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Abstract: This study considers the problem of distinguishing between process and sensor faults in
nonlinear chemical processes. An integrated fault diagnosis framework is proposed to distinguish
chemical process sensor faults from process faults. The key idea of the framework is to embed the
cycle temporal algorithm into the dynamic kernel principal component analysis to improve the
fault detection speed and accuracy. It is combined with the fault diagnosis method based on the
reconstruction-based contribution graph to diagnose the fault variables and then distinguish the two
fault types according to their characteristics. Finally, the integrated fault diagnosis framework is
applied to the Tennessee Eastman process and acid gas absorption process, and its effectiveness is
proved.

Keywords: process and sensor fault; cycle temporal algorithm; dynamic kernel principal component
analysis; reconstruction-based contribution; integrated diagnostic framework

1. Introduction

The main goal of the chemical industry is to improve the efficiency and accuracy of
manufacturing facilities. As the automation level of the chemical industry continues to
improve, the scale of production increases and the complexity of the system grows con-
tinually. The probability of failure and fault in chemical system also increases. Compared
with the permanent termination of the system caused by failure, the system offset caused
by fault can be detected in time, and then corresponding measures can be taken to avoid
accidents [1]. Therefore, distinguishing the type of faults in the chemical process is the key
to reducing operator errors and ensuring system safety and reliability.

In recent years, many fault diagnosis methods for chemical processes have emerged.
These methods diagnose different faults [2–5]. However, no distinction is made between the
types of faults themselves. In an actual chemical process, faults can be divided into process
faults and sensor faults [6]. Process faults are characterised by multivariate coordination.
The occurrence of process fault means that the operating state of the system deviates from
the normal value. Sensor fault has variable independence, and the fault variable is unique.
The sensor fault interferes with the stability of the system and affects the judgment of the
operator, which may lead to fault. Therefore, it is very important to diagnose process faults
and sensor faults in modern industrial processes [7–9].

The fault diagnosis method is the key to ensure safe and effective operation of the
process [10]. Generally, fault diagnosis methods can be divided into three categories:
model-based [11], knowledge-based [12], and data-based [13] methods. Among them,
the principal component analysis (PCA) in data-based methods is widely used for process
and sensor fault diagnosis in chemical processes [14,15]. Ku et al., Lee et al., and Yang
et al. successively proposed the dynamic principal component analysis (DPCA) [16], kernel
principal component analysis (KPCA) [17], and dynamic kernel principal component
analysis (DKPCA) [18] for process fault diagnosis. Qin et al. [19] improved the DPCA

Sensors 2021, 21, 822. https://doi.org/10.3390/s21030822 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1133-1652
https://orcid.org/0000-0001-6000-9160
https://doi.org/10.3390/s21030822
https://doi.org/10.3390/s21030822
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030822
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/822?type=check_update&version=2


Sensors 2021, 21, 822 2 of 22

method and proposed a comprehensive model for sensor fault diagnosis. Wang et al. [20]
put forward a new strategy based on PCA for sensor fault diagnosis. Li et al. [21] proposed
a sensor fault diagnosis method based on density-based clustering and PCA. When using
various PCA models for fault diagnosis, the diagnosis space is divided into two subspaces
called principal subspace and residual subspace. T2 statistics and squared prediction
error (SPE) statistics are constructed to characterise the mean and variance information,
respectively, of the processes in the two subspaces [22]. In the process of fault detection
using T2 and SPE statistics, the following four types of monitoring results may appear:
(1) neither of the statistics exceeds the control limit; (2) T2 statistics do not exceed the
limit, but SPE statistics exceed the limit; (3) T2 statistics exceed the limit; and SPE statistics
exceed the limit. (4) T2 statistics and SPE statistics both exceed the limit. When the SPE
statistics change significantly (results (2) and (4)), it means that the normal operating model
represented by the PCA model is destroyed, and a process fault or sensor fault has occurred.
When the T2 statistic changes significantly and the SPE statistic does not change (result (3)),
it indicates that the relationship between the variables is approximately satisfied, but the
system has undergone some transformation, which may be due to a change in operating
conditions or a system fault. Result (1) indicates that the system is normal [23]. According
to results (2) and (4), this study makes a detailed distinction between process faults and
sensor faults in chemical processes.

