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Abstract

We investigate the average drag, lift, and torque on static assemblies of capsule-like

particles of aspect ratio 4. The performed simulations are from Stokes flow to

high Reynolds numbers (0.1 ≤ Re ≤ 1,000) at different solids volume fraction

(0.1 ≤ ϵs ≤ 0.5). Individual particle forces as a function of the incident angle ϕ with

respect to the average flow are scattered. However, the average particle force as a

function of ϕ is found to be independent of mutual particle orientations for all but

the highest volume fractions. On average, a sine-squared scaling of drag and sine-

cosine scaling of lift holds for static multiparticle systems of elongated particles. For a

packed bed, our findings can be utilized to compute the pressure drop with knowl-

edge of the particle-orientation distribution, and the average particle drag at ϕ = 0�

and 90�. We propose closures for average forces to be used in Euler–Lagrange simu-

lations of particles of aspect ratio 4.

K E YWORD S

drag, lift, and torque correlations, nonspherical particles, particle assemblies

1 | INTRODUCTION

Accurate fluid-particle drag, lift, and torque closures are required for

precise Euler–Lagrangian simulations of nonspherical particles. Histor-

ically, different drag closures have been developed for assemblies of

spherical particles.1-3 However, practical flows often involve assem-

blies of nonspherical particles for which there exist no closures at the

moment. Even for static, monodisperse, nonspherical particle assem-

blies, creating the required closures is complicated due to the differ-

ent possible mutual orientations of the particles. Furthermore, there is

a lack of knowledge identifying the relevant parameters that can

parametrize the drag, lift, and torque, which adds to the complication.

Most fluidization applications involve gas–solid flows, in which case

the large density ratios ensure large Stokes numbers, that is, the typi-

cal relaxation time of the solid particle velocity is large relative to the

response time of the gas.4 It has been shown that under such condi-

tions, it is sufficient to assume the particle configurations to be quasi-

static.5

Conventionally, fluidization simulations of nonspherical particles

are performed by combining isolated particle drag correlations with

correlations expressing the voidage effects as determined for sphere

assemblies. There have been several works in the past focussing on

the drag experienced by isolated nonspherical particles. Hölzer and

Sommerfeld6 proposed a correlation for the drag coefficient CD for

nonspherical particles. The proposed correlation is a function of parti-

cle sphericity and crosswise-sphericity, based on the projected area,

which indirectly represents the particle orientation. Their proposed

correlation is based on literature data of different nonspherical parti-

cles of various shapes and aspect ratios. More recently, drag, lift, and

torque closures for isolated nonspherical particles have been derived
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based on direct numerical simulations. Zastawny et al7 developed

drag, lift, and torque coefficients for four different nonspherical parti-

cles as a function of Reynolds number (Re) and incident angle (ϕ) with

respect to the incoming flow. The investigated particles have aspect

ratios ranging from 1.25 to 5 and Re ≤ 300. Similarly, Richter and

Nikrityuk8 proposed fits for drag, lift, torque coefficients for cubic and

ellipsoidal particles. The abovementioned literature is primarily limited

to steady flow conditions. Recently, we developed drag, lift, and

torque closures for three different nonspherical particles from the

viscous Stokes regime upto the high Re regime of Re = 2000, involv-

ing complex, unsteady flows.4 In an earlier work,9 we reported the

interesting finding that the drag coefficient CD at different incident

angles ϕ follows a sine-squared scaling given by

CD,ϕ =CD,ϕ=0
� + CD,ϕ=90

� −CD,ϕ=0
�

� �
sin2ϕ: ð1Þ

Likewise, we reported another interesting finding that the lift

coefficient CL follows sine–cosine scaling at different ϕ as

CL,ϕ = CD,ϕ=90
� −CD,ϕ=0

�
� �

sinϕcosϕ ð2Þ

for various elongated particles. The abovementioned scaling laws

must be mathematically true in the Stokes regime due to linearity of

the flow fields. However, their validity in the inertial regimes is primar-

ily due to an interesting pattern of pressure distribution contributing

to the drag and lift for different incident angles.9 In Equations (1) and

(2), the drag coefficients at incident angles of 0� and 90� still depend

on particle shape and Reynolds number. The Reynolds number in the

present work is defined as Re = |us|deq/ν, where us is the superficial

flow velocity, ν is the kinematic viscosity of the fluid, and deq is the

diameter of the volume-equivalent sphere given by deq = (6Vp/π)
1/3

with Vp the particle volume.

For multiparticle systems, various literature is available to include

the voidage effects, often developed through experiments and numer-

ical simulations. One of the most widely used expressions is that of

Ergun,10 which has been developed based on a series of packed bed

experiments of different particle shapes. The only limitation of this

work is that it is applicable primarily in the dense limit. Richardson and

Zaki11 performed various sedimentation and fluidization experiments

and proposed accordingly the effect of particle volume fraction on the

drag. Based on the previous literature on sedimentation and packed

bed experiments, Di Felice12 bridged the dilute and dense particulate

regimes through a unified function, which also extends from low to

high Re. Though the above correlations provide a good approximation,

the use of such closures in Euler–Lagrangian simulations often do not

represent accurate physics. This is mainly due to the inability to con-

struct moderate solids volume fractions (ϵs ≈ 0.3) in experiments.

There is a growing interest to use numerical simulations to accu-

rately develop drag closures for different Reynolds numbers Re

and solids volume fractions ϵs, albeit primarily for spheres. Initially,

lattice Boltzmann method (LBM) has been the choice for simulating

assemblies of spheres.1,13,14 Recently, Tenneti et al2 used an immersed

boundary method (IBM) to develop drag closures for static assemblies

of spheres for 0.01 ≤ Re ≤ 300 and 0.1 ≤ ϵs ≤ 0.5. They observed a

deviation of 30% in the Re range from 100 to 300 with respect to the

earlier work of Beetstra et al1 This is possible because Beetstra et al1

used LBM with the conventional stair-case boundary condition to rep-

resent the sphere boundaries, for which at high Re thinner boundary

layers result in larger deviations. In this work, we use a multirelaxation

time (MRT) LBM for high Re flows and an interpolated bounceback

scheme to much more accurately represent the particle geometry.

Recently, Tang et al3 used an IBM based solver to create drag closures

for static assemblies of spheres upto Re ≤ 1,000 and ϵs ≤ 0.6. We note

that all mentioned works report their drag closures as the average drag

on a collection of particles (typically a hundred to a few hundred) as a

function of the average solids volume fraction. In reality, variations in

local volume fraction and precise placement of neighboring particles

will lead to a scatter in the drag per particle. However, these closures

are developed for use in unresolved Euler–Lagrange (CFD-DEM) simu-

lations, where a typical CFD cell will be as large as the entire resolved

simulation box (i.e., with a cell size typically equal to 3–6 particle

lengths). It is true that in reality individual drag forces can be higher or

lower than the average drag, but such detail is generally not taken into

account in Euler–Lagrange simulations for computational efficiency. In

general, it is assumed that the particle-particle interactions (collisions)

will lead to a rapid redistribution of particle velocities within a cell, mak-

ing the average drag the most relevant factor.

There are also several disadvantages with combining an isolated

nonspherical particle drag with a voidage function based on spheres.

First, the assumption that the voidage effects are independent of par-

ticle shape is probably incorrect, since there exist different closures

even for assemblies of polydisperse spheres.1,15 Second, the voidage

effects on lift and torque in a multiparticle system are unknown and

hence are often neglected in Euler–Lagrangian simulations.16,17 Third,

using the same factor for voidage effects for all incident angles ϕ may

hold in sufficiently dilute regimes but its validity in the dense limit is

unknown. At the moment, only Li et al18 have discussed the drag and

lift for an assembly of ellipsoidal particles. However, they have limited

themselves to low Reynolds number flow (Re < 0.1), for which linear-

ity of the flowfield automatically applies, simplifying the decomposi-

tion into drag and lift forces. Moreover, He and Tafti19 have discussed

the drag, lift, and torque for an assembly of nonspherical particles.

However, they do not propose any correlations which can be used in

Euler–Lagrangian simulations. This could be due to the difficulty in

identifying the dependent parameters which represent the orientation

effects in nonspherical, multiparticle system adequately.

