
been previously shown to limit bioenergetic adaptations to
exercise in muscle, by increasing promotor methylation of
specific genes (49). DNA methylation has been extensively
linked to transgenerational inheritance of different traits,
including response to exercise (50) and could be part of a
possible regulatory mechanism to transmit exercise capacity to
the next generations.

Our analysis also suggested some TFs as potential mediators
of the aerobic capacity and response. Spatiotemporal expression
of TFs plays a critical role in muscle development, metabolism
and in its adaptations to exercise (3, 4). Based on our data, one
candidate regulator of exercise capacity is RP58 (also known as
Zfp238), which has been identified to modulate developmental
myogenesis (29). Another is ROAZ (Zfp423), which was recently
implicated for its role in muscle regeneration by promoting
expansion of satellite cells (30), which are important for
muscle fiber repair/remodelling in response to exercise (51).

Identifying the determinants and mediators of the acquired
capacity holds a great promise for customization of exercise
programs based on individual trainability. The transcriptional
signature for exercise response in skeletal muscle may appear less
obvious compared to the intrinsic capacity signature. While there
is significant evidence that the HCR phenotype is mainly driven
by skeletal muscle (11, 13), other organs or systems may play a
greater role in the trainability phenotype. Regular exercise
requires sustaining repeated stress to the body, including
cardiovascular system and non-contractile, mechanical
components such as joints and tendons (42). In addition, it is
widely known that central nervous system contributes to
metabolic regulation and may play a role in exercise capacity
and trainability as it governs motor function and behavioral
components (such as motivation). Any of these, or other factors,
could also be limiting for the adaptation to exercise in low
responders. In fact, training activated a larger gene program in
low responders than in high responders. It is tempting to
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speculate that in low responders there might be an inhibitory
signaling network hampering training adaptations. Emerging
evidence indicates elevated inflammatory signaling and
increased metabolic dysfunction in LRTT rats (52).
Interestingly, circadian regulation of gene expression stands
out in pathway analysis of the response signature when
compared to the capacity transcriptome. Exercise is known to
synchronize to the biological clock and there is evidence that the
timing of the day affects exercise performance (53). Finally,
exercise intensity has been suggested to be a main driver of
response in humans (54). To reduce this possibly confounding
effect we used data from a human exercise intervention that
includes High Intensity Interval Training (20), which indeed
resulted in a VO2max and mitochondrial respiration
improvement in almost all participants.

Identifying novel muscle-secreted factors could offer new
ways to harness some of the benefits of physical activity. Based
on the muscle transcriptome, the corresponding secretome
profile of HCRs indicates a higher presence of factors secreted
to the blood. It is tempting to speculate that HCR muscles are
readily equipped to send necessary circulating factors to aid high
aerobic performance such as those involved in lipid metabolism
and improved circulation. Based on the muscle secretome
predictions, ApoD together with Lpl and Ces1d may facilitate
fatty acid uptake to the muscle. This may contribute to the
previously reported efficient fuel utilization and energy
metabolism in HCR muscles (55). On the other hand, the
responder profile suggests an increase in secreted factors
primarily to the extracellular matrix. LRTs may be signaling
for ECM remodeling due to the failure of coping with the
prolonged stress of exercise training. This goes in line with
previous studies of networks regulated in response to exercise
both in rats and in humans (52, 56). Expanding our knowledge
about muscle-secreted factors regulated by the intrinsic or
adaptive exercise response could pave the way for tailored
exercise-based therapies.

The premise of the outbred, genetically heterogeneous rat
models for exercise capacity is partly to reflect the complexity of
metabolic diseases and the diversity among humans. We
utilized a human dataset from Robinson et al. (20) to search
for a bridge between the transcriptome profiles of aerobic
capacity and trainability in rats and humans. Despite the
clear inter-species differences and the small cohort, we were
able to identify 8 genes whose expression correlated with
intrinsic capacity in humans and shared with rat exercise
capacity transcriptome. Among these, Prkd1 (PKD1)
expression positively correlated with aerobic exercise capacity
in humans. PKD1 is a class II HDAC kinase shown to promote
slow-twitch fatigue-resistant phenotype in skeletal muscle (57).
This is intriguing because inherited factors that affect aerobic
exercise capacity could involve epigenetic modifications. In
fact, accumulating evidence suggests that epigenetic marks
can mediate transmission of exercise and diet effects to the
next generation (50). Comparison of response signatures
pointed out Foxo1 as a common factor in both rats and
humans. Foxo1 is a transcription factor known to be induced
Frontiers in Endocrinology | www.frontiersin.org 10
in settings of skeletal muscle atrophy promoting autophagy and
ubiquitin-proteosome system (32). Regarding the exercise
response, increased Foxo1 levels in low responders may
indicate an elevated protein degradation to clear the damaged
proteins as a result of prolonged training stress.

This study provides a foundation for elucidating the
molecular map for exercise capacity and response. Among the
different transcriptional signatures linked to the exercise
performance-related measures we analyzed, angiogenesis and
oxygen delivery emerge as main drivers of intrinsic capacity.
Conversely, pro-inflammatory signaling is linked to lower
adaptation to training. A better understanding of the
underlying mechanisms could ultimately pave the way for
personalized training programs that optimize health outcomes
based on individual needs.
LIMITATIONS

In this study, we utilized unique rodent models for exercise
capacity to identify sets of genes/transcripts that contribute to
intrinsic and adaptive components of exercise capacity. Of note,
the breeding strategy used to generate these rat models, may
lead to the fixation of gain- or loss-of-function genetic
mutations, which we did not investigate. During the analysis,
we noted a high degree of variability which can be explained
with the out-bred nature of these models. Further studies with
larger cohorts or targeted approaches could investigate the
potential links highlighted in this study and shed light into
the underlying mechanisms. Our exploratory approach
comparing human and rodent data-sets does not indicate
causality and serves as a clue for further evaluation. Lastly,
body weight can influence aerobic running capacity and also
plays a substantial role in the emergence of metabolic and
cardiovascular diseases. Many generations of selective breeding
for aerobic capacity led to a significant correlation with body
weight in the HCR and LCR lines. However, the body weight
increase in LCR and decrease in HCR did not further diverge
after generation 13 and was reported to be stabilized at 0.7–0.8
fold by generation 28 (9). Furthermore, taking body weight and
generation as predictors of aerobic capacity in multiple
regression analysis, Wisloff et al. (28) revealed that even
though body weight accounts for some variation in the
running distance (7% for females, 14–20% for males), the
majority of the variation is due to other factors.
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