Chemical processes are characterised by large amounts of data and complex calcu-
lations. The abovementioned improved methods also have this limitation. To detect the
occurrence of faults more rapidly and accurately, the PCA method has been improved
accordingly. In temporal logic algorithms [24], the temporal logic can qualitatively de-
scribe the behaviour of the system over time, because it has a large number of operators
such as ‘always’ and ‘final’. Clarke et al. [25] proposed a computational temporal logic to
describe the behaviour of concurrent systems. For chemical processes, a cycle temporal
algorithm (CTA) was proposed based on traditional temporal logic to solve a large amount
of chemical data and the problem of low calculation accuracy. By combining it with the
DKPCA method, it can capture most of the fault information in the system and improve the
detection accuracy. the operator can respond to the fault timely and effectively. The fault
type is further distinguished through the fault identification step.

When the system detects that a fault has occurred, it needs to locate the current
fault location and fault variables, and then determine whether the fault is a process fault
or a sensor fault. Currently, the most widely used method for fault variable location
is the contribution graph [26]. The method is based on quantifying the contribution of
each process variable to a single principal component score. The contribution of each
process variable to the main component in the out-of-control state is added, and it is
called variable contribution [27,28]. In recent years, many variable identification methods
have been reported [29–32]. This study uses the reconstruction-based contribution (RBC)
graph method to reconstruct the faulty variables, emphasises the cross-correlation between
variables, and clearly shows the relationship between them. The variable characteristics of
different faults are used to determine whether the fault type is a process fault or a sensor
fault, so as to provide technical support for the next operation of the subsequent operator.

The current chemical process fault diagnosis methods for process and sensor faults
are independent of each other, Sensor faults on non-control loops will not directly cause
accidents, but will affect operator judgment and the accuracy of process fault diagnosis.
Therefore, it is necessary to distinguish between sensor faults and process faults. A process
fault is when the process itself deviates from the normal state, and the sensor fault process
itself does not deviate from the normal state, but the sensor index deviates from the true
value. Sensor faults on non-control loops will not directly cause accidents, which will affect
operator judgment and the accuracy of process fault diagnosis. There is no corresponding
integrated model to distinguish process and sensor faults in detail. When a sensor fault
occurs in a chemical process, it is regarded as a process fault by default, which could cause
operator errors and accidents. Therefore, it is particularly important to distinguish between
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process faults caused by real fault fluctuations and sensor faults indicated by false data.
This paper proposes a CTA to improve the calculation speed and eliminate the redundancy
problem caused by big data calculation. The CTA combined with DKPCA improves the
fault detection speed and accuracy. Combined with the fault identification model based
on the RBC graph, it emphasises the strong correlation of variables while extracting fault
information. Finally, an integrated diagnostic framework for distinguishing sensor and
process faults in a chemical process is obtained. The framework has the advantages of fast
detection speed, high detection accuracy, and accurate fault variables. Its application to the
Tennessee Eastman (TE) process and acid gas absorption process proves the effectiveness
of the proposed integrated fault diagnosis framework.

The remainder of this paper is structured as follows. In Section 2, the CTA, DKPCA
method, and RBC graph are introduced. In Section 3, the method proposed in the previous
section is used to build an integrated fault diagnosis framework to distinguish between
process and sensor faults. In Section 4, The TE process is compared with other fault detec-
tion methods to prove the advantages of the proposed method, and then four faults in the
TE process and three faults in the acid gas absorption process are selected to demonstrate
the effectiveness of the integrated fault diagnosis framework in distinguishing process and
sensor faults. In Section 5, we summarise our work.

2. Fault Diagnosis Methods
2.1. Dynamic Kernel PCA

Generally, the PCA can only be effectively performed in the observation set of linear
and steady-state changes. When the data change nonlinearly and dynamically, the PCA
method can be converted to changes in linear data after mapping. However, the analysis
method based on the kernel function does not need to calculate the eigenvector as the PCA
method but to convert it into the eigenvalue and eigenvector of the kernel matrix. Thus,
it avoids the calculation for obtaining the eigenvector in the high-dimensional space and
converting it into projection, solving the linear combination of kernel functions, and by
capturing the data dynamic matrix [23–35], it also solves the dynamic matching problem
of the PCA model. Hence, the calculation is greatly simplified.

Assuming that the normal data set X contains m variables, and each variable has n
observations, the vectors at time t and augmented matrix X(s) containing the observations
at the previous s time to reflect the relationship between the variables’ dynamic relationship.

X(s) =

 xT
t · · · xT

t−s
...

. . .
...

xT
t+s−n · · · xT

t−n

 (1)

Then, the dynamic matrix X(s) is used to establish the dynamic principal component
model through the PCA method, and then the dynamic characteristics can be analysed.

