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Background: Lower-grade gliomas (LGGs) are a heterogeneous set of gliomas. One of
the primary sources of glioma heterogeneity is genomic instability, a novel characteristic of
cancer. It has been reported that long noncoding RNAs (lncRNAs) play an essential role in
regulating genomic stability. However, the potential relationship between genomic
instability and lncRNA in LGGs and its prognostic value is unclear.

Methods: In this study, the LGG samples from The Cancer Genome Atlas (TCGA) were
divided into two clusters by integrating the lncRNA expression profile and somatic
mutation data using hierarchical clustering. Then, with the differentially expressed
lncRNAs between these two clusters, we identified genomic instability-related lncRNAs
(GInLncRNAs) in the LGG samples and analyzed their potential function and pathway by
co-expression network. Cox and least absolute shrinkage and selection operator (LASSO)
regression analyses were conducted to establish a GInLncRNA prognostic signature
(GInLncSig), which was assessed by internal and external verification, correlation analysis
with somatic mutation, independent prognostic analysis, clinical stratification analysis, and
model comparisons. We also established a nomogram to predict the prognosis more
accurately. Finally, we performed multi-omics-based analyses to explore the relationship
between risk scores and multi-omics data, including immune characteristics, N6-
methyladenosine (m6A), stemness index, drug sensitivity, and gene set enrichment
analysis (GSEA).

Results: We identified 52 GInLncRNAs and screened five from them to construct the
GInLncSig model (CRNDE, AC025171.5, AL390755.1, AL049749.1, and TGFB2-AS1),
which could independently and accurately predict the outcome of patients with LGG. The
GInLncSig model was significantly associated with somatic mutation and outperformed
other published signatures. GSEA revealed that metabolic pathways, immune pathways,
and cancer pathways were enriched in the high-risk group. Multi-omics-based analyses
revealed that T-cell functions, m6A statuses, and stemness characteristics were
significantly disparate between two risk subgroups, and immune checkpoints such as
PD-L1, PDCD1LG2, and HAVCR2 were significantly highly expressed in the high-risk
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group. The expression of GInLncSig prognostic genes dramatically correlated with the
sensitivity of tumor cells to chemotherapy drugs.

Conclusion: A novel signature composed of five GInLncRNAs can be utilized to predict
prognosis and impact the immune status, m6A status, and stemness characteristics in
LGG. Furthermore, these lncRNAs may be potential and alternative therapeutic targets.

Keywords: genome instability, lower-grade glioma, multi-omics analysis, long noncoding RNA, signature

INTRODUCTION

Gliomas originating primarily from progenitor glial cells are the
most widely investigated malignant neoplasm in the central
nervous system (CNS) and are accompanied by ascendent
morbidity and mortality rates (Nava-Salazar et al., 2018; Li
et al., 2019a). Currently, the WHO assorted gliomas into
different grades and identified grade II and III gliomas as
lower-grade glioma (LGG) and grade IV as high-grade glioma,
i.e., glioblastoma (GBM) (Wu et al., 2020). In contrast to GBM,
LGG behaves in a more sluggish course (Binder et al., 2019).
Despite the development in the integrated treatment of LGG,
including neurosurgical resection, chemo- and radiotherapy,
targeted therapy, and immunotherapy, neoplasm relapse and
malignant transformation to GBM are unavoidable due to
their highly invasive property (Brat et al., 2015; Tan et al.,
2020). Furthermore, since the survival time of the LGG
patients ranges extensively from 1 to 15 years, the short-term
or long-term survival of LGG patients cannot be accurately
estimated (Nikas, 2014; Brat et al., 2015). Therefore, how to
enhance the therapeutic effect and accuracy of predicting
prognosis is paramount for LGG patients.

Genomic instability is defined as a high-frequency alteration
in DNA (Murcia et al., 2019). Human genomic stability is
maintained by various mechanisms, such as DNA damage
responses, mitotic segregation mechanisms, and cell cycle
checkpoints, and any defects in the operation of these
mechanisms may lead to increased genomic vulnerability
(Vincent et al., 2014). Genomic instability, manifesting in
three primary forms (nucleotide, chromosomal, or
microsatellite instability), contributes to the tumorigenesis and
heterogeneity of diversified kinds of tumors and has emerged as
one of the most crucial predictive elements for survival in many
cancers, such as lung cancer and colorectal cancer (Jin and
Burkard, 2018; Zhang et al., 2020a). Therefore, it is essential
to identify the potential molecular features of genomic instability
in various tumors and explore their associated clinical
significance.

Noncoding RNAs, including long noncoding RNAs
(lncRNAs; more than 200 nucleotides) and microRNAs
(miRNAs; 19–25 nucleotides), account for more than 90% of
the transcriptome and do not have protein-coding potential
(Huarte, 2015). Aberrant expression of lncRNAs is usually
associated with cancer development or progression (Li et al.,
2017). Emerging evidence suggested that lncRNAs play essential
regulatory roles in cell proliferation, differentiation, invasion,
migration, and apoptosis (Gupta et al., 2010; Lee et al., 2016;

Leucci et al., 2016). In addition, recent studies have shown that
lncRNAs can regulate the expression of some crucial tumor
suppressors or oncogenes through lncRNA–mRNA or
lncRNA–miRNA interactions to affect tumorigenesis and
progression (Gomes et al., 2013). Moreover, growing evidence
disclosed the pivotal role of lncRNAs in regulating genomic
stability. For instance, Hu et al. (2018) found a p53-responsive
lncRNA GUARDIN, which was necessary to maintain genomic
stability by promoting DNA damage repair. Lee et al. (2016)
demonstrated that a highly conserved and abundant lncRNA
(LINC00657) was activated after DNA damage and involved in
maintaining genome stability by isolating some proteins that can
hyperactively inhibit mitosis, DNA repair, and DNA replication.
LncRNA MALAT1 promoted DNA repair by acting as a scaffold
that directly interplayed with DNA repair proteins such as
PARP1 and LIG3 (Lin et al., 2007). Although certain lncRNAs
have been associated with genomic stability, sequence-based
studies that systematically assess lncRNAs related to genomic
instability and their clinical implications in LGG patients remain
scarce.

In the present study, we applied single-nucleotide variant
(SNV) and transcriptome profiling data to develop a lncRNA
signature associated with genomic instability and investigated its
prognostic value in patients with LGG. Next, we confirmed the
effectiveness of the prediction model with internal and external
datasets. Functional enrichment analysis was also performed to
investigate its underlying mechanisms. Moreover, we also
explored the relationships between risk score and tumor
chemoresistance, N6-methyladenosine (m6A) mRNA status,
stemness index, and immune characteristics to provide a fresh
perspective on predicting prognosis and treatment strategies for
patients with LGG.