In this work, we propose and subsequently identify the important

dependent parameters for static, monodisperse assemblies of axisym-

metric nonspherical particles in low to high Reynolds number flow. With

the identified parameters, we create closures for the average drag, lift,

and torque. Our particle of interest is a capsule-like spherocylinder of

aspect ratio 4 (total length/shaft diameter). Compared to the two

parameters for sphere assemblies, that is, Reynolds number Re and

solids volume fraction ϵs, we propose four additional parameters for the
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assembly of axisymmetric nonspherical particles. Two parameters

describe the mutual orientations of the particles, namely two eigen-

values S1 and S2 of the orientation tensor, and two angle parameters

α and β represent the polar and azimuthal angles of the average flow

(in the coordinate frame determined by the principal directions of the

order tensor). The resulting six dimensional parameter space is ade-

quately explored and correlations are proposed accordingly. It should be

noted that the fixed nature of the particles in our simulations imply that

the proposed correlations are applicable for high Stokes number flows

as typically experienced by Geldart D category particles.20 To the best

of the authors' knowledge, there exists no work which parametrizes the

average drag, lift, and torque for nonspherical particles in a multiparticle

environment. Generally, lift and torque are ignored in large scale Euler–

Lagrangian simulations. The proposed accurate drag, lift, and torque cor-

relations enable future Euler–Lagrangian simulations to be performed

with more realistic physics for these particles of aspect ratio 4.

2 | NUMERICAL METHOD

2.1 | Lattice Boltzmann method

In the present work, we use a D3Q19, MRT lattice Boltzmann

method21 to simulate the fluid flow. The numerical method is ade-

quately explained and validated in our previous works.4,9 The evolu-

tion of particle distribution function jf〉 is computed as

j f r + eαΔt,t+Δtð Þ〉 = j f r,tð Þ〉−M−1Ŝ jm r,tð Þ〉− jm eqð Þ r,tð Þ〉
� �

, ð3Þ

for position r with discrete velocities eα in directions α = 1, 2…, 19.

Equation (3) is solved in a sequence of two steps namely collision and

streaming. M is a 19 × 19 transformation matrix used to transform jf〉
from velocity space to moment space jm〉 with jm〉 = M�jf〉 and the

superscript (eq) in Equation (3) implies the equilibrium condition. Here,

the ket vector j�〉 implies a column vector. The relaxation matrix

Ŝ=M�S�M−1 is a 19 ×19 diagonal matrix. Ŝ utilizes different, optimally

chosen relaxation rates for different moments, thereby providing

better stability compared to the single-relaxation-time LBM scheme.21

The matrices M and Ŝ are similar to Huang et al22 and are given in

Sanjeevi et al.4 The density is computed as ρ =
P

αfα and the momen-

tum as ρu =
P

αfαeα. The relation between the kinematic viscosity of

the fluid and the dimensionless relaxation time τ is ν= c2s τ−1=2ð ÞΔt ,
and the pressure p is related to the density by p= ρc2s , where cs is the

speed of sound. A linearly interpolated bounce back scheme23,24 is

used to accurately consider the curved geometry of the particle, as

opposed to the traditional stair-case bounce back boundary condition.

The flow is driven by a body force g and the simulated domain is peri-

odic in all three directions. The use of the interpolated bounce back

scheme within a periodic domain results in a slow mass leakage/gain

in the system. Accordingly, the mass is corrected using a case 3 type

correction described in Sanjeevi et al.25 The results for the multipa-

rticle system are validated in subsequent sections.

The ratio of deq/dmin equals 1.765 for the considered spherocylinder

of aspect ratio 4, where dmin implies diameter of the cylinder. The simu-

lation parameters used in our LBM simulations are summarized in

Table 1. Specifically, it can observed that a good particle resolution (deq)

is maintained for different Re. Further with increasing ϵs, the deq is

increased accordingly to resolve increased velocity gradients at high ϵs.

All LBM simulations have cubic domain, each with 200 particles unless

otherwise specified. At least two independent simulations are per-

formed for each Re and ϵs and the details of independent number of

simulations are discussed later (see Figure 13).

2.2 | Flow control

In order to perform a simulation for a specific Re, it is required to con-

trol the superficial flow velocity us by applying a body force g. The rela-

tionship between the superficial velocity and the average interstitial

flow velocity uavg is given by us = (1 − ϵs)uavg. Due to the nonspherical

nature of the particles, the sum of lift forces is often non-zero, and the

resultant direction of us can be different from the direction of g. This

necessitates the need to control both direction and magnitude of the

body force. Initially, the fluid is at rest with both us and g zero. The flow

is slowly ramped up by increasing g until the desired us is achieved. For

each timestep, the updated gravity gnew is computed as

gnew = gprev +
us,ref−us,prevð Þ

K2
p

Δt, ð4Þ

where gprev is the gravity from the previous timestep, us, ref is the

desired superficial velocity, and us, prev is the superficial velocity from

the previous timestep. Kp is a time constant which controls the system

response rate. The stopping criterion for the simulations is when the

system us reaches 99.9% of the reference setpoint.

3 | SIMULATION SETUP

3.1 | Orientation tensor

In this section, we briefly explain the characterization of mutual orien-

tations in an assembly of axisymmetric nonspherical particles with an

TABLE 1 Details of the simulation parameters used in our
simulations in LB units

Re LD deq ν

0.1 ≤ Re ≤ 10 288 28.36–48.5 1.3/3

10 < Re ≤ 100 576 56.72–97.0 0.1–0.08/3

300 576 56.72–97.0 0.04/3

600 576 56.72–97.0 0.015/3

1,000 768 75.63–129.3 0.01/3

Note: LD denotes the side length of the cubic domain. The range of deq
specified is respectively for 0.1 ≤ ϵs ≤ 0.5.
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orientation tensor. We subsequently explain the use of a Maier-Saupe

potential to achieve the desired particle configurations through

Monte-Carlo simulations.

To describe the orientation of a single axisymmetric particle, the

azimuthal and polar angles are sufficient. For a multiparticle configura-

tion, it is important to parametrize the mutual orientations of the par-

ticles, with the least number of parameters. For this, we propose to

use the orientation tensor S, also known in literature as the nematic

order tensor,18,26,27 defined as

S= 〈ppT〉: ð5Þ

Here, p is the unit orientation vector of a particle along the axis

of symmetry. The three eigenvalues (which we order as S1, S2, S3 from

small to large) characterize the type of mutual alignment, as shown in

Figure 1. The corresponding three eigenvectors define the principal

directions of mutual particle alignment.

Because the trace of S is 1, only two eigenvalues are sufficient to

specify the amount of randomness, planar random (biaxial), or unidi-

rectional (nematic) order. Note that the tensor S is insensitive to an

orientation p or − p of particles. In other words, the tensor captures

essentially the mutual alignment of particles irrespective of particles

oriented in positive or negative direction. Figure 1a shows a

completely random configuration with S1 = S2 = S3 = 1/3. Figure 1b

shows a planar random configuration with particles primarily confined

to planes (in this example with random orientations in planes normal

to the x-direction) resulting in S1 = 0, S2 = S3 = 1/2, and similarly a uni-

directional (nematic, in this example in the z-direction) configuration

in Figure 1c with S1 = S2 = 0, S3 = 1. In practical conditions, particles

can exhibit complex configurations in between these extremes but

can be adequately described by two eigenvalues S1 and S2. Regarding

the unidirectional case, we consider only nematic configurations but

not smectic because ordering of both positions and orientations is

rare in fluidization conditions.

The above metrics can be used to describe the particle configura-

tion. However, due to the nonsphericity of the particles, the flow ori-

entation with respect to the principal directions of the particle

orientations is also important. This results in two parameters, namely

the polar angle (α) and azimuthal angle (β) of the average flow velocity

vector with respect to the space spanned by the three eigenvectors

of the orientation tensor. In summary, the parameter space to be

explored for our flow problem has six parameters, namely Reynolds

number Re, solids volume fraction ϵs, two particle configuration

parameters S1, S2 and two angles α and β describing the mean flow

orientation with respect to the configuration.