X(s) = TPT + E (2)

where T is the score matrix, P is the load matrix, and E is the residual matrix, which is the
projection of the sample in the residual space.

For nonlinear problems, the principle of the KPCA is to map the input data to the
high-dimensional feature space through the inner product kernel function Φ to perform
the PCA, thereby turning the two linearly inseparable points in the low-dimensional space
into linearly separable ones. After nonlinear mapping, the observation vector xi(t : t− s)
is mapped to Φi(t : t− s), and the dynamic data augmentation matrix X(s) is mapped
to Φ(s).
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Then, the covariance matrix of the feature space can be expressed as

CF =
1
N

N

∑
i=1

φi(t : t− s)φi
T(t : t− s) (3)

Suppose the eigenvalue λ corresponding to the matrix CF, the eigenvector ν, and the
coefficient αi(i = 1, 2, . . . , N) such that.

ν =
N

∑
i=1

αiφi(t : t− s) (4)

The corresponding characteristic equation is

λν = CFν =

(
1
N

N

∑
i=1

φi(t : t− s)φi
T(t : t− s)

)
ν

=
1
N

N

∑
i=1
〈φi(t : t− s), ν〉φi(t : t− s) (5)

λ〈φk(t : t− s), ν〉 = 〈φk(t : t− s)·CFν〉 (6)

Equations (4) and (6) are combined to obtain:

λ
N

∑
i=1

αi
k〈φk(t : t− s), φi(t : t− s)〉 = 1

N
αi

k〈φk(t : t− s)·
N

∑
j=1

φj(t : t− s)〉〈φj(t : t− s), φi(t : t− s)〉 (7)

By defining the kernel matrix K ∈ RN×N ,
[
Kij
]
= Kij = 〈φj(t : t− s), φi(t : t− s)〉,

from the above formula, the feature vector can be obtained as

λNα = Kijα (8)

where α = [α1, α2, . . . , αN ]
T .

Before adopting the PCA on the feature space F, we first standardise the data, that is,
replace K with the following equation:

K = K− INK−KIN + INKIN (9)

where IN is equal to 1
N multiplied by an N × N identity matrix E ∈ RN×N . Therefore, the

PCA in the feature space F is equivalent to solving the eigenvalue of Equation (6).
Combining Equations (8) and (4), the eigenvector α of the kernel matrix K can be

derived from the eigenvector υ of the matrix CF, and it satisfies

〈νk, νk〉 = 1 (10)

where k = 1, 2, . . . , p. p is the number of principals.
By calculating the projection of the mapping data on the feature vector νk, we find the prin-

cipal component: tk = 〈νk, φ(t : t− s)〉 = ∑N
i=1 αK

i 〈φi(t : t− s), φ(t : t− s)〉 = ∑N
i=1 αK

i Kij.
To solve the eigenvalues of Equation (8), we use tk to calculate the feature space princi-

pal vector in the input space and introduce the kernel function K = exp
(
−‖x− y‖2/2σ2)

into the feature space to avoid directly calculating the nonlinear mapping.

2.2. Cycle Temporal Algorithm (CTA)

In this section, a new method, the CTA, is proposed, which extends the qualitative
trend analysis (QTA) method [36] to temporal constraints, extracts based on temporal
series, and calculates the difference between the temporal threshold and the linear fitting
error relationship. The linear correlation between variables is preserved, and the principal
component is obtained by the subsequent DKPCA method. The correlation saves most
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of the process differences. Each principal component is a linear combination of all the
variables. The data are cyclically segmented and merged, which reduces the amount of
calculation, increases the calculation speed, and eliminates the redundancy generated by
the calculation of the large data matrix.

The temporal logic equation is summarised and defined as follows:

ϕ|T|G[b,e]ϕ
∣∣∣F[b,e]ϕ

∣∣∣ a ϕ|ϕ1 ∧ ϕ2|ϕ1U[b,e]ϕ2, (11)

where T is ‘always true’, ‘negation’ (a), and ‘combination’ (∧), which are standard Boolean
join operators. The time series operators G[b,e], F[b,e], and U[b,e] represent the derived ‘al-
ways’, the derived ‘final’, and the derived ‘until’, and [b, e] represents the time interval satis-
fying b ≤ e. This study defines u(x[τ]) := f (x[τ]) ≤ 0 and f (x[τ]) = (x[τ]− kτ − c)2 − δe.
δe is the preset threshold. Where δe = 4σ2, σ is the standard deviation of the data sequence.
x[τ] represents the data point at time τ. k and c are constant parameters.