MATERIALS AND METHODS

Study Flowchart
The main steps of this study are shown in Figure 1. After the data
collection, the accumulated data of somatic mutation of each
patient were counted. Then the top 25% and last 25% somatic
mutation patients were extracted and divided respectively into
genome unstable-like (GU) and genome stable-like (GS) groups.
Differential analysis of lncRNA expression profiles between these
two subgroups was performed. Then, the unsupervised
hierarchical clustering analysis of all the samples based on the
differentially expressed lncRNAs between the GS and GU groups
was conducted to identify the GS and GU clusters. The
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differentially expressed lncRNAs between the GS and GU
clusters, namely, genomic instability-related InRNAs
(GInLncRNAs), were identified. The potential functions and
pathways of the GInLncRNAs were analyzed using the gene
co-expression, Gene Ontology (GO), and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis. Subsequently, the entire
The Cancer Genome Atlas (TCGA) samples were randomly
divided into training and validation datasets in a 1:1 ratio. The
prognostic lncRNA risk signature was constructed in
combination with the GInLncRNAs and the training dataset

by univariate Cox, least absolute shrinkage and selection
operator (LASSO), and multivariate Cox regression analyses.
The evaluation of this model was performed by correlation
analysis of somatic mutations, independent prognostic value
analysis, clinical stratification analysis, model comparison, and
internal and external dataset validation. Additionally, joint
analyses of the risk signature and other multi-omics data,
including tumor chemoresistance, m6A methylation status,
stemness index, immune characteristics, and gene set
enrichment analysis (GSEA), were also investigated. In the

FIGURE 1 | Flowchart for data collection and processing.
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end, a nomogram was established to predict the patient’s
prognosis more accurately.

Data Source and Preparation
The transcriptome data (fragments per kilobase million (FPKM)),
somatic mutation data (VarScan2), and corresponding clinical
features of LGG were downloaded from TCGA database (https://
portal.gdc.cancer.gov/). Next, we took the intersection of the
above three parts of data to get the common samples
according to the sample ID and removed the patients with
missing survival information or too short follow-up (less than
30 days) from our study to exclude the influence of noncancer
cause of death. Finally, 477 patients with matching somatic
mutation data, lncRNA and mRNA expression profiles,
survival information, and clinical features were obtained for
further analysis. Subsequently, the cohort of 477 patients with
LGG in TCGA was randomly classified into training and
validation datasets at a 1:1 ratio with the “caret” package in
the R language. The training dataset containing 240 patients was
used to establish a predictive risk model, namely, the genomic
instability-related InRNAs signature (GInLncSig). The validation
dataset containing 237 patients as internal validation was used to
verify the efficiency of this predictive model. The clinical features
of these two datasets are exhibited in Table 1 (p > 0.05, chi-square
test).

In addition, we downloaded the RNA-seq and corresponding
clinical data of another independent glioma dataset (DataSet ID:
mRNAseq_693) with 693 samples from the Chinese Glioma
Genome Atlas (CGGA) for external validation. By filtering out
the patients with no survival information and a follow-up of fewer
than 30 days, there were remaining 656 patients used for our
research.

Hierarchical Clustering and Screen of
Genomic Instability-Related LncRNAs
We used the “maftools” R package to analyze and visualize
somatic mutation profiles (Mayakonda et al., 2018). For the
transcript data, we draw on the Bao and Geng et al. (2021)
mutator hypothesis-derived computational framework (Bao et al.,
2020). Briefly, we calculated the cumulative counts of somatic
mutation for each patient and then ranked each patient in the
order of the numbers of somatic mutations from high to low. The
top 25% of somatic mutation patients were assigned as the GU
group; the last 25% were designated as the GS group. We first

identified the differentially expressed lncRNAs between the GS
and GU groups with the Wilcoxon rank-sum test in the “limma”
package of the R language. |Log2 (Fold change)| > 1.585 and false
discovery rate (FDR) adjusted p < 0.05 were considered as
filtering criteria. The volcano of the above differential
expression lncRNAs was plotted by the “limma” package in
the R language. After Z-score normalization of the expression
data of the above differentially expressed lncRNAs, we performed
hierarchical clustering (“hcluster” function in R) to stratify all the
477 patients into two clusters within Euclidean distance by using
“limma,” “sparcl,” and “pheatmap” package of R language.
According to the median of somatic mutations of the above
two clusters, the cluster with a higher median of somatic
mutations was assigned as the GU cluster; on the contrary,
another cluster with a lower median of somatic mutation was
defined as the GS cluster. Subsequently, the genomic instability-
related lncRNAs (GInLnRNAs) were identified by differential
expression analysis between two genomic instability subclusters
as previously described.

Co-Expression Network and Functional
Enrichment Analysis
The lncRNA–mRNA co-expression network analysis was
conducted based on Pearson’s correlation analysis between
expression data of the lncRNA and mRNA using the “limma”
package in R language to predict the unknown function of mRNA
co-expressed with GInLncRNAs. We selected the top 10
Pearson’s correlation coefficients of mRNA as co-expressed
GInLncRNA-related partners and visualized the co-expression
network using the “igraph” package in the R language. GO and
KEGG analyses were performed based on the above-selected
mRNA partners to explore the potential function and pathway
of GInLncRNAs by applying the “org.Hs.eg.db,” “clusterProfiler,”
“ggplot2,” and “enrichplot” packages of R language (Chen et al.,
2017).

Development and Evaluation of
GInLncRNA-Based Prognostic Signature
Univariate Cox regression analysis of GInLncRNAs was
performed in the training dataset (n � 240) to screen
prognosis-related GInLncRNAs using the “survival” package in
R language with p-value <0.05. Then, the “glmnet” and
“survminer” packages in R language were applied for the

TABLE 1 | Clinicopathological characteristics of the patients with lower-grade glioma (LGG) in three datasets.

Covariates Type Training dataset Validation dataset Total p-Value

Age ≤41 120 (50%) 126 (53.16%) 246 (51.57%) 0.5486
Age >41 120 (50%) 111 (46.84%) 231 (48.43%)
Gender Female 102 (42.5%) 114 (48.1%) 216 (45.28%) 0.2556
Gender Male 138 (57.5%) 123 (51.9%) 261 (54.72%)
Grade G2 121 (50.42%) 110 (46.41%) 231 (48.43%) 0.4076
Grade G3 118 (49.17%) 127 (53.59%) 245 (51.36%)
Grade Unknown 1 (0.42%) 0 (0%) 1 (0.21%)

Note. Chi-squared test; p < 0.05 suggests significant difference.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7585964

Cao et al. Multi-Omics Analysis in Lower-Grade Glioma

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


LASSO regression analysis with 10-fold cross-validations based
on the above prognostic GInLncRNAs to avoid multicollinearity.
Subsequently, multivariate survival analysis was enforced
using the Cox multivariate proportional hazards regression
model to obtain an optimal predictive signature of
GInLncRNAs with the following formula: GInLncSig (Risk core)
� ∑n

i�1coefficient(GInLncRNAi) × exp ression(GInLncRNAi).
The GInLncRNAi means the ith selected GInLncRNA.