3.2 | Generation of biased particle configurations

The generation of nonoverlapping configurations of the particles in a

periodic domain is required as an input for the flow simulations. It is

also required to generate configurations of particles with a prescribed

orientation tensor, which adds further complexity. In this section, we

briefly describe the Monte-Carlo simulation algorithm for generating

configuration of nonoverlapping particles and the use of a Maier-

Saupe potential28 to bias the system to the required orientation

tensor.

As the particles are spherocylindrical in shape, a simple way to

detect overlap is to find the minimum distance between two line seg-

ments. We define the line segment as the line connecting the centres

of the two spheres at the extremes of the spherocylinder. If the dis-

tance between two line segments is less than the particle diameter

(i.e., sum of the radii of two interacting particles), then the

spherocylinders overlap. A fast algorithm is used to measure the

shortest distance between the line segments.29

Using the above overlap detection algorithm, randomly picked

particles are randomly translated in small (compared to the particle

diameter) steps and rotated by a small angle around a randomly cho-

sen axis. Because our system is always below the threshold for a

spontaneous nematic order transition, this procedure results in a ran-

dom configuration after many iterations. If a prescribed amount of

mutual orientation is required, besides the requirement of no overlap,

a Monte-Carlo procedure is applied to decide whether to accept or

reject a new orientation of a particle. In detail, we choose a principal

director n, which is a reference vector to which the particles are

biased to align with or against (depending on the sign of the magni-

tude A of the Maier-Saupe potential). In the Monte-Carlo approach a

new orientation pnew of a randomly picked particle, having current ori-

entation pcurr, is accepted or rejected based on the following criteria:

pnew =

pnew, ifΔE <0
pnew, ifΔE ≥0andU 0,1½ �ð Þ< exp −ΔEð Þ
pcurr, otherwise

8><
>: ð6Þ

where ΔE =A pnew�nð Þ2− pcurr�nð Þ2
h i

: ð7Þ

Here, ΔE is the change in Maier-Saupe potential and U([0, 1]) is a

random number uniformly distributed between 0 and 1. Of the three

conditions in Equation (6), it is clear that the first condition accepts

the new orientation if it leads to a lower Maier-Saupe potential.

(a) (b) (c)

F IGURE 1 Different particle configurations and their orientation
tensors: (a) random, (b) planar random, and (c) unidirectional (nematic)
configuration
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Without the second condition, the system would approach toward an

ideal mutual orientation (such as perfect parallel or perfectly perpen-

dicular particles w.r.t. the principal director, depending on the sign of

A) when the Monte-Carlo simulation is run for a sufficiently long time.

With the second condition, however, increases in the Maier-Saupe

potential are also accepted with a certain probability less than 1 (the

larger the increase the potential, the smaller the probability of accep-

tance). After sufficiently long time, a balance is found between the

random particle reorientations and particle orientation ordering by the

Maier-Saupe potential, leading to a degree of randomness that can be

controlled by the magnitude of the user specified constant A. A bias

toward planar random configuration is achieved when A > 0, with

more particles oriented in planes perpendicular to the director n. A

bias toward unidirectional (nematic) configuration is achieved when

A < 0, with more particles oriented along the direction of n.

With the mentioned strategy, any configuration in-between the

ideal cases shown in Figure 1 can be achieved. Some sample configu-

rations generated using the abovementioned algorithm are shown in

Figure 2. For simplicity, the eigenvectors of the orientation tensor

S are considered as aligned with the Cartesian coordinate system in

Figure 2. The shown configurations are respectively equivalent to

Figure 1. For better clarity, the shown configuration has only 50 parti-

cles and the solids volume fraction ϵs is 0.1. The actual flow simula-

tions have 200 particles and are performed for various ϵs.

A common intuition may be that a random configuration would

result in particles with evenly distributed values of the incident angle

ϕ. However, for a random configuration, the available number of par-

ticles at different ϕ are not uniform, as shown in Figure 3a. This is due

to the higher probability to find particles at an angle ϕ near 90�

because the Jacobian for a spherical coordinate system scales as sinϕ.

Therefore, the disadvantage for a random configuration is that there

are actually few data points at ϕ = 0� to create angle-dependent clo-

sures. On the contrary, the planar configuration with the planes paral-

lel to the flow direction results in even particle distributions, as shown

in Figure 3b. This information is considered while we generate config-

urations for the flow simulations.

3.3 | Forces and torques acting on a particle

For an assembly of particles, different definitions are used to report

the forces.1-3 To ensure consistency, it is important to know the

form of the reported results. For a packed bed of particles in a flow

induced by a macroscopic pressure gradient rP, each particle of

volume Vp experiences a resulting force F due to the flow alone,

and a buoyancy force Fb = −VprP due to the pressure gradient.

For such a case, the total fluid-to-particle force Ff ! p acting on a

particle is

F IGURE 2 Different configurations of nonspherical particles generated using the Monte-Carlo simulations: (a) Random configuration without
the use of Maier-Saupe potential, (b) planar random, and (c) unidirectional configuration generated using the Maier-Saupe potential. For better
clarity, the shown examples have only 50 particles. The actual simulations involve 200 particles

(a) (b)

F IGURE 3 Histogram of particles
with different incident angles ϕ with
respect to the flow vector (indicated by
an arrow) for (a) random and (b) planar
random configuration. The shown
example has 1,000 particles. It should
be noted that the ϕ distribution for a
random configuration will always scale
as sinϕ (solid black curve) irrespective of
the flow direction [Color figure can be
viewed at wileyonlinelibrary.com]
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F f!p = F + Fb: ð8Þ

Given N particles with each of volume Vp and total volume of the

system V, the solids volume fraction is given by ϵs = NVp/V. Further,

the relationship between F and Ff ! p is given by3

F = F f!p 1−ϵsð Þ: ð9Þ

In this work, we report the forces F due to the flow and not Ff ! p.

Note that in some simulation packages Ff ! p is needed, in which case

the correlations we report in this work should be divided by (1 − ϵs).

The effects of buoyancy on torques are unknown and hence the

reported torques T are also as they are determined from the simula-

tions. We normalize the force and torque with the Stokes drag and

torque of a volume-equivalent sphere:

Fnorm =
F

6πμReq j us j , and ð10Þ

Tnorm =
T

8πμR2
eq j us j

: ð11Þ

Here, μ is the dynamic viscosity and Req is the radius of the vol-

ume equivalent sphere. The Stokes torque that we used is based on

the torque experienced by a rotating sphere in still fluid.30

Let p be the normalized orientation vector of the considered par-

ticle. The local coordinate system for each particle is defined as

ê1 =
us
j us j , ð12Þ

ê2 =
ê1 × p
j ê1 × p jsign ê1�pð Þ, and ð13Þ

ê3 = ê1 × ê2: ð14Þ

The above defined axes are accordingly illustrated in Figure 4.

The incident angle ϕ a particle makes with respect to the incoming

flow is given by ϕ= cos−1 ê1�pj jð Þ. We also compute the average forces

and torques for different ϕ intervals. Due to the finite number of mea-

surements in these intervals, there is an error on the mean �x of any

property x. We use the standard error on the mean σ�x for the

errorbars, computed as

σ�x = σ=
ffiffiffi
n

p
: ð15Þ

Here, σ is the standard deviation of the corresponding variable

x and n is the number of data points within the given ϕ interval.

Throughout this work, we use overbar (–) to denote arithmetic aver-

ages and boldface to denote vectors.