To eliminate the problem of slow calculation and calculation redundancy in the state
of big data, the parameters and thresholds are extracted on the basis of temporal logic,
and the data are processed through cycle segmentation and cycle merge. The specific
process of the CTA is shown in Figure 1.
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Figure 1. Cycle temporal algorithm (CTA) process.

The CTA process is divided into a cycle segmentation process and a cycle merge
process. For the cycle segmentation process, according to the entire data sequence
x = 〈x1, x2, . . . xn〉, L = 1 is set as the data segment start, the segment start point bL
and the end point eL are set, and a linear fitting is performed on the segment. The fitting
equation is (x̂[τ] = kLτ + cL), where kL and cL represent the slope and the y-axis inter-
cept, respectively. If the linear fitting error err is greater than the extracted threshold δe,
the sequence x is halved. The linear fitting of the first half of the sequence is repeated
until the linear fitting error is not greater than the predetermined error threshold δe. First,
it is determined whether the end of the segment reaches the end point, and then, it is
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determined whether the data are divided into L segments. The linear fitting calculation is
expressed in Equation (12).

err =
eL

∑
L=bL

(x[τ]− kL − cL)
2/(eL − bL + 1) (12)

For the cycle merge process, the obtained L segment data sequence is used as the
input into the cycle merge process. First, the data segment is counted by i = 2, and the
multi-segment data are linearly fitted. Contrary to the cycle segmentation part, when
the linear fitting error err is less than the threshold δe, merge the i−th sequence with the
i − 1th sequence, then subtract 1 in segments, and merge in turn until the linear fitting
error is greater than the threshold δe. It is judged whether i is greater than L, and if it is,
the merge ends.

Based on the above segmented fitting method, cycle segmentation and cycle merge
are performed for a given data sequence. A sequence of quaternions of degree L can
be obtained.

T〈(k1, c1, b1, e1), (k2, c2, b2, e2), . . . , (kL, cL, bL, eL)〉 (13)

In each quadruple (ki, ci, bi, ei)(i ∈ [1, L]), ki and ci are the slope and y-axis intercept
of the i-th segment of linear fitting, respectively. The integers bi and ei represent the start
and end times of the data segment, respectively, and the corresponding atomic predicate is
expressed in Equation (14).

ui((x[τ]− kiτ − ci)
2 − δe ≤ 0) (14)

Based on the above, the temporal logic equation is reconstructed as:

ϕϕ1U[b1,e1]
ϕ2U[b2,e2]

. . . ϕL−1U[bL−1,eL−1]
ϕL (15)

Among them, if i ∈ [1, L− 1], then ϕiui.
Eventually, the CTA is formed. The CTA combines the temporal logic to define the

principle of the segmented cycle and determines the size of the cycle, the error threshold,
and the final segment starting point and end point. The cycle segmentation of the model
data is completed to reduce the dimensionality of the matrix, improving the calculation
accuracy and eliminating the calculation redundancy.

2.3. RBC Graph

The numerical method of the RBC graph is used to identify the variable contribu-
tion rate.

Fault variable reconstruction is used to realise the accurate identification and separa-
tion of process and sensor faults by eliminating the influence of observed variables in the
fault subspace.

When the system detects a fault fi, the observation vector is x = [x1, x2, . . . , xm]
T ,

where i = 1, 2, . . . , m, and m represent the number of process variable observations. The
sampling time is omitted here, but the nature of the problem is not changed. If the process
vector is reconstructed along the ζT

i direction, the corresponding relationship is

zi = x− ζT
i fi (16)

where zi represents the original value of the process view vector that is not affected by
the fault, and Φ is defined as a positive definite symmetric matrix. Then, the joint index
index2(zi) for process monitoring can be obtained:

index2(zi) = zT
i Φzi = ‖zi‖2

Φ = ‖x− ζT
i fi‖2

Φ (17)
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When the reconstruction vector zi is infinitely close to or equal to the original value of
the observation vector during the normal operation of the process, the joint index in the
above equation reaches the minimum, indicating that this is the optimal reconstruction.
Therefore, according to Equation (17), the first derivative of the fault parameter is calculated
and set to be equal to 0, so that the optimal fault parameter is

fi =
(

ζiΦζT
i

)−1
ζiΦx (18)

From Equations (17) and (18), it can be deduced that the reconstruction contribution
of the variable xi to the joint index is

RBCindex
i = ‖ζT

i fi‖2
Φ = ‖ζT

i

(
ζiΦζT

i

)−1
ζiΦx‖2

Φ = xTΦζT
i

(
ζiΦζT

i

)−1
ζiΦx (19)

Substituting the relationship Φ = LΛLT into the above equation to restore, the recon-
struction contribution of the variable xi to the joint index is obtained as:

RBCi = xTLΛLTζT
i

(
ζiLΛLTζT

i

)−1
ζiLΛLTx =

(
ζiLΛLTx

)2(
LΛLT)

i
(20)

where
(

LΛLT)
i represents the i-th diagonal component of matrix LΛLT .