We used themedian value of the risk score in the training dataset
as a risk cutoff to divide the LGG patients into high-risk (>median
value) and low-risk (≤median value) groups. The Kaplan–Meier
(KM) survival curve was drawn using the R package “survminer”
(p < 0.05 considered significance). The receiver operating characteristic
(ROC) curves and the area under the curve (AUC) values at 1, 3, and
5 years were calculated using the R package “timeROC” to evaluate
the predictive performance of this riskmodel of GInLncRNAs.What
is more, the validation dataset and the entire TCGA cohort of LGG
were used to assess the performance of the GInLncSig.

Correlation Analysis of Somatic Mutation
and Risk Score
We implemented the Wilcoxon signed-rank test in the training,
validation, and entire TCGA datasets to determine the
relationship between somatic mutation and risk score by the
“limma” package in the R language.

Independent Prognostic Analysis and
Construction of a Nomogram Model
The relationship between GInLncSig and other clinical features
was estimated by univariate and multivariate independent
prognostic analyses to validate the independence of GInLncSig
from other critical clinical features in the training, validation, and
entire TCGA datasets using the “survival” package in R language.
Then, based on the result of multivariate Cox regression analysis,
a nomogramwas constructed in the training dataset to predict the
prognosis of patients with LGG at 1-, 3-, and 5-year overall
survival (OS) using the “survival” and “regplot” packages of R
language.

Clinical Stratification Analysis and Model
Comparison
We performed a clinical stratification analysis to evaluate the
stability of prediction of GInLncSig. Briefly, in the validation
dataset, we classified the patients into subgroups according to clinical
parameters, such as age with 41 years as the demarcation point,
gender (male and female), and tumor grade (G2 and G3). Each
subgroup was then divided into high- and low-risk groups according
to the median GInLncSig score. Survival analysis was performed
between high- and low-risk groups in each subgroup using KM and
log-rank test by “survival” and “survminer” packages in R language.
In addition, we searched the LncRNA prognostic model from
previous studies. Multivariable Cox regression analyses were used
to train the existing signatures according to their gene name in the
same samples of the entire TCGA dataset. We compared the

prediction accuracy at 3-year OS by plotting the corresponding
ROC curve and calculating the AUC values.

External Validation From the Chinese
Glioma Genome Atlas Database
The GInLncSig was further evaluated by another specialized glioma
database of CGGA. We obtained 656 samples with the matched
expression of lncRNAs and clinical data from the above database
(DataSet ID: mRNAseq_693). Then this cohort was divided into
subgroups according to the clinical features, including age, gender,
and tumor grade, as mentioned earlier. We extracted CRNDE of
the GInLncRNAs from the GInLncSig model and compared its
expression among different subgroups using the “limma” and
“ggpubr” packages in R language. Besides, the entire CGGA
cohort was divided into two subgroups according to the
expression median of the selected LncRNA from the GInLncSig
model, and survival analysis was conducted in these two subgroups
using “survival” and “survminer” packages in R language.

Associations Between GInLncSig and
Immune Characteristics
Correlation analysis was performed to evaluate the GInLncSig’s
ability to predict immune characteristics such as immune cell
infiltration, immune function, and immune checkpoint
expression. The LGG cohort of TCGA dataset was classified
into high- and low-risk groups according to the median value
of GInLncSig before immune characteristics analysis.

Immune cell abundance was estimated between high- and
low-risk groups based on the GInLncSig using the R package
“immunedeconv” (Sturm et al., 2019), which integrates seven
state-of-the-art algorithms TIMER (Li et al., 2016), CIBERSORT
(Newman et al., 2015), CIBERSORT-ABS (Li et al., 2020),
quanTIseq (Finotello et al., 2019), MCP-counter (Becht et al.,
2016), xCell (Aran et al., 2017), and EPIC (Racle et al., 2017). The
significant differences in immune cell infiltration based on the
above algorithms were shown using a heatmap at p-value <0.05.
Single-sample GSEA (ssGSEA) was implemented to assess
immune function using the “GSVA” package in R language
with method specification as “ssgsea” (Hänzelmann et al., 2013).
In addition, we compared the expression level of the eight immune
checkpoints, considered as potential or existing targets for tumor
immunotherapy, between the high- and low-risk groups.

Gene Set Enrichment Analysis in GInLncSig
GSEA was implemented using GSEA software (http://www.
broadinstitute.org/gsea) between high- and low-risk groups
based on TCGA dataset with the KEGG gene sets. The
enrichment pathways with FDR < 0.01 were chosen for the
drawing of the enrichment diagram.

Relationship Between GInLncSig and m6A
as Well as Stemness Index
To investigate the correlation between m6A and the risk of
GInLncSig, we acquired the list of the m6A-related genes
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from Li’s study about the molecular characterization and
clinical significance of m6A modulators across 33 cancer
types (Li et al., 2019b). The stemness index for TCGA was
acquired from previous pan-cancer research (Malta et al.,
2018). The relationship analysis of risk score and cancer
stemness index was performed using Spearman’s correlation
test.

Drug Sensitivity Analysis
The CellMiner database comprising genomics and pharmacology
information of 60 different tumor cell lines was accessed by the
address (https://discover.nci.nih.gov/cellminer). In addition,

Pearson’s test was conducted for correlational analysis between
the expression of the LncRNAs from the GInLncSig and drug
sensitivity. The correlational study was performed based on the
effects of 792 medicines already approved by the Food and Drug
Administration (FDA) or in clinical trials (Supplementary Table
S1). The top 9 correlation coefficients were chosen for the plotting
display.

Statistical Analysis
The Mann–Whitney U test, a nonparametric test, was applied to
compare two independent and continuous variables. All multiple
comparisons were Bonferroni corrected. A chi-squared test was

FIGURE 2 | Profiles of mutation in patients with lower-grade glioma (LGG). Cohort summary plots show the distribution of variants based on variant classification
(A), type (B), and single-nucleotide variant (SNV) class (C) according to LGG samples from The Cancer Genome Atlas (TCGA). (A) Frequency distribution histogram of
the nine variant classifications. (B) Frequency distribution histogram of the three variant types (single-nucleotide polymorphism (SNP), INS, and DEL). (C) Frequency
distribution histogram of the six base variant types. (D) Stacked histogram of the nine variant classifications in each LGG sample. (E) Box plot shows the frequency
distribution of the nine variant classifications in each LGG sample. Various colors with specific annotations at the bottom part mean distinctive types of mutations (i.e., the
nine variant classifications). (F) The stacked bar graph displays the top 10mutated genes in LGG samples from TCGA. (G) Interaction between the top 20mutated genes
in LGG samples from TCGA.
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used for categorical variables. Two-tailed p < 0.05 was set as the
threshold for statistical significance. All analyses and visualization
were conducted using the R language (Version 4.0.2) with the
corresponding functional package.