The normalized drag FD and lift FL can be computed from Fnorm as

FD = F1 = Fnorm�ê1, ð16Þ

F2 = Fnorm�ê2, and ð17Þ

FL = F3 = Fnorm�ê3: ð18Þ

Since the reported forces are without buoyancy effects, the (1 − ϵs)

term must be considered accordingly for both drag and lift while per-

forming Euler–Lagrangian simulations. Due to the influence of neighbor-

ing particles, the lateral force F2 for each individual particle may not be

equal zero, as shown in Figure 5 (Re = 100 and ϵs = 0.3). However, due to

symmetry, the average F2 does equal zero. Therefore, F2 is not considered

in our further discussion. The torques about the above defined axes are

T1 =Tnorm�ê1, ð19Þ

TP = T2 =Tnorm�ê2, and ð20Þ

T3 =Tnorm�ê3: ð21Þ

Here, TP is the pitching torque acting on a particle. We show the

three different torques for a flow through a random particle

F IGURE 4 The local coordinate system of a particle. us and FD act
along ê1, FL along ê3 and TP about the ê2 axis

F IGURE 5 Lateral force F2 distribution for different particles (×)
with averages at regular ϕ intervals (◊) in a random configuration at
Re = 100 and ϵs = 0.3. The error bars indicate the standard error on
the mean for each ϕ interval [Color figure can be viewed at
wileyonlinelibrary.com]
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configuration at Re = 100 and ϵs = 0.3 in Figure 6. It can be observed

that T1 and T3, though having some non-zero values, are statistically

zero on average due to symmetry. The non-zero values are primarily

due to hydrodynamic interactions with other particles. Only the aver-

age pitching torque TP (or T2) remains non-zero for different ϕ and

varies as sinϕcosϕ. Though individual particles experience non-zero T1

and T3, they become zero at ϕ = 0� and ϕ = 90�, respectively, where

the axis of symmetry of the particle coincides with the measured axis

for torque. This implies that the hydrodynamic interaction of particles

does not induce a torque (or a spin) about the axis of symmetry of the

particle.

3.4 | Validation

Sufficient validation has been done for our LBM code in the past for

flow around isolated particles.4,9 For a multiparticle configuration, we

have chosen flow around a random assembly of 100 particles at

Re = 100 and ϵs = 0.3 and measure the FD experienced by the individual

particles. The LBM results are compared with results from COMSOL

Multiphysics, a body-fitted, unstructured mesh based incompressible

flow FEM solver. The simulated LBM domain is of size 3603. The vol-

ume equivalent sphere diameter is deq = 64.4 lattice cells. The superfi-

cial velocity us is 0.0414 and the kinematic viscosity ν is 0.08/3 in

lattice units. The FEM solver domain is made of 2.1 million elements.

The resulting drag forces are shown in Figure 7. A good agreement

between LBM and FEM results can be observed. The average FD expe-

rienced by all particles in LBM and FEM solvers are 26.6 and 26.4,

respectively. Also, a good match in FD values for individual particles at

different ϕ can be observed. We note that in all simulations the flow

velocities remained sufficiently low to avoid finite compressibility

effects. In the worst case, the local Mach number was Ma = v/cs = 0.2

in a few regions in the simulation box. Even under those worst circum-

stances, the relative density variations were observed to be at most

2%, which is why our results can be considered to be in the incom-

pressible limit.

3.5 | Tests of configuration independence

Given a six-dimensional parameter space, exploring each dimension

with approximately five simulations, results in a massive 56 = 15,625

simulations. Furthermore, closures must be created for drag, lift, and

torque as a function of this six-dimensional space. Before proceeding

with these simulations, we tried to identify if there are any indepen-

dent parameters specifically related to the mutual orientation of parti-

cles. In this section, we will show that the average hydrodynamic

force on a nonspherical particle is independent of the mutual orienta-

tion of the particles themselves. This configuration independence

removes the configuration parameters S1, S2 and flow angle parame-

ters α and β from the parameter space to be explored. We find that,

when averaged over a number of particles, the only dependence that

the particles exhibit regarding orientation is the particle's incident

angle ϕ as in flow around single particles. Effectively, we will show

that the average force depends only on the Reynolds number Re,

(a) (b) (c)

F IGURE 6 Torques (a) T1, (b) T2, and (c) T3 distribution for different particles (×) with averages at regular ϕ intervals (◊) in a random
configuration at Re = 100 and ϵs = 0.3. Due to flow symmetry, the average T1 and T3 acting on particles are statistically zero. However, the
pitching torque TP (or T2) scales proportional to sinϕcosϕ (solid black line). The error bars indicate the standard error on the mean for each ϕ

interval [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 FD obtained for individual particles in a random
configuration from the LBM solver against an incompressible flow
FEM solver for Re = 100 and ϵs = 0.3. The dashed lines in respective
colors indicate the domain averages from the respective solvers
[Color figure can be viewed at wileyonlinelibrary.com]
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solids volume fraction ϵs and the incident angle ϕ of individual parti-

cles with respect to the flow direction.

In the extremely dilute regimes, that is, ϵs ! 0, it is already shown

that there exists a sine-squared scaling of drag for elongated nonspherical

particles.4,9 In this section, we discuss the results of flow around different

configurations at an intermediate solids volume fraction of ϵs = 0.3.

Results of different configurations (in respective plot insets) at an inter-

mediate Re = 100 are shown in Figure 8 such as fully random, planar

random with flows parallel and perpendicular to the planes, and unidirec-

tional configurations with principal directors at different angles. Though

there exists scatter in the measured FD on individual particles, it can be

observed that the average drag �FD for different ϕ intervals scales simi-

lar to sine-squared scaling as in our earlier works of isolated particles.

In other words, the average drag �FD at any ϕ can be computed as

�FD,ϕ = �FD,ϕ=0
� + �FD,ϕ=90

� −�FD,ϕ=0
�

� �
sin2ϕ: ð22Þ

It is important to note that the same values for average �FD,ϕ=0
�

and �FD,ϕ=90
� emerge for all configurations: the solid lines in Figure 8

are obtained as a single fit to the data from all configurations

investigated at a certain ϵs. Likewise, we also show that the scaling

phenomenon extends to both Stokes and high Re regimes in Figure 9.

With the sine-squared scaling behavior (or the configuration indepen-

dence) identified at ϵs = 0 and ϵs = 0.3, it can be inferred that the scal-

ing is safely applicable in the region 0≤ ϵs≤0.3. We have verified the

same at ϵs = 0.1 and the results are not shown here for brevity.

Though we observe the results are dependent on only three parame-

ters, namely Re, ϵs, and ϕ, the simulation needs to be set up for only

two parameters, namely Re and ϵs. With a sufficiently random config-

uration, the system involves different particle orientations covering all

ϕ. A caveat with a random configuration is that there are always very

few particles near ϕ = 0�, as shown in Figure 3. Therefore, biased ran-

dom configurations with more particles at ϕ = 0� are created and at

least two simulations are performed for better statistics.

We also observe the configuration independence phenomenon at

ϵs = 0.4. The criterion considered to declare configuration indepen-

dence phenomena is that the average drag results in a given ϕ range

of different configurations are within 10% deviation. In almost all

cases, the deviations are within ±5%. However, in a dense case with

ϵs = 0.5, several more factors such as the mutual orientations and rela-

tive positions of particles. influence the results. The FD distribution for

such dense configurations at Re = 100 and ϵs = 0.5 are given in

(a) (b) (c)

(d) (e) (f)

F IGURE 8 Configuration independence phenomenon at Re = 100 and ϵs = 0.3 for different configurations with different flow directions
(arrow indicated). FD distribution for different particles (×) with averages at regular ϕ intervals (◊). (a) Random configuration, planar random
configuration with flow (b) parallel, and (c) perpendicular to the plane, unidirectional configuration with flow at (d) 0�, (e) 45�, and (f) 90� with
respect to the principal configuration director. The solid black line indicates the sin2ϕ scaling. The error bars indicate the standard error on the
mean for each ϕ interval [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 10. Although these results can be predominantly parametrized

by Re, ϵs, and ϕ, the influence of the additional parameters cannot be

ignored. Therefore, specific cases of ϵs = 0.5 are performed with more

simulations for better statistics.

For a practical fluidization or other relevant gas–solid flow simula-

tion, the densest configuration is most likely to occur when the

particles are at bottom or at rest (e.g., before the start of fluidization).