3. Integrated Fault Diagnosis Framework

Modern chemical process faults are mainly divided into process faults and sensor
faults. Process faults are caused by large deviations in the system, and they are real faults
in the system. Sensor faults are caused by sensor faults of the detection system, and the
data are falsely indicated. The system remains normal. Therefore, a process fault is a
multi-variable coordination, and a sensor fault is a false indication of a single measured
variable. To further distinguish the types of faults when faults occur, this paper proposes
an integrated fault diagnosis framework to distinguish the two types of faults in detail.
The integrated fault diagnosis framework is shown in Figure 2.
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The integrated fault diagnosis framework for process and sensor faults is mainly
composed of two parts: fault detection and fault identification. Through the fault detection
step, various faults in the system are accurately and rapidly detected. Fault identification
involves identifying specific fault variables by reconstructing the variable diagram method
for the detected fault and distinguishing the fault types by using the process and sensor
fault characteristics.

3.1. Fault Detection

The fault detection part of the integrated fault diagnosis framework combines the
CTA and DKPCA models. Using the cycle segmentation and cycle merge characteristics of
the CTA model, the detected data are finely divided and calculated, which minimises a
series of external influences such as noise, and the segmented calculation also speeds up
the detection speed and accuracy. The fault information is saved to the greatest extent. The
framework detects system faults timely and effectively.

First, the detailed process of cycle segmentation is shown in Figure 3.
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(1) For the process data set, first define a segment as the first segment, that is, L = 1.
(2) Extract the optimal threshold δe from the temporal logic equation for the first

segment of the process data set that has been determined, and define the start time b1 and
end time e1 of the segment.

(3) Perform piecewise data fitting for segment L = 1. The fitting equation is shown in
Equation (10). Calculate the linear piecewise fitting error err, and determine whether the
linear fitting error reaches the threshold δe. If err is less than δe, the segmentation stops and
the current segment number is the optimal number of segments. If err is greater than δe,
go to step 4.

(4) Divide the data that do not meet the threshold requirement, L = L + 1, define the
segment end time eL = eL/2 for the new data segment, and repeat step 3 for linear fitting.
Cycle segmentation calculates the linear fitting error err, until err is less than the threshold
δe, and enters the next judgment.

(5) Judge in the data segment that reaches the threshold δe whether the end point of
the current segment reaches the end n point of the initial process data; if not, reset the start
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bL = eL − 1 and end points eL = n of the unsegmented part, and enter again the step 3
of the cycle segmentation part. When the end point is reached, the cycle segmentation
process ends.

After obtaining the best segmentation data of the L segment, the segmentation data
are used as the input into the DKPCA fault detection model. The fault detection process is
shown in Figure 4.
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The DKPCA model calculation is divided into offline modelling process and online
detection process.

Offline modelling process:
(1) The offline modelling part collects the normal segmentation data set Xi, sets the

superposition time t and the previous time s of each data set, and obtains the dynamic
augmentation matrix Xs,i.

(2) Standardise feature vector α; the feature vector is calculated using Equation (8).
(3) Calculate the piecewise kernel matrix K, where the kernel function is selected as

the Gaussian kernel function K = exp
(
−‖x− y‖2/2σ2).

(4) Calculate the number of principal spaces and the number of residual subspaces
according to the cumulative percentage of variance (CPV) method. The equation for
calculating the cumulative variance percentage is as follows:

CPV =
∑N

i=1 λi

∑J
i=1 λJ

(21)

where λ is the characteristic value of covariance, J is the number of variables, and N is the
number of principal components.

(5) Calculate the standard control limit of the no-fault condition SPEi,lim, T2
i,lim,

as shown in Equations (22) and (23), and enter step 5 of online detection after the cal-
culation is completed.

SPEs,i,lim =
vi

2mi
χ2

2m2
i

vi ,α

(22)
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T2
s,i,lim =

li
(

Ji
2 − 1

)
Ji(Ji − l)

Fli ,Ji−li ,α (23)

where vi and m2
i respectively represent the mean and variance based on Xs,i.