RESULTS

Analysis of Mutation Profiles in
Lower-Grade Glioma
The somatic mutation profiles of 477 LGG patients in the MAF
format were acquired from TCGA database, and the data

processed with VarScan2 software were selected for further
analysis. We used the R package “maftools” to analyze and
visualize the somatic mutation data. In the gross, the
diversified mutations were grouped into different categories,
where missense mutation dominates the mutation types
(Figure 2A), single-nucleotide polymorphism (SNP) occupied
a higher proportion than insertion or deletion (Figure 2B), and C
> T happened more frequently than other SNVs in LGG
(Figure 2C). In addition, we reckoned the numbers of variants
per sample and exhibited mutation kinds by box plots with
variant colors for LGG (Figures 2D,E). The top 10 mutated
genes in LGGwere presented in a horizontal histogram, including

FIGURE 3 | Identification of sub-clusters and long noncoding RNAs (lncRNAs) associated with genomic instability in patients with lower-grade glioma (LGG). (A)
Heatmap of two genomic instability-derived sub-clusters (Cluster 1 and Cluster 2) based on unsupervised hierarchical clustering in entire The Cancer Genome Atlas
(TCGA) samples. (B)Comparison for somatic mutations between Cluster 1 and Cluster 2. Fewer somatic mutations are presented in Cluster 1 than Cluster 2 (p < 0.001,
Mann–Whitney U test). Hence, Cluster 1 was defined as the genomic stable (GS) cluster, while Cluster 2 was termed as the genomic unstable (GU) cluster. (C)
Heatmap of expression of 52 genomic instability-related lncRNAs (GInLncRNAs) between the GS and GU clusters. The abscissa represents the LGG samples, classified
into the GS cluster (blue) and GU cluster (red), and the ordinate is 52 GInLncRNAs. (D) Comparison of CDC20 expression levels between the GS cluster and GU cluster.
Lower expression levels of CDC20 were seen in the GS cluster compared with the GU cluster (p < 0.001, Mann–Whitney U test).
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IDH1 (77%), TP53 (45%), ATRX (37%), CIC (21%), TTN (9%),
FUBP1 (9%), PIK3CA (7%), EGFR (6%), NOTCH1 (6%) and
NF1 (5%) (Figure 2F). Figure 2G exhibits the co-occurrence and
mutually exclusive relation between mutated genes, and IDH1
mutations are often accompanied by a mutation in TP53 and
ATRX. The overall mutation information for each sample in LGG
was presented in a waterfall plot, in which different colors meant
various mutated classifications (Supplementary Figure S1).

Identification of Genomic
Instability-Related Subtypes and LncRNAs
in Lower-Grade Glioma Patients
To identify the genomic instability-derived subtypes, we first
calculated the cumulative numbers of somatic mutations for each
patient with LGG and ranged them in descending order. Then, we
assigned the 133 samples with the top 25% somatic mutations as
the GU group and 137 samples with the last 25% somatic
mutations as the GS group. Thirty-nine lncRNAs were
determined to be differentially expressed significantly between
the above two groups according to the |Log2 (Fold change)| >
1.585 and FDR adjusted p-value <0.05 (Supplementary Figure
S2). Subsequently, an unsupervised hierarchical clustering
analysis assigned the entire TCGA cohort into two clusters

(Cluster 1 and Cluster 2) based on the above 39 differentially
expressed lncRNAs (Figure 3A). Cluster 2 with higher somatic
mutations was called the GU cluster, and Cluster 1 with lower
somatic mutations was termed the GS cluster (p < 0.001,
Mann–Whitney U test; Figure 3B). KM survival analysis
showed that LGG patients in the GU cluster had a
significantly poorer prognosis than those in the GS cluster
(p < 0.001, log-rank test; Supplementary Figure S3).

Next, we identified 52 differently expressed lncRNAs termed
GInLncRNAs between the GS and GU clusters. There were 24
upregulated and 28 downregulated lncRNAs in the GU cluster
compared with the GS cluster (Figure 3C and Supplementary
Table S2).

Besides, we found that CDC20 gene, one of the recently
identified markers of genomic instability in glioma, was
significantly upregulated in the GU cluster (p < 0.001,
Mann–Whitney U test; Figure 3D) (Zhang et al., 2019). These
results indicated that our selected 52 lncRNAs could be regarded
as matriculant GInLncRNAs.

Co-Expression and Enrichment Analysis
To explore the potential functions and pathways of the
GInLncRNAs, we performed a co-expression analysis between
the GInLncRNAs and mRNAs and acquired the top 10 mRNAs

FIGURE 4 | Co-expression network and enrichment analyses of genomic instability-related long noncoding RNAs (lncRNAs) (GInLncRNAs). (A) Interaction
relationship of GInLncRNAs and their top 10 co-expressed mRNAs based on Pearson’s correlation coefficients. (B) Bubble plots of Gene Ontology (GO) and (C) Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of co-expressed mRNAs with GInLncRNAs.
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most related to each GInLncRNA according to Pearson’s
correlation coefficient. As shown in Figure 4A, the lncRNAs
and mRNAs were represented by nodes of two colors, and the
correlative lncRNA–mRNAs were connected. Then the GO and
KEGG enrichment analyses of the mRNAs co-expressed with
GInLncRNAs were conducted. The GO function enrichment
analysis demonstrated that the GInLncRNA-related mRNAs
markedly enriched in synaptic signaling transmission and
regulation in the biological process (BP), synaptic membrane

in the cellular component (CC), and ion channel activity in the
molecular function (MF; adjusted p-values <0.05, Figure 4B and
Supplementary Table S3). In terms of the KEGG pathway
enrichment analysis, 35 significantly enriched pathways were
obtained (Supplementary Table S4). These enriched pathways
are markedly involved in neuro-synaptic signaling pathways,
immune signaling pathways, cancer signaling pathways, and so
on (Figure 4C). These results implied that the changes in
GInLncRNA expression might influence the transmission of

FIGURE 5 | Construction of genomic instability-related lncRNA signature (GInLncSig). (A) Least absolute shrinkage and selection operator (LASSO) deviance
profiles. Selecting λ value by 10-fold cross-validation. The λ value of −2.7 was chosen by 10-fold cross-validation with the minimum partial likelihood deviation,
and seven variables were retained. (B) Processes of LASSO Cox model fitting. Seven variables were kept when the λ value was equal to −2.7. (C) The forest chart
for the five lncRNA prognostic signature based on the stepwise multivariate Cox proportional hazards regression model. CRNDE, AL390755.1, TGFB2-AS1, and
AC025171.5 were risk factors, while AL049749.1 was a protective factor.
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synaptic signals, immune status, and tumorigenesis by interfering
with the counterpoise of the regulatory network of the mRNA co-
expressed with the GInLncRNAs.

Identification and Construction of Genomic
Instability-Derived Prognostic Signature
To explore the association between the expression level of
GInLncRNAs and clinical significance, we randomly assorted
the 477 patients with LGG into two parts: the training dataset (n �
240) and the validation dataset (n � 237). No significant
differences were discovered with the chi-square test in the
distribution of basic clinical features among the training,
validation, and entire TCGA datasets (p > 0.05, Table 1). To
screen the GInLncRNAs related to prognosis, we first conducted a
univariate Cox regression analysis in the training dataset and
found that 26 of 52 GInLncRNAs were significantly associated
with the OS of LGG (p < 0.05, Supplementary Table S5). Next,
LASSO regression and multivariate Cox proportional hazards
regression analysis in a stepwise manner were carried out among
the screened 26 GInLncRNAs to create a prognostic model for
survival prediction. Eventually, 5 of the 26 GInLncRNAs that
reserved prognostic significance were identified in the genomic
instability-related risk model (Figure 5). The genomic instability-
derived lncRNA signature (GInLncSig) was built to evaluate the
prognostic risk of LGG patients based on the expression levels of

the above five independent prognostic GInLncRNAs and their
coefficients of multivariate Cox analysis as the following formula:
risk score (GInLncSig) � (0.121 × ExpCRNDE) + (0.018 ×
ExpAL390755.1) + (0.048 × ExpTGFB2-AS1) + (0.453 ×
ExpAC025171.5) + (−0.091 × ExpAL049749.1). In this GInLncSig,
the coefficients of four LncRNAs (CRNDE, AL390755.1,
TGFB2-AS1, and AC025171.5) were positive, indicating that
they were risk factors and their high levels of expression
predicted poor prognosis of LGG. In contrast, the lncRNA
AL049749.1 with a negative coefficient served as a protective
factor, and its high expression was an indicator of a better
prognosis. The risk scores of 240 patients in the training
dataset were calculated according to the GInLncSig. Then,
using the median-risk score of 0.802 from the training dataset
as the cutoff, these 240 patients in the training dataset were
classified into the high-risk group (risk scores equal to or greater
than the cutoff) and low-risk group (risk scores below the cutoff;
Supplementary Table S6). Kaplan–Meier survival analysis
showed that patients with LGG in the low-risk group had a
significantly better OS than those in the high-risk group (p < 0.01,
log-rank test; Figure 6A). Furthermore, the AUC values of the
time-dependent ROC curves at 1, 3, and 5 years in the training
dataset were 0.835, 0.833, and 0.668, respectively (Figure 6D).

To verify the predictive performance of the GInLncSig, we
reckoned the risk scores of the validation dataset (n � 237) and
the entire TCGA cohort (n � 477) and carried on the

FIGURE 6 | Assessment and verification of genomic instability-related long noncoding RNAs (lncRNA) signature (GInLncSig). Kaplan–Meier Survival analyses of
GInLncSig for high- and low-risk groups in training (A), validation (B), and The Cancer Genome Atlas (TCGA) datasets (C). Patients in the high-risk group display shorter
overall survival (OS) than low-risk patients. Receiver operating characteristic (ROC) curve at 1, 3, and 5 years for survival prediction of GInLncSig in the training (D),
validation (E), and TCGA datasets (F).
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Kaplan–Meier survival analysis, and we plotted the
corresponding ROC curves. The survival time of patients in
the low-risk group was significantly longer than that in the
high-risk group in the validation dataset and the entire TCGA
cohort (p < 0.001, log-rank test; Figures 6B,C and

Supplementary Tables S7, 8). The AUC values of ROC curves
at 1, 3, and 5 years were respectively 0.887, 0.860, and 0.760 in the
validation (Figure 6E), and 0.871, 0.851, and 0.723 in the entire
TCGA cohort (Figure 6F). Altogether, these results suggested
that the GInLncSig has an excellent predictive value for survival.

FIGURE 7 | Relationship between the GInLncSig and somatic mutation and CDC20 expression level in three datasets. Heatmap of long noncoding RNAs (lncRNA)
expression, the distribution of somatic mutation, and CDC20 expression with increasing risk score of patients in the training dataset (A), validation dataset (B), and The
Cancer Genome Atlas (TCGA) dataset (C). TheMann–Whitney U test was performed to compare the cumulative somatic mutations and CDC20 expression between the
high- and low-risk groups for the training dataset (D), validation dataset (E), and TCGA dataset (F). (G) The percentage of IDH1 mutation between the high- and
low-risk groups in the training dataset, the validation dataset, and TCGA dataset (chi-squared test, p < 0.01). (H) Kaplan–Meier survival analyses were performed for
patients grouped according to IDH1 mutation status and the genomic stable status. The overall survival outcomes of these four groups were significantly different (log-
rank test, p < 0.001).
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Correlation Analysis Between the
GInLncSig and Somatic Mutation Pattern
We drew a series of risk plots in which the samples were sorted in
increasing order of risk scores for the training, validation, and
entire TCGA datasets, including the heatmap of GInLncRNA
expression, the distribution of somatic mutation of LGG patients,
and the change of CDC20 expression pattern along with the
increasing scores. As illustrated in Figure 7A, the expression
levels of these risky lncRNAs (CRNDE, AL390755.1, TGFB2-
AS1, and AC025171.5) in the training dataset were upregulated
along with the increase of risk scores as expected. In contrast, the
protective lncRNA AL049749.1 was downregulated along with
the rise in risk scores. In addition, the numbers of somatic
mutation and pattern of CDC20 expression presented an
upward trend with increasing risk scores. In the training
datasets, the high-risk group is significantly greater than the
low-risk group in the number of somatic mutations (median
of somatic mutation counts 36 vs. 25.5, p < 0.001, Mann–Whitney
U test; Figure 7D). The patients in the high-risk group of the
training dataset tended to have a greater expression level of
CDC20 gene than the low-risk group (median of CDC20
expression level 2.484 vs. 1.052, p < 0.001, Mann–Whitney U
test; Figure 7D). We further probed into whether the GInLncSig
exhibited similar performance in the validation and entire TCGA
datasets. As described in Figures 7B,C, the same procedures were
repeated in the validation and entire TCGA datasets, and these
similar results were observed. The high-risk group exhibited
significantly higher somatic mutations than the low-risk group
in both the validation (median of somatic mutation numbers 34.0
vs. 26.0, p < 0.001, Mann–Whitney U test; Figure 7E) and entire
TCGA datasets (median of somatic mutation numbers 34.0 vs.
26.0, p < 0.001, Mann–Whitney U test; Figure 7F). Likewise, it
could be observed that the high-risk group presented a higher
expression level of CDC20 compared with the low-risk group in
both the validation (median of CDC20 expression level 2.315 vs.
1.207, p < 0.001, Mann–Whitney U test; Figure 7E) and entire
datasets (median of CDC20 expression level 2.451 vs. 1.079, p <
0.001, Mann–Whitney U test; Figure 7F).

As is known, the mutation state of IDH1 plays a vital role in
the LGG (Wesseling and Capper, 2018), and our study showed a
77% mutation rate of IDH1 in the entire TCGA cohort of LGG
(n � 477, Figure 2A). Consequently, the relation between the
GInLncSig and themutation status of IDH1was further evaluated
in the training, validation, and entire TCGA datasets. As
illustrated in Figure 7G, the patients with IDH1 mutation
remarkably dominated the proportion in the low-risk group,
while the patients with IDH1 wild status were dominant in
the high-risk group in all three datasets (p < 0.001, chi-
squared test; Figure 7G).

Survival analysis was further conducted in combination with
the mutation status of IDH1 and the hierarchical clusters,
including IDH1 Mutation/GS cluster, IDH1 Mutation/GU
cluster, IDH1 Wild/GS cluster, and IDH1 Wild/GU cluster. As
shown in Figure 7H, the Kaplan–Meier survival curve illustrated
significant survival divergences among the four groups (p < 0.001,
log-rank test). The patients in IDH1 Wild/GU cluster had the

poorest prognosis (Figure 7H). These results presented in
Figures 7G,H implied the GInLncSig was related to the
mutation status of IDH1. Collectively, the above results
suggested the risk score of GInLncSig correlated to the
somatic mutation patterns.

The Clinical Stratification Validation of the
GInLncSig
We conducted the stratified survival analysis of the validation
dataset based on essential clinical information, including age,
gender, and tumor grade. Figures 8A–F depicted the KM survival
curve analyses, suggesting that patients in the low-risk group had
significantly better survival prognoses than the high-risk group
among all the clinical stratified subgroups (p < 0.01, log-rank test;
Figures 8A–D,F) except the G2 subgroup (p � 0.245, log-rank
test; Figure 8E).

The GInLncSig Performs Better in Survival
Prediction Than Other LncRNA-Related
Signatures
To compare the predictability of our GInLncSig model and the
other three existing lncRNA-related signatures for LGG patients’
survival, we conducted ROC curve analyses using the same
samples of the entire TCGA cohort. The other three lncRNA
models were 8-lncRNA prognostic model documented by
Maimaiti’s study (MaimaitiLncSig) (Maimaiti et al., 2021), 5-
lncRNA predictive model derived from Wang’s study
(WangLncSig) (Wang et al., 2020), and 6-lncRNA prognostic
model reported by Lin’s study (LinLncSig) (Lin et al., 2020). As
outlined in Figure 9A, our GInLncSig model (AUC � 0.871,
0.851, and 0.723 for 1, 3, and 5 years) outperformed the
MaimaitiLncSig (AUC � 0.743, 0.693, and 0.626 for 1, 3, and
5 years),WangLncSig (AUC � 0.866, 0.773, and 0.647 for 1, 3, and
5 years), and LinLncSig (AUC � 0.841, 0.766, and 0.721 for 1, 3,
and 5 years) in predicting 1-, 3- and 5-year OS of LGG patients.
Moreover, there were five lncRNAs in our GInLncSig model,
which were less than those in LinLncSig and MaimaitiLncSig (six
and eight, respectively). Overall, the ROC curve results showed
that for LGG patients, the GInLncSig could be more predictive of
survival probability.

Independent Prognostic Analysis of
GInLncSig and Construction of a
Nomogram
We carried out univariate and multivariate Cox regression
analyses of age, gender, tumor grade, and GInLncSig in the
training, validation, and entire TCGA datasets to identify the
independent prognostic value of GInLncSig. After univariate risk
factor analysis, the age (p < 0.05), tumor grade (p < 0.05), and risk
score (p < 0.05) were correlated to survival and then retained in
the multivariate analysis of risk factors. After multivariate Cox
regression analysis, as shown in Table 2, age, tumor grade, and
risk score had the independent prognostic value to the LGG
patients across the three datasets.
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To improve the clinical practicability of the GInLncSig model,
we constructed a predictive nomogram model encasing
clinicopathological features and risk score in TCGA dataset.
Figure 9B shows that the risk score was the dominant predictor.

External Validation of One LncRNA
Extracted From GInLncSig Model
To conduct a cross-platform validation of the GInLncSig, we used
another independent dataset—mRNAseq_693 from the CGGA

database. We found that only one (CRNDE) of five lncRNAs in
the GInLncSig was covered by the mRNAseq_693 dataset because
of the different depths of detection in various platforms. Therefore,
we explored the association of CRNDE with clinicopathological
characteristics and survival prognosis of LGG in the independent
CGGA database (DataSet ID: mRNAseq_693).

Figures 10A–C show that CRNDE expression was
significantly related to tumor grade but not significantly
associated with age (≤41 and >41 years old) and gender.
Bonferroni-corrected pairwise comparisons indicated that the

FIGURE 8 | Stratified analyses of GInLncSig by age, gender, and tumor grade. Kaplan–Meier survival curves for high- and low-risk groups in the validation dataset
with age ≤ 41 years (A), age > 41 years (B), gender in male (C), gender in female (D), tumor grade in II (E), and tumor grade in III (F). The high-risk patients displayed
significantly worse overall survival (OS) than the low-risk patients across all clinical stratification subgroups except for the subset of patients with G2 (log-rank test,
p < 0.05).
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expression level of CRNDE increased substantially with the
ascending sequence of tumor grade (median 2.011 vs. 2.341 vs.
4.135 in WHO II, III, and IV, respectively; Figure 10C). In
addition, the KM survival analysis displayed a significantly worse
prognosis for patients with high CRNDE expression levels
consistent with CRNDE as a risk factor in the GInLncSig
model (p < 0.001, log-rank test; Figure 10D).

Associations Between GInLncSig and
Immune Characteristics, and Gene Set
Enrichment Analysis in GInLncSig
The heatmap revealed the distribution of significantly different
tumor-infiltrating immune cells estimated by multiple algorithms

between the high- and low-risk groups in the entire TCGA cohort
(Figure 11A). The relevance analysis of activity status of immune
functions or cells based on ssGSEA score of TCGA dataset illustrated
that the immune function scores of the high-risk group remarkably
increased than those of the low-risk group in the antigen presentation
function (APC co-inhibition and stimulation and MHC class I),
T-cell functions (checkpoint, cytolytic activity, HLA, co-inhibition,
and inhibition), inflammation regulation (inflammation-promoting
and parainflammation), and so on (Figure 11B). Considering the
immune checkpoint playing a vital role in immunotherapy, we
further compared the expression of eight genes related to immune
checkpoints between these two groups. The result suggested that
immune checkpoint genes including LAG3, CTLA4, HAVCR2,
PDCD1LG2, PDCD1, and PD-L1 were dramatically upregulated

FIGURE 9 | Comparison of survival prediction and construction of nomogram. (A) The receiver operating characteristic (ROC) curves for 1-, 3-, and 5-year survival
prediction comparison between the GInLncSig and the other three existing signatures. (B) A nomogram was established integrating the GInLncSig, gender, age, and
tumor grade, for predicting 1-, 3-, and 5-year survival outcomes of lower-grade glioma (LGG).
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in the high-risk group except for SIGLEC15 andTIGIT (Figure 11C).
The GSEAs presented the top 15 pathways with FDR values of less
than 0.05 significantly enriched in the high-risk group, which were

related to metabolic pathways, immune pathways, cancer pathways,
and so on; however, the low-risk group had no significantly enriched
items with FDR value of less than 0.05 (Figure 10E).

TABLE 2 | Independent prognostic analyses for risk score in three datasets.

Variables Univariable Cox analysis p-Value Multivariable Cox analysis p-Value

HR HR: 95%
CI lower

HR: 95%
CI higher

HR HR: 95%
CI lower

HR: 95%
CI higher

Training dataset (n � 240)
Age 1.068 1.042 1.095 <0.001 1.062 1.035 1.091 <0.001
Gender 1.389 0.777 2.485 0.268
Grade 2.482 1.364 4.514 0.003 1.894 1.013 3.544 0.046
Risk score 1.105 1.073 1.139 <0.001 1.085 1.052 1.119 <0.001

Validation dataset (n � 237)
Age 1.062 1.041 1.085 <0.001 1.055 1.032 1.078 <0.001
Gender 0.794 0.473 1.334 0.383
Grade 3.817 2.082 6.998 <0.001 2.805 1.490 5.282 0.001
Risk score 1.068 1.044 1.093 <0.001 1.046 1.020 1.073 <0.001

TCGA dataset (n � 477)
Age 1.064 1.048 1.081 <0.001 1.057 1.040 1.074 <0.001
Gender 1.026 0.700 1.502 0.896
Grade 3.056 2.015 4.634 <0.001 2.273 1.472 3.512 <0.001
Risk score 1.081 1.062 1.100 <0.001 1.059 1.039 1.079 <0.001

Note. HR, hazard ratio; TCGA, The Cancer Genome Atlas.

FIGURE 10 | External validation of the predictive efficiency of CRNDE from GInLncSig and gene set enrichment analysis (GSEA). Relationship between CRNDE
expression and age (A), gender (B), and tumor grade (C) in Chinese Glioma Genome Atlas (CGGA) dataset. Mann–Whitney U test. (D) Kaplan–Meier survival analysis
between expression of CRNDE and overall survival (OS) in CGGA database (log-rank test, p < 0.001). (E) GSEA of pathways between high- and low-risk groups in The
Cancer Genome Atlas (TCGA) dataset.
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Correlation of GInLncSig With m6A and
Stemness Index
We investigated the relationship between the expression of
m6A-related genes and the risk of our GInLncSig. The expression
of m6A-related mRNA where significant differences had been found
between the high- and low-risk groups in TCGA dataset include
YTHDF1, YTHDF2, RBM15, WTAP, FTO, and ALKBH5
(Figure 12A). Cancer stemness could be detected by DNA
methylation pattern (mDNAsi) or RNA stemness score based on
mRNA expression (mRNAsi) (Malta et al., 2018). Correlation
analysis between the risk score of GInLncSig and stemness in

TCGA dataset suggested that the risk score was significantly
positively correlated with mDNAsi (p < 0.001; Figure 12B), but
significantly negatively correlated with mRNAsi (p < 0.001;
Figure 12C).

Cancer Cell Chemosensitivity
We delved into the expression level of prognostic GInLncRNAs
in NCI-60 cancer cell lines and construed the conjunction
between their expression levels and sensitivity of
chemotherapeutic agents. However, we found that only two
GInLncRNAs (CRNDE and TGFB2-AS1) were present in the

FIGURE 11 | Immune characteristics analysis of GInLncSig in The Cancer Genome Atlas (TCGA) dataset. (A) Heatmap for immune cell infiltration based on TIMER,
CIBERSORT, CIBERSORT-ABS, quanTIseq, MCP-counter, xCell, and EPIC algorithms between high- and low-risk groups. (B) Single-sample gene set enrichment analysis
(GSEA) (ssGSEA) for the association between immune functions and GInLncSig. (C) The expression level of immune checkpoints between high- and low-risk groups.
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NCI-60 expression profile, and TGFB2-AS1 expression hadmany
abnormal and missing values. Therefore, we chose only CRNDE
to perform the correlation analysis of chemotherapeutic agents.
The results suggested that CRNDE correlated to the sensitivity of
certain chemotherapeutic drugs (p < 0.01) (Figure 13).
Overexpression of CRNDE promoted the drug sensitivity of
tumor cells to chelerythrine, imexon, ifosfamide, lomustine,
dexrazoxane, SAR-20347, palbociclib, etoposide, etc.

DISCUSSION

Genomic instability mainly results from DNA repair defects.
Studies have shown that genomic instability is a driver of
neoplasm initiation and that the degree of genomic instability
is associated with neoplasm aggressiveness (Capelli et al., 2009;

Xie et al., 2011). On the other hand, genomic instability could
result in intra-tumor heterogeneity, which is also a significant
cause of treatment resistance (Gerlinger and Swanton, 2010).
Thus, genomic instability is a hallmark of cancer, and accurately
measuring a person’s ability to maintain genomic stability has the
potential to evaluate the risk of tumor development (Jalal et al.,
2011), whereas quantifying the extent of genomic instability
remains a significant challenge.

Currently, some researchers have identified mRNAs and
miRNAs associated with genomic instability and developed
mRNA or miRNA signatures to predict genomic instability
(Mettu et al., 2010; Wang et al., 2017; Biermann et al., 2020).
In recent years, lncRNAs have come into medical view as novel
biomarkers for tumor diagnosis and prognosis and have also been
demonstrated to be associated with genomic stability (Lee et al.,
2016; Nguyen et al., 2020; Zhang et al., 2020b). Despite several

FIGURE 12 | Correlation between GInLncSig and N6-methyladenosine (m6A) and stemness index. (A) The expression level of m6A-related genes between high-
and low-risk groups. (B) The relationship between risk score and stemness index based on DNA methylation pattern (mDNAsi). (C) The relationship between risk score
and stemness index based on mRNA expression (mRNAsi).
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endeavors by researchers, the exploration of lncRNAs related to
genomic instability and their clinical implications in tumors is
still in the initial stage. In addition, the relationship between
lncRNAs associated with genomic instability and gliomas with a
highly heterogeneous prognosis remains understudied.
Therefore, we identified a set of GInLncRNAs in LGG and
integrated multi-omics data for a comprehensive analysis.

In this study, after comparing the expression profiles of
lncRNAs in patients with the top 25% mutation counts and
those with the bottom 25% mutation counts, we first found 39
differentially expressed lncRNAs. The entire TCGA samples were
then classified into the GS and GU clusters by hierarchical
clustering based on 39 differentially expressed lncRNAs.
Finally, we performed a differential expression analysis
between all the samples of these two clusters and confirmed
52 GInLncRNAs. Enrichment analysis of co-expression network
presented that the top 10 mRNA co-expressed with GInLncRNAs
were mainly enriched in synaptic transmission activity and
regulation in GO analysis and enriched in synapse-related
pathways, immune-related pathways, and cancer pathways in
KEGG analysis. The regular transmission of synaptic signals is
inseparable from genomic stability. Recent studies have shown

that genomic instability contributes to inducing and activating
immune responses (Reisländer et al., 2019; Zhang et al., 2020a).
The GInLncSig model was constructed in the training dataset and
consisted of five lncRNAs in our research. CRNDE, AL390755.1,
AC025171.5, and TGFB2-AS1 were upregulated in the high-risk
group and related to poor prognosis except for AL049749.1. LGG
patients with a lower GInLncSig risk score were found to have
favorable patient survival, which was further verified in an
independent internal validation dataset. We also performed
stratified clinicopathological analysis and survival analysis of
GInLncRNA CRNDE in an external CGGA dataset. In
addition, the GInLncSig model is strongly associated with
tumor mutant phenotype and CDC20 expression in LGGs,
both of which are essential clues of genomic instability.
Noticeably, the GInLncSig was also strongly associated with
survival outcomes in various clinical subgroups. Univariate
and multivariate analyses revealed that, in addition to age and
grade, our GInLncSig model was an independent prognostic
factor for OS in patients with LGG.

According to the risk model, the IDH1 mutation ratio of LGG
patients in the low-risk group was significantly higher than that in
the high-risk group, indicating that our GInLncSig could catch

FIGURE 13 | Correlation between CRNDE from GInLncSig and drug sensitivity. The vertical axis shows the Z-scores of drugs. The horizontal axis represents gene
expression. The larger the Z-score means, the more sensitive the cancer cell to the drug.
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IDH1mutation status. Moreover, the GInLncSig can dramatically
differentiate the various clinical outcomes of LGG patients with
IDH1 mutation patterns. The survival analysis integrating IDH1
mutation status and genomic instability revealed that IDH1
mutation patients with GS had a better prognosis than those
with GU, and IDH1 wild-type patients with GU had worse
survival, suggesting that IDH1 mutation status combined with
genomic instability had more excellent prognostic value than
IDH1 mutation pattern alone. Actually, the ROC curve indicated
that our GInLncSig model had a better predictive value compared
with other previously released lncRNA models. Moreover, the
GSEA with the GInLncSig model suggested that the high-risk
group is dramatically associated with immune-related signaling
pathways, tumor-related signaling pathways, and metabolism-
related signaling pathways.

Next, we performed a multi-omics integrative analysis to explore
the association between risk score and immune characteristics, m6A
methylation, stemness index, and drug sensitivity. Investigating the
interaction between LGG progression and anti-tumor immunity
response is vital for the immunotherapies of this disease. Few
studies have examined the relationship between immune features
and genomic instability in LGGs. Our study found that the
GInLncSig model was significantly correlated with multiple
immune cells infiltration, 11 immune functions, and six immune
checkpoints. Therefore, the GInLncSig model can predict the
expression level of immune checkpoints and is informative for
immunotherapy decisions, such as anti-PD-L1 antibody, verified
to have clinical activity in different tumors (Chinai et al., 2015).
Epigenetic changes are potentially closely associated with genomic
instability and susceptible to oncogenic transformation (Schreiner
et al., 2013). The m6A methylation is one of the most common
epigenetic changes and has complicated functions in tumors.
However, the relationship between m6A methylation and genomic
instability in gliomas has rarely been studied. Overexpression of
ALKBH5, an m6A demethylase, is related to poor prognosis in
gliomas (Zhang et al., 2017), consistent with our result. YTHDF1
has been reported to be upregulated in expression in many tumors,
such as colorectal cancer and hepatocellular carcinoma, and may be
an essential oncogene (Liu et al., 2020). Our result suggested that
YTHDF1 also played a tumor-promotor role in LGG.

Cancer stem cells (CSCs) are a population of cancer cells with
self-renewal ability, tumor initiation ability, and drug resistance
characteristics (Plaks et al., 2015). Cancer progression involves
the gradual loss of differentiated phenotype and the acquisition of
progenitor and stem cell-like characteristics. The stemness index
(mRNAsi) based on mRNA expression can reflect the stemness
expression of transcription, while the stemness index (mDNAsi)
based on DNA methylation represents epigenetic stemness
characteristics. There is a consistent positive correlation
between mRNAsi, mDNAsi, tumor histology, and pathological
grade for most cancers. However, our research observed a strong
positive correlation between mDNAsi and risk score, while
mRNAsi showed a clear opposite trend. The high frequency of
IDH1/2 mutations in gliomas and the resulting DNA
hypermethylation may explain the contrasting results between
mDNAsi and mRNAsi (Malta et al., 2018). By NCI-60 database,
we analyzed the correlation between chemotherapy drugs

approved by the FDA or on clinical trials and CRNDE. The
result suggested that elevated expression of CRNDE increased the
sensitivity of tumor cells to chelerythrine, imexon, ifosfamide,
lomustine, dexrazoxane, palbociclib, and so forth. Lomustine,
which blocks dopamine synthesis and plays an essential role in
glioma initiation and progression, is undergoing phase III clinical
trials in patients with anaplastic astrocytoma (Levin et al., 2018).
In mouse models of brainstem glioma and GBM, palbociclib
administration has displayed longer-term survival (Hanaford
et al., 2016). Therefore, we speculate that CRNDE could predict
drug sensitivity and serve as therapeutic targets to overpower
chemotherapy drug resistance or adjuvant chemotherapy drug
sensitivity. Finally, we combined the GInLncSig and clinical
features, including gender, age, and tumor grade, to establish
the nomogram in the training set, which could further improve
the effectiveness and accuracy of the prediction model.

There are several limitations to this study. First, we only
validated the predictive model against one GInLncRNA
(CRNDE) in external validation due to the different detection
depths in different databases. Second, four GInLncRNAs
(AL390755.1, TGFB2-AS1, AC025171.5, and AL049749.1)
were described, for the first time, to be of prognostic relevance
in LGG, and further in vitro and in vivo studies are urgently
required for a comprehensive understanding of the possible
molecular mechanisms in tumorigenesis and progression of LGG.

CONCLUSION

In conclusion, the five-GInLnRNA risk signature was identified and
considered a novel potential prognostic biomarker for LGG. The
signature was confirmed as an independent risk factor and displayed
high valence in correlation with immune characteristics, m6A,
stemness index, and drug sensitivity, providing strong prognostic
predictive power and assessing genomic instability for LGG. In
addition, we built a nomogram by combining GInLncSig with
clinicopathological features to improve prediction efficacy. Taken
together, our study provides guiding value for the hierarchical
clinical management and therapeutic target for patients with LGG.
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