In such a dense condition, the particle configuration itself is depen-

dent on the wall geometry. For a typical bed configuration with a flat

wall at the bottom, the particles also roughly align in planes parallel to

the bottom wall, that is, a planar random configuration. Pournin et al31

observed the same for particles poured freely from the top. Similarly,

(a) (b) (c)

(d) (e) (f)

F IGURE 9 Configuration independence phenomenon at moderate solids fraction ϵs = 0.3 for (a–c) Re = 0.1 (low Re) and (d–f) Re = 1,000
(high Re) for different configurations and different flow directions (arrow indicated). FD distribution for different particles (×) with averages at
regular ϕ intervals (◊). (a, d) Random configuration, (b, e) planar random configuration with flow parallel to the plane, (c, f) combined results of
unidirectional configuration with flow 0� and 90� with respect to the principal configuration director. The solid black line indicates the sin2ϕ
scaling. The error bars indicate the standard error on the mean for each ϕ interval [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

F IGURE 10 Configuration independence phenomenon at dense solids fraction ϵs = 0.5 for Re = 100 for different configurations and different
flow directions (arrow indicated). FD distribution for different particles (×) with averages at regular ϕ intervals (◊). The error bars indicate the
standard error on the mean for each ϕ interval [Color figure can be viewed at wileyonlinelibrary.com]
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we also observe the same for a bed containing freely poured particles

settled under gravity (ϵs = 0.54), as shown in Figure 11. The bed con-

tains 30,000 particles and it can be observed that roughly 2/3 of all

particles are in the range ϕ = 70–90� confirming our hypothesis.

Given such criteria, the most relevant regime would be to generate an

accurate fit for average �FD,ϕ=90
� at high ϵs, which would help to pre-

dict minimum fluidization velocity of the bed accurately.

It should also be noted that with increasing aspect ratio of elon-

gated particles, the maximum ϵs decreases for a packed bed.32 This is

because the locking phenomenon is stronger with high aspect ratio par-

ticles. Unless the particles are packed with their orientations aligned,

the decrease in peak ϵs for high aspect ratio elongated particles is

unavoidable. Also, practical applications as shown in Figure 11 do not

allow such long range ordering. A decreasing peak ϵs implies that the

configuration independence phenomenon will be very applicable.

With the observed sine-squared drag scaling, the pressure drop

across a packed bed can be determined with the knowledge of the ϕ

distribution alone. For example, for a truly random orientation, the

probability of having an angle ϕ between rod orientation and average

flow orientation scales as sin(ϕ). Together with the sin2(ϕ) dependence

of the drag on orientation, this predicts an average drag (and associated

pressure drop) equal to 2
3
�FD,ϕ=90

� + 1
3
�FD,ϕ=0

� at the given Re and ϵs.

In the subsequent sections, we will show that in the dilute and

intermediate ϵs regimes, the influence of ϵs is nearly shape indepen-

dent. This implies that the drag on isolated nonspherical particles can

be combined with sphere-based multiparticle correlations for the

voidage effect to mimic flow around assemblies of nonspherical parti-

cles upto intermediate ϵs.

3.6 | Explored regimes

In this section, we briefly explain the regimes explored in the current

work and also explain the number of independent simulations per-

formed per regime tested. An example of the flow stream lines for a

random configuration at Re = 100 and ϵs = 0.3 is shown in Figure 12.

Until solids volume fractions of ϵs = 0.35, the generation of randomly

orientation configurations is possible, as experienced by He and

Tafti19 for prolate spheroids of aspect ratio 2.5. In our case, we are

able to achieve random configurations upto ϵs = 0.4. However, for

denser configurations, it is difficult to generate a truly random config-

uration. For dense configurations of ϵs = 0.5, the particles have a natu-

ral tendency to orient to planar random or unidirectional orientation

configurations. A truly random configuration with a finite number of

particles, at such solids volume fraction, is not possible. This is due to

a strong orientation bias imposed by neighboring particles due to lack

of interparticle space. The explored flow regimes are indicated in

Figure 13. Overall, at least two simulations are performed for the

explored regimes. However, for specific cases of dilute and intermedi-

ate ϵs, we performed five simulations with 2 random, 1 planar random

with flow aligned to the plane and 2 unidirectional configurations with

flow parallel and perpendicular to the principal director. For solids

fraction ϵs = 0.5, 3 planar random configurations with flows aligned to

the plane and 2 unidirectional configurations with flows parallel and

perpendicular to the principal director are performed. For cases with

more simulations, the results are accordingly weighted while making

the fits.

4 | RESULTS

4.1 | Drag

With sine-squared scaling valid for all particle mutual orientations, as

shown in the previous section, the average drag experienced by a

F IGURE 11 Histogram of incident angle ϕ for a packed bed with
30,000 particles of aspect ratio 4. The arrow indicates the flow
direction [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 12 Flow streamlines for a random configuration of
aspect ratio 4 particles at Re = 100 and ϵs = 0.3 [Color figure can be
viewed at wileyonlinelibrary.com]
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particle in a multiparticle system can be explained by the Equation (22)

involving only the average drag experienced at ϕ = 0� and ϕ = 90�.

Therefore, we propose to generate fits for average �FD,ϕ=0
� and

�FD,ϕ=90
� as a function of Re and ϵs as

�FD Re,ϵsð Þ= Fd,isol� 1−ϵsð Þ2 + Fϵs + FRe,ϵs : ð23Þ

The corresponding terms are as follows:

Fd,isol Reð Þ=Cd,isol
Re
24

, ð24Þ

Fϵs ϵsð Þ= a ffiffiffiffi
ϵs

p
1−ϵsð Þ2 + bϵs

1−ϵsð Þ2
, and ð25Þ

FRe,ϵs Re,ϵsð Þ=Recϵds e 1−ϵsð Þ+ fϵ3s
1−ϵsð Þ

� �
+ gϵs 1−ϵsð Þ2Re: ð26Þ

Here, Cd, isol is the isolated particle drag at given Re as detailed in

Reference 4 for the considered particle (fibre) for both ϕ = 0� and

ϕ = 90�. The coefficients in Equations (25) and (26) for both average
�FD,ϕ=0

� and �FD,ϕ=90
� are given in Table 2. The average absolute devia-

tion of the fits and simulation data are 3.5 and 2% for �FD,ϕ=0
� and

�FD,ϕ=90
� , respectively.

The simulated data and corresponding fits are shown in

Figure 14. The fits follow the physical limits beyond the Re range sim-

ulated as shown in Figure 15. In the Stokes flow limit, it can be

observed that both ϕ = 0� and ϕ = 90� normalized drag becomes inde-

pendent of Re. In the high Re limit, the normalized drag approaches a

linear dependency on Re.

The ratio of average perpendicular to average parallel drag
�FD,ϕ=90

� =�FD,ϕ=0
� at different Re and ϵs is shown in Figure 16. For low

Re (Re = 0.1), the ratio remains constant at a value a little larger than

1 for all ϵs. The reason for this is that at low Re, the particles experi-

ence stronger viscous effects. The viscous drag reduces and pressure

drag increases with increasing ϕ at low Re. The same has been

confirmed for isolated particles9 and for a multiparticle system.19 The

combined viscous and pressure drag components result in a drag ratio

close to 1 for the considered spherocylinders at low Re. Due to iner-

tial dominance at moderate and large Re (Re≥ 100) we can observe a

near constant drag ratio for solids volume fractions upto ϵs = 0.3 and

a decrease in the ratio for ϵs > 0.3. Further, Figure 16 gives an indica-

tion that for very dense crowding, that is, at ϵs > 0.5, there is a possi-

bility that �FD,ϕ=90
� =�FD,ϕ=0

� tends back to approximately 1. Up to

moderate crowding, although the flow is disturbed due to the pres-

ence of neighboring particles, there is sufficient interparticle space for

flow to achieve uniformity. However, with increased particle

crowding, there appear pronounced fluctuations in flow velocities

(see also the section on flow histograms below), resulting in a reduced

drag ratio at high ϵs. This is an important finding because the tradi-

tional approach of Euler–Lagrangian simulations involve combining

isolated nonspherical particle drag with the voidage effects based on

sphere assemblies. This would result in a constant drag ratio
�FD,ϕ=90

� =�FD,ϕ=0
� independent of ϵs. This in turn could affect Euler–

Lagrangian simulation results, especially in predicting the minimum

fluidization velocity as there exists a dense packing of particles. This

mandates the need for the current work.

Figure 17 shows a similar interesting observation: The scaling of

the voidage effect �FD ϵsð Þ=�FD ϵs = 0ð Þ in the inertial regime (high Re

TABLE 2 Coefficients of the fits for average �FD and �FL

Coefficients

�FD

FL, magϕ = 0� ϕ = 90�

a 2 3 0.85

b 11.3 17.2 5.4

c 0.69 0.79 0.97

d 0.77 3 0.75

e 0.42 11.12 −0.92

f 4.84 11.12 2.66

g 0 0.57 1.94

F IGURE 13 Regime map containing the
explored parameter space in the current work (∘)
and our previous work9 (□). +, × indicate the
regimes with extra simulations and tested for
configuration independence
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limit) is shape and orientation independent for ϵs≤0.3. Here, we have

normalized the average drag with respective isolated particle drag for

different Re and ϕ. It can be observed that all the normalized points

fall on a same trend until ϵs = 0.3. Similar normalized drag for spheres

from Tang et al3 at Re = 100 and 1,000 also show the same trend until

ϵs = 0.3. Here, we use the isolated sphere drag correlation of Schiller

and Naumann33 for the normalization. The predictions of Tenneti

et al2 for spheres do not follow the exact trend for the voidage effects

as observed from Figure 17. It should be noted that Tenneti et al2

explored only until Re = 300 in their work and extrapolation to high

Re may not apply. Therefore, the above discussion indicates that

spherical drag correlations for the voidage effect, combined with iso-

lated nonspherical particle drag correlations can be applied to dilute

suspension simulations of nonspherical particles in the inertial

regimes. For a given nonspherical particle, the effect of crowding (ϵs)

on �FD is different for different Re and ϕ. Figure 18 shows the voidage

effect (average �FD normalized by the corresponding isolated particle

drag) as a function of Re. It can be seen at low Re, the increase in drag

due to crowding is comparable for both ϕ = 0� and ϕ = 90� at differ-

ent ϵs. At high Re, the increase in drag due to crowding with increas-

ing ϵs is much stronger for ϕ = 0� compared to ϕ = 90�. This also

explains further the reason for the observed reduction in average per-

pendicular to average parallel drag ratios with increasing ϵs in

(a) (b) F IGURE 14 The averaged drag forces
(a) �FD,ϕ=0

� and (b) �FD,ϕ=90
� at different Re and ϵs.

The markers indicate simulation data and the
solid lines are corresponding fits

(a) (b) F IGURE 15 The fits for average (a) �FD,ϕ=0
�

and (b) �FD,ϕ=90
� at different Re and ϵs beyond the

simulated regimes of 0.1≤Re≤1,000. The
markers indicate simulation data and the solid
lines denote corresponding fits

F IGURE 16 Ratio of average perpendicular to average parallel
drag �FD,ϕ=90

� =�FD,ϕ=0
� from simulations for different Re and ϵs [Color

figure can be viewed at wileyonlinelibrary.com]

F IGURE 17 Voidage effect on average drag: �FD ϵsð Þ=�FD ϵs = 0ð Þ for
ϕ = 0� and ϕ = 90� in the inertial regimes as a function of ϵs for
spherocylinders (this work, symbols), compared with voidage effect
for spheres from literature. TGS denotes Tenneti et al2 [Color figure
can be viewed at wileyonlinelibrary.com]
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Figure 16. It also confirms that simple voidage effect correlations

which only depend on ϵs and Re, such as the Richardson and Zaki

law,11 cannot be used for highly nonspherical particles at higher ϵs

and higher Re.

In the previous sections, we discussed the �FD averaged over all

particles with similar ϕ. However, the distribution of FD within a ϕ

interval is itself also a function of both Re and ϵs. The standard devia-

tions of the distribution of drag measurements, normalized by the

average �FD in the corresponding ϕ interval, are plotted in Figure 19. It

is important that the standard deviations are normalized by the aver-

age �FD at respective ϕ, rather than against a single value, say �FD,ϕ=90
� ,

for a given Re and ϵs. This is because with increasing Re, the ratio
�FD,ϕ=90

� =�FD,ϕ=0
� increases, as shown in Figure 16. Therefore, using

average �FD,ϕ=90
� for normalization will make the standard deviations

at ϕ = 0� appear insignificant at large Re.

For dilute configurations (ϵs = 0.1), we clearly observe that

increasing Re results in an increased σFD=
�FD at all ϕ. It should be noted

that the absolute magnitudes of average �FD at Re = 1,000 are much

larger than at Re = 0.1. Despite the normalization by these larger

values, we observe increased standard deviations for higher Re. This

is because at low Re, the viscous effects dominate, resulting in long-

range flow uniformity. Conversely, at high Re, the boundary layers are

thinner and flow wakes are stronger. This results in high nonuniformity

in the incoming flow on each particle, and thereby large fluctuations in

the hydrodynamic forces. For dense particle configurations (ϵs = 0.5), it

can be observed that σFD=
�FD increases relative to dilute conditions,

with a higher standard deviation for higher Re. The reason for higher

spread in FD is due to the fact the particles locally encounter highly

nonuniform incoming flows when there is more crowding.

4.2 | Comparison with other literature

Given the unavailability of multiparticle correlations for nonspherical

particles at higher Reynolds numbers, we combine the available liter-

ature results on isolated nonspherical particles with voidage effects

based on spheres. For this, we normalize the multiparticle drag of

spheres with the isolated sphere Schiller and Naumann33 correlation

and multiply with the isolated nonspherical particle drag. The results

are shown in Figures 20 and 21 for ϵs = 0.3 and ϵs = 0.5, respectively.

The isolated particles drag law used are SKP4 and HS.6 They are

accordingly combined with the multiparticle effects of TGS2 and

Tang et al3 for spheres. In the moderately crowded regime (ϵs = 0.3),

our earlier suggestion of combining isolated nonspherical particle

drag with multiparticle effects from spheres works well. For example,

the combination of SKP with Tang et al3 follows nearly the same

trend as that of the current work (Equation (23)). This can be

observed for both ϕ = 0� and ϕ = 90�. However for dense regimes

(ϵs = 0.5), it can be observed that the combination of SKP with Tang

et al3 does not agree well with the present work for ϕ = 0�. At the

same time, the combination with the HS6 isolated drag law seem to

be closer to the current work for ϵs = 0.5. Such an agreement must

be considered with care. The decent agreement occurs because HS

possesses high drag values for ϕ = 0� (for ϵs = 0), in combination with

a weak voidage effect for spheres. On the other hand, SKP with TGS

or Tang et al3 show decent agreement with the present work

for ϕ = 90�.

4.3 | Lift

The normalized lift Fl, ϕ on a single elongated particle from Sanjeevi

et al4 is given by

(a) (b)F IGURE 18 Voidage effect on average drag:
�FD,ϕ=0

� ϵsð Þ=�FD,ϕ=0
� ϵs = 0ð Þ and

�FD,ϕ=90
� ϵsð Þ=�FD,ϕ=90

� ϵs = 0ð Þ as a function of Re

F IGURE 19 The standard deviations σFD of the distribution of
individual drag values, normalized by the corresponding average �FD in
different intervals of incident angle ϕ. Open symbols correspond to
dilute configurations and filled symbols correspond to dense
configurations [Color figure can be viewed at wileyonlinelibrary.com]
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Fl,ϕ Re,ϕð Þ= Fl,isol�Sf,ϕ,with ð27Þ

Fl,isol Reð Þ= b1
Re

+
b2
Reb3

+
b4
Reb5

� �
Re
24

, and ð28Þ

Sf,ϕ Re,ϕð Þ= sinϕ 1+ b6Re
b7ð Þcosϕ 1+ b8Re

b9ð Þ: ð29Þ

Here, Sf, ϕ is the scaling function dependent on Re and ϕ. The

coefficients bi are accordingly listed in the mentioned literature. In

particular, the coefficients b6 to b9 describe the amount of skewness

of the lift coefficient on a single elongated particle around ϕ = 45�. In

the current work, we observe the same skewness for the multiparticle

system at different Re. Therefore, we assume the term Sf, ϕ remains

the same for the multiparticle system. The average lift �FL for a multi-

particle system takes the following form:

�FL,ϕ Re,ϵs,ϕð Þ= FL,mag Re,ϵsð Þ�Sf,ϕ Re,ϕð Þ: ð30Þ

The functional form of FL, mag (Re, ϵs) remains similar to that of

the drag and is given by

FL,mag Re,ϵsð Þ= Fl,isol Reð Þ� 1−ϵsð Þ2 + Fϵs ϵsð Þ+ FRe,ϵs Re,ϵsð Þ ð31Þ

with

Fϵs ϵsð Þ= a ffiffiffiffi
ϵs

p
1−ϵsð Þ2 + bϵs

1−ϵsð Þ2
, and ð32Þ

FRe,ϵs Re,ϵsð Þ=Recϵds e 1−ϵsð Þ+ fϵ3s
1−ϵsð Þ

� �
+ gϵs 1−ϵsð Þ2Re: ð33Þ

The corresponding coefficients are given in Table 2. The pro-

posed average lift correlation has around 5% average absolute devia-

tion with respect to the averaged lift from simulations. The

comparison of the average �FL from simulations and the proposed cor-

relation is shown in Figure 22.

4.4 | A simplified lift function

In our earlier works,4,9 we have shown successfully that for isolated

elongated particles, the relation between lift and drag in the Stokes

flow regime can be successfully used for higher Re flows too. In other

words, �FL at different ϕ can be computed as

�FL,ϕ = �FD,ϕ=90
� −�FD,ϕ=0

�
� �

sinϕcosϕ: ð34Þ

In this section, we show that Equation (34) is a reasonable

approximation even for a multiparticle system. This implies that the

scaling law is valid not only just for different Re but even for different

ϵs. Given a measured average �FL distribution from simulations at a

given Re and ϵs, the data can be fitted in a simple form as

(a) (b) F IGURE 20 Comparison of average
�FD for (a) ϕ = 0� and (b) ϕ = 90� for
ϵs = 0.3. SKP denotes Sanjeevi et al,4 HS
denotes Hölzer and Sommerfeld,6 and
TGS denotes Tenneti et al.2 The solid
black line is Equation (23) [Color figure
can be viewed at wileyonlinelibrary.com]

(a) (b) F IGURE 21 Comparison of average
�FD for (a) ϕ = 0� and (b) ϕ = 90� for
ϵs = 0.5. SKP denotes Sanjeevi et al,4 HS

denotes Hölzer and Sommerfeld,6 and
TGS denotes Tenneti et al.2 The solid
black line is Equation (23) [Color figure
can be viewed at wileyonlinelibrary.com]
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�FL,ϕ = FL,simplesinϕcosϕ: ð35Þ

Here, FL, simple is a fit parameter that best describes the simula-

tion data. An example for such a fit for Re = 100 and ϵs = 0.3 is

given in Figure 23. The comparison of the Stokes regime lift law

(Equation (34)) and our hypothesis (Equation (35)) is shown in

Figure 24 and it can be observed that there is a good agreement.

The highest absolute deviation observed between the equations is

still less than 20% and average absolute deviation is around 12%.

Therefore in Euler–Lagrangian simulations, in the absence of explicit

lift data, Equation (34) can be applied to include the effects of lift

with acceptable accuracy. This implies that in the often-used

approach of using Hölzer and Sommerfeld6 type drag correlations,

combined with sphere-based voidage effect correlations in Euler–

Lagrangian simulations, one can also include lift effects based on

Equation (34). In the following section, we will show the importance

of including lift, as it is often of comparable magnitude to drag at

high Re.

4.5 | Importance of lift compared to drag

In Euler–Lagrangian simulations, the effect of lift forces is often

neglected. This is because there is not much literature on nonspherical

particle lift correlations. In this section, we analyse the magnitudes of

lift compared to the drag on individual nonspherical particles at differ-

ent Re and ϵs. Figure 25 shows the distributions of the magnitude of

the lift force relative to the drag force on each particle |FL|/FD. It can

be observed that for Stokes flow (Re = 0.1), most particles experience

lift which is about one order of magnitude smaller than the drag.

However, for high Re (Re = 1,000), the distribution is much more

wider spread and there are even some particles for which |FL|/FD = 1.

This emphasizes the need for including lift in Euler–Lagrangian simula-

tions, especially while handling Geldart D particles, where the encoun-

tered particle Re is high. With increasing ϵs, a different interesting

observation can be made. In the low Re regime, increasing ϵs results in

an increased probability of particles experiencing high lift magnitudes

compared to the drag. On the contrary, at high Re (Re = 1,000),

(a) (b) (c)

(d) (e) (f)

(g) (h) (j)

F IGURE 22 Distributions of lift forces FL (×) with averages at regular ϕ intervals (◊) for different Re and ϵs. The solid line denotes the �FL,ϕ fit
(Equation (30)). Each plot includes data from two independent simulations with a total 400 data points. It should be noted that the scales are
different for each plot. The error bars indicate the standard error on the mean for each ϕ interval [Color figure can be viewed at
wileyonlinelibrary.com]
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increasing ϵs results in the |FL|/FD distribution skewing to the left. It

should be noted that the highest ϵs shown in Figure 25 is ϵs = 0.4 as

opposed to ϵs = 0.5, the highest ϵs explored. This is because random

configurations are not possible for ϵs = 0.5. To ensure consistency, all

results shown in Figure 25 are based on random configurations.

4.6 | Torque

For an isolated nonspherical particle, the torque correlation4 is

given by:

Tp,ϕ Re,ϕð Þ= Tp,isol Reð Þ�Sϕ Re,ϕð Þ, with ð36Þ

Tp,isol Reð Þ= c1
Rec2

+
c3
Rec4

� �Re
32

, and ð37Þ

Sϕ Re,ϕð Þ= sinϕ 1+ c5Re
c6ð Þcosϕ 1+ c7Re

c8ð Þ: ð38Þ
All coefficients can be found in our previous work.4 We note that

for our particle geometry the isolated particle torque strictly increases

with increasing Re (at least in the range of Re studied). It may be pos-

sible that at higher Re the torque will decrease again, as predicted by

Khayat and Cox34 for slender bodies.

The Re dependent skewness terms c5, c6, c7, c8 equal zero for an

isolated spherocylinder resulting in a symmetric distribution for ϕ

around 45�. Likewise, we also observe a near symmetric distribution

of average torque at different Re and ϵs for the multiparticle configu-

ration (see Figure 26). Unlike drag and lift, for an isolated nonspherical

particle, the pitching torque vanishes for all ϕ in the Stokes flow

regime. We observe the same for the multiparticle configuration.

Therefore, the proposed correlation for the average torque �TP is appli-

cable only in the inertial regime (10<Re≤1,000) and is given by

�TP,ϕ Re,ϵs,ϕð Þ= TP,mag Re,ϵsð Þ�sinϕcosϕ,with ð39Þ

TP,mag Re,ϵsð Þ= Tp,isol Reð Þ� 1−ϵsð Þ2 + TRe,ϵs Re,ϵsð Þ: ð40Þ

The corresponding terms in the scaling are as follows (coefficients

for the fit are given in Table 3):

TRe,ϵs Re,ϵsð Þ =Reaϵbs c 1−ϵsð Þ+ dϵ3s
1−ϵsð Þ

� �
+ eϵs 1−ϵsð Þ2Re: ð41Þ

The average absolute deviation between Equation (39) and

corresponding simulation data is 3%. It should be noted that TP, mag in

Equation (40) maps only the magnitude of the torque for different Re

and ϵs. The ϕ dependence is included separately with the sine and

cosine terms. The comparison of TP, mag and the corresponding simula-

tion data are given in Figure 27. Given a symmetric form for �TP,ϕ , the

TP, mag is equal to twice the magnitude of TP,ϕ=45
� since sinϕcosϕ = 1/2

at ϕ = 45�. From Figure 27, it can be observed that TP, mag roughly fol-

lows the same power law dependence on Re for different ϵs because

the slopes are similar. This is in contrast to the drag trends in

Figure 15, where the trend starts from zero slope at low ℜ to a

F IGURE 24 Comparison of �FD,ϕ=90
� −�FD,ϕ=0

� with FL, simple at
different Re and ϵs. The difference �FD,ϕ=90

� −�FD,ϕ=0
� is based on

averaged simulation data itself and not on the corresponding
averaged �FD fits [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 23 Distribution of FL (×) for Re = 100 and ϵs = 0.3 with
averages (◊) in regular ϕ intervals. The solid black line indicates the
corresponding simple fit based on Equation (35). The fit includes data

from two different simulations totalling 400 data points. The error
bars indicate the standard error on the mean for each ϕ interval
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Coefficients of the fits for TP, mag (Equations (40)
and (41))

Coefficients TP, mag

a 0.82

b 1.44

c 1.07

d 5.48

e 0.223
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constant slope at high Re. This is caused by the fact that the average

torque vanishes at low Re for all ϵs.

4.7 | Flow histograms

In the previous sections, we discussed the influence of the flow on

the hydrodynamic forces and torques on the particles. The flow

around particulate assemblies can also be viewed as flow through a

porous medium. In this section, we discuss the results of the influence

of the particles on the flow distribution.

The probability distributions of the normalized axial flow veloci-

ties (uax/uavg) at different Re and ϵs for random configurations are

given in Figure 28. Here, the normalization is done against the average

axial velocity uavg = us/(1 − ϵs) rather than the superficial velocity us to

ensure a fair comparison for different ϵs. Only the velocities of fluid

cells are shown here and the zero velocities in the solid cells are

(a) (b) (c)

(d) (e) (f)

F IGURE 26 Distributions of TP (×) with averages at regular ϕ intervals (◊) for different Re and ϵs. The solid black line denotes TP, ϕ fit
(Equation (39)). Each plot includes data from two independent simulations with each containing 400 data points. It should be noted that the
scales are different for each plot. The error bars indicate the standard error on the mean for each ϕ interval [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 27 TP, mag at different Re and ϵs. The markers indicate
simulation data and the solid line denotes fit at corresponding ϵs

(a) (b)

(c) (d)

(e) (f)

F IGURE 25 Distribution of lift force on individual particles
normalized by corresponding drag force on each particle at different
Re and ϵs [Color figure can be viewed at wileyonlinelibrary.com]
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ignored. It can be observed that with increasing Re, the spread of the

velocity distribution becomes narrower. This can be simply attributed

to the increased inertial effects and thinner boundary layers for

increasing Re. Interestingly, the high Re flows also demonstrate some

negative velocities corresponding to wake effects. With increasing ϵs,

the peaks of the distribution shift toward the left and the distribution

itself spreads wider. This implies that the increased presence of parti-

cle surfaces at higher ϵs pulls the velocities of fluid cells toward zero

(hence the left skewness). At the same time, the fluid accelerates in

the bulk regions further removed from the particle surfaces resulting

in increased velocities (and hence a wider distribution) to maintain the

desired us.

(a) (b)

(c) (d)

F IGURE 28 Axial-velocity
distributions at different Re and ϵs for a
random configuration [Color figure can be
viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)

F IGURE 29 Axial-velocity
distributions for different configurations
at Re = 100 and ϵs = 0.3 [Color figure can
be viewed at wileyonlinelibrary.com]
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It is also interesting to investigate the velocity distributions

for different configurations for a given Re and ϵs. The distributions of

uax/uavg at Re = 100 and ϵs = 0.3 for different configurations are plot-

ted in Figure 29. Given sufficient randomness of particles, as in random

and planar random configurations (see Figure 29a,b), the velocity distri-

butions are nearly identical. However, velocity distributions can be

different for different configurations, as can be observed for the unidi-

rectional configurations with flow parallel and perpendicular to the

principal director (see Figure 29c, d). Among the different configura-

tions shown, the unidirectional configuration with flow parallel to prin-

cipal director has the least recirculation, as is evident from the least

number of fluid cells with negative velocities (uax/uavg < 0). At the same

time, the unidirectional configuration with flow perpendicular to princi-

pal director has the highest amount of recirculation. Overall, we can

infer that there is no dependency between the configuration indepen-

dence phenomenon and the flow velocity distribution of different con-

figurations. The variation in forces at different incident angles ϕ is

mainly arising from the pressure forces. The same can also be con-

firmed from the multiparticle work of He and Tafti,19 which is also in

line with our finding for isolated nonspherical particles.9

5 | CONCLUSION

The flow around static assemblies of axisymmetric, elongated,

capsule-like particles of aspect ratio 4 has been studied extensively

using the multi-relaxation-time lattice Boltzmann method. The per-

formed simulations are from the Stokes flow regime to high Re

(0.1 ≤ Re ≤ 1,000) at different solids volume fraction ϵs (ϵs ≤ 0.5) and

different mutual orientations of particles.

In general, average forces on random assemblies of spheres are

only dependent on Re and ϵs. Considering the nonspherical nature of

the particles, we proposed four additional parameters to describe the

flow problem: two to parametrize the mutual orientation of the non-

spherical particles (S1 and S2) and two to represent the polar and azi-

muthal angles (α and β) of the averaged flow velocity with respect to

the configuration. For this, we have developed different static particle

configurations using Monte-Carlo simulations. In the process, the con-

figurations are biased to the desired amount of nematic or biaxial ori-

entational order with the use of a Maier-Saupe potential. The flow

simulations indicate that the average particle forces are configuration

independent, at least for ϵs ≤ 0.4, implying that the four additional

parameters do not influence the results. The only important parame-

ter representing orientation dependence is the incident angle ϕ of

individual particles with respect to the average flow direction. We

expect this result applies more generally to sufficiently elongated axi-

symmetric particles.

The configuration independence greatly simplifies the parameter

space to be explored from 6 to 3 dimensions, namely Re, ϵs, and ϕ. Of

the three, the simulations are set up for only two parameters: Re and

ϵs. Given a sufficiently random particle configuration, different incident

angles ϕ are covered automatically. Another interesting result from the

current work is that our previous finding of sine-squared scaling of drag

for isolated nonspherical particles9 applies also to static monodisperse

assemblies containing axisymmetric, elongated particles. In other words,

given a Re and ϵs, the average drag on the subset of particles oriented

at an incident angle ϕ with respect to the superficial flow velocity can

be described with the knowledge of average drag at ϕ = 0� and ϕ = 90�

alone. This information can be used in a packed bed to determine the

pressure drop across the bed with the knowledge of ϕ distribution

alone. In a multiparticle configuration, also the average lift on a particle

at an incident angle ϕ can be computed with good accuracy using the

average drag at ϕ = 0� and ϕ = 90�, as in our previous work on isolated

nonspherical particles. Having identified the dependent parameters, we

proposed correlations for average drag, lift, and torque for a multipa-

rticle configuration of aspect ratio 4 spherocylinders. During the pro-

cess, we used correlations for isolated nonspherical particles and

extended them to the multiparticle systems.

We have also explored the validity of the conventional approach

of combining known correlations for isolated nonspherical particle

drag with correlations for voidage effects based on sphere packings.

We observe that in the dilute and intermediate ϵs regimes (ϵs ≤ 0.3),

the influence of ϵs is nearly shape independent. This implies that the

above conventional approach can safely be used to mimic flow around

assemblies of nonspherical particles upto intermediate ϵs. However,

for denser regimes, there is a need for multiparticle simulations and

hence the need for this work. In the inertial regimes, the ratios of

average drag at ϕ = 90� and ϕ = 0� (�FD,ϕ=90
� =�FD,ϕ=0

� ) are nearly con-

stant until ϵ≤0.3 and then decrease with increasing ϵs. This further

proves that the conventional approach is not valid for dense regimes.

In the process, we have analysed the flow-velocity distribution as

function of Re and ϵs. Likewise, the influence of different particle con-

figurations on the flow velocities have also been analysed.

Although individual forces on particles in a multiparticle environ-

ment are scattered around the reported averages, in Euler–Lagrangian

simulations of dense particle flows the most important determining

factor for the overall solids motion is the average force on a cluster of

particles. This is the reason why CFD-DEM simulations are so

succesfull, for instance in predicting the dynamics of fluidized beds

containing spherical particles, even though in reality the drag forces

on individual particles are hugely scattered around the average force

at a given mean voidage and Reynolds number.

Overall, this work provides a recipe to parametrize the average

drag, lift, and torque experienced by monodisperse, axisymmetric, elon-

gated particles in multiparticle environment. To the best of the authors'

knowledge, there exists no work which parametrizes the drag, lift, and

torque for nonspherical particles in a multiparticle environment. Gener-

ally, lift and torque are ignored in large-scale Euler–Lagrangian simula-

tions. The proposed accurate drag, lift, and torque correlations enable

future Euler–Lagrangian simulations to be performed with more realis-

tic physics for these particles of aspect ratio 4.
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