Online detection process:
(1) Enter the new process data set Xi,new that needs to be detected. In the same way

as step 1 of the offline stage, set the vector of the superimposition time t and the previous
time s to obtain the dynamic augmentation matrix Xs,i,new.

(2) The obtained dynamic augmentation matrix is used to centralise the feature vector.
(3) Calculate the new kernel matrix Knew by segmenting the centralised data. The ker-

nel function used is consistent with the offline phase, which is a Gaussian kernel function.
(4) Calculate the number of principal spaces using the CPV method.
(5) Calculate nonlinear components and principal component scores. The equation is

as follows: tk,new = 〈νk, φnew(t : t− s)〉 = ∑N
i=1 αK

i 〈φi(t : t− s), φ(t : t− s)〉 = ∑N
i=1 αK

i Knew.
(6) Calculate the new data statistics T2

s,i and SPEs,i based on the reference control
limits T2

s,i,lim and SPEs,i,lim offline non-fault conditions, as shown in Equations (24) and
(25). Verify whether T2

s,i or SPEs,i statistics exceed the control limit T2
s,i,lim, SPEs,i,lim. If they

exceed the control limit, it indicates that the system has a fault condition, and then enter
the fault identification stage. Otherwise, it is determined to be normal, and return to step 1
to continue testing another new set of process data.

SPEs,i =
(

zi
)T

(Iji
−

^
P

i

(
^
P

i

)

T

)zi ≤ SPEs,i,lim (24)

T2
s,i =

(
zi
)T ^

P
i(

Λi
)−1

(
^
P

i

)

T

zi ≤ T2
s,i,lim (25)

where Λi =
(
Ti

n
)TTi

n/(Nn − 1), and
^
P

i

(Ji × li) and Ti
n(Nn × li) are the load matrix and

score matrix of the i-th DKPCA model, respectively. IJi(Ji × Ji) is the unit matrix. In ad-
dition, let the column vector z(J × 1) represent the current observation data point and
divide z them into the corresponding L blocks based on the L variable block in the previous
section, which is zi(Ji × 1

)
(i = 1, 2, . . . , L).

After detecting the fault of the segmented data, the segmented data are used as the
input into the cycle merge process for merging, so as to determine the confirmation of the
fault of the entire process.

The detailed process of cycle merge is shown in Figure 5.
(1) The L segment T2

i and SPEi statistics obtained after the DKPCA model calculation
part is completed are used as the input into the cycle merging stage.

(2) Set i = 2, merge according to the reverse step of cycle segmentation, perform
linear fitting on the first two segments, calculate the linear fitting error err, and determine
whether the linear fitting error reaches the obtained threshold δe.

(3) If err is greater than the threshold δe, go to step 4. If the threshold δe is greater than
err, merge the i−th and i− 1th segments, and the total length of the data segment at this
time is L− 1. Return to the stage of step 2 to merge, the merged data and the next segment
data are reset to the first and second segments, and the merge is repeated.

(4) When err is greater than the threshold δe, it is judged whether the number of
merged data segments L is less than i. If it is smaller than i, the cycle ends, and the final
merged data segment is obtained. If L is greater than i, then continue to merge until L is
greater than i. The cycle merge ends.
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After completing the cycle merge process, the fault detection part of the integrated
fault diagnosis model is completed, and the two statistics T2

s,i and SPEs,i detected are
determined. If T2

s,i and SPEs,i exceed the calculated control limits T2
s,i,lim and SPEs,i,lim,

the system is considered to be faulty, and the fault identification part of the next part is
further analysed.

3.2. Fault Identification

After the fault detection part of the integrated fault diagnosis model is completed,
the fault variables in the process are identified. In this study, the RBC model is used to
reconstruct and identify the fault variables, and finally, the process and sensor faults are
distinguished in detail.

The fault identification process is shown in Figure 6.
(1) When the system detects a fault, it is used as the input to the fault identification

part. The fault variable is first reconstructed using the principle of variable reconstruction,
and the reconstruction index index2(zi) is calculated.

(2) Optimise the fault parameter fi to capture most of the fault information.
(3) Calculate the contribution rate of variable reconstruction and calculate the per-

centage of the current variable contribution rate according to the multivariate statistical
method. The final contribution percentage of the reconstruction variables is obtained.

According to the obtained variable reconstruction percentage, the current fault is
distinguished as a process or sensor fault in detail. Process faults are generated internally
by the system. They arise from a state deviation of the system control variables, which then
spreads to other measured variables, and finally leads to faults. A sensor fault refers to the
fault of the sensor of a measured variable, which causes false indications of the data, but the
system itself does not fail. However, the operator mistakenly believes that the variable
has a fault and adjusts the variable setting value, which will cause the system to fail and
eventually evolve into a process fault. Therefore, it can be observed that the sensor fault is
a single-variable data offset, whereas the process fault is a multi-variable coordination.
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When reconstructing the contribution graph model to determine the fault variables,
the possible fault variables are judged:

The RBC graph shows that a single variable exceeds the average fault contribution
rate. Go to Step 2 for further judgment. If the RBC graph shows that multiple measured
variables and a single control variable exceed the average fault contribution rate, it can
be determined as a process fault. The corresponding control variable is the root cause of
the fault.

For a situation that shows that a single variable has a fault, it is necessary to determine
whether the variable is a controlled variable or a measured variable. If the fault variable is
a controlled variable, it is determined that the fault is a process fault caused by a single
controlled variable. If the fault variable is a measured variable, it is determined that the
fault is a fault in the sensor where the variable is located, that is, a false indication of
sensor data.

Based on the above detailed fault judgments, the integrated fault diagnosis model for
chemical process sensors and process faults can distinguish the process or sensor faults
that have occurred, even on the basis of detecting and identifying faults. It provides a
technical basis for subsequent operations and helps prevent subsequent faults caused
by maloperation.

4. Case Studies
4.1. Tennessee Eastman Process

The TE process was created by Downs and Vogel in 1993 [37] and is widely cited as a
benchmark for studies in control and fault diagnosis. The flow chart of the TE process is
presented in Figure 7.
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The TE process includes 41 measurement variables and 11 manipulation variables.
There is a strong correlation between 11 manipulation variables and their related measure-
ment variables, while the correlation between measurement variables is relatively weak.
Therefore, this process can be used as the basic process to study the correlation between
variables. It includes a normal state and 21 fault states. Each state contains the training
data and test data. Among them, there are 960 test data. The fault is introduced in the 160th
sample. There are 21 faults in the TE process, of which 16 are known, and the remaining 5
are unknown. Fault modes 1–7 are caused by abnormal steps of some process variables,
faults 8–12 are caused by random changes in some process variables; fault 13 is due to
changes in reaction dynamics; and faults 14, 15, and 21 are caused by the valve being fixed
in a specific position. The 21 faults are listed in Table 1.

For the TE process data, several different faults are set to distinguish the process and
sensor faults. Before fault diagnosis, the basic parameters of the DKPCA model are set. The
number of main components is determined by the standard that the CPV > 85% determine.
The kernel width of the radial basis function was set to 800, and the confidence level was
set to 95%.

Before distinguishing sensor and process faults, the advantages of the proposed
model in fault detection are expressed. The number of principal components obtained
by the DKPCA method is 28 for 52 variables of TE process, and the number of principal
components obtained by proposed model is 26. It can be seen that the principal component
obtained by proposed model includes more effective information, while there is invalid
information in the principal component obtained by DKPCA method. The proposed model
is more accurate in information acquisition.

In order to further quantify the accuracy and low detection delay of the proposed
model, we measure its monitoring performance by fault detection rate (FDR) and time
delay (TD). The Equations of FDR and TD are as follows:

FDR =
(control chart > control limit|F 6= 0)

pre− set f ault
× 100% (26)

TD = td − t0 (27)

where td is the fault detection time, and t0 is the fault occurrent time.
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Table 1. Faults for the Tennessee Eastman (TE) process.

Fault Number Description Type

01 A/C feed ratio, B composition constant (Stream4) Step
02 B composition, A/C ratio constant (Stream4) Step
03 D feed temperature (Stream2) Step
04 Reactor cooling water inlet temperature Step
05 Condenser cooling water inlet temperature Step
06 A feed loss (Stream1) Step
07 C header pressure loss—reduced availability (Stream4) Step
08 A, B, C feed composition (Stream4) Random
09 D feed temperature (Stream2) Random
10 C feed temperature (Stream4) Random
11 Reactor cooling water inlet temperature Random
12 Condenser cooling water inlet temperature Random
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking

16–20 Unknown Unknown
21 Valve position constant (Stream 4) Constant position

The comparison results of FDR and TD statistics between CTA-DKPCA method and
other methods are shown in Table 2

Table 2. Comparison of the FDR and TD of KPCA, 2-CLASS SVM [34], and the methods of this study
in the TE process ((A) KPCA method, (B) 2-CLASS SVM method [38], (C) This study).

Fault No
KPCA 2-CLASS SVM This Study

FDR (%) TD (s) FDR (%) TD (s) FDR (%) TD (s)

1 83.0 20.0 99.9 6.0 99.2 3.0
2 90.0 78.0 97.8 57.0 98.5 5.0
4 75.0 26.0 100.0 3.0 100.0 3.0
5 80.0 18.0 99.9 6.0 100.0 4.0
6 77.0 10.0 100.0 3.0 98.4 3.0
7 75.0 14.0 100.0 3.0 99.1 3.0
8 72.0 112.0 95.8 60.0 100.0 10.0

10 68.0 40.0 85.8 12.0 100.0 6.0
11 81.0 25.0 96.6 3.0 92.0 3.0
12 59.0 36.0 100.0 3.0 99.0 2.0
13 75.0 259.0 91.9 153.0 92.0 30.0
14 55.0 21.0 100.0 3.0 99.5 3.0
16 66.0 29.0 96.9 3.0 91.2 4.0
17 71.0 99.0 92.9 72.0 98.9 3.0
18 81.0 378.0 90.0 231.0 93.5 4.0
19 52.0 45.0 88.5 3.0 92.5 3.0
20 70.0 77.0 85.0 45.0 91.5 5.0
21 51.0 12.0 100.0 3.0 100.0 3.0

Mean 71.2 71.61 95.6 37.17 96.96 5.39

The results of TE process fault detection show that the proposed model improves the
accuracy of fault detection and the delay of fault detection. After proving the advantages
of the model for fault detection, the proposed integrated fault diagnosis framework is used
to divide the possible faults in industry in detail.

This study sets four different types of fault situations to distinguish these faults as
process faults or sensor faults. The selection and setting of the cases are listed in Table 3.
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Table 3. Four faults in TE process.

Case Number Fault Situation Description

1 Single variable data drift Variable 1, data points 0–960: set the drift ratio of 0.1325 to the data
2 Large-scale jitter of process data Variable 8, data points 150–250, 400–550, and 700–850: set jitter up by 50%
3 Single variable data step Variable 3, set a step fault at data point 300
4 Actual fault TE process fault 1

The first case introduces a drift fault with a drift ratio of 0.1325 at the 0 data point
of variable 1: material A flow. The second case is in variable 8: in the ranges of 150–250,
400–550, and 700–850, the reactor liquid level is increased by 50%. The third case is the
fault to introduce the data step at the 300th data point of the variable 3: E logistics flow.
The last case is TE process simulation fault 1. Use the integrated fault diagnosis framework
to diagnose the above 4 types of faults. The result of the integrated fault diagnosis is shown
in Figure 5.

Figure 8a–d shows the fault detection results of the CTA-DKPCA model in the princi-
pal component subspace (T2) and residual subspace (SPE), respectively, where (e) is the
fault identification results of principal component subspace and residual subspace based
on RBC. The T2 statistic represents the macro situation of the system, that is, when there is
a fault, the system can reflect the observable fault. SPE statistics represent the deviation
from the normal situation in the system, that is, when the deviation occurs in the system,
the normal error situation will be displayed in SPE statistics. So we can see that for the
detection sensitivity of the residual subspace, the residual subspace represented by the
SPE statistic is higher than the principal subspace represented by T2 statistic. For the
contribution rate of the two subspaces, the principal component space shows the macro
fault condition of the system itself, and the residual subspace shows the error of the system,
so the T2 contribution rate is less than the SPE contribution rate. The error variable is
observed through the SPE contribution rate, and then the T2 contribution rate is determined
as the main macro fault variable of the system.

According to the integrated fault diagnosis framework, we can obtain the synergetic
characteristics of the process fault accompanying variables. The variables of sensor fault
are independent of each other. The process fault caused by the fault of the control variable
causes the related measurement variables to fail together. Owing to the false indication of
the sensor data, the sensor fault has no transferability between the sensors, and the system
remains normal.

When the drift fault ratio of case 1 is set to be small, the sensor monitoring has slow
data drift, and it is determined that a fault has occurred when the tolerance limit of the
sensor is reached. Therefore, it takes longer to detect the system fault with the principal
component space T2 statistic than with the residual subspace SPE statistic to detect the
error in the system. From Figure 8e, it can be judged that only when variable 1 exceeds
the average fault contribution of the 52 variables, and variable 1 is a measured variable,
it is determined that case 1 is a sensor fault with unreliable sensor data based on the fault
diagnosis result.

For case 2, the set system fluctuates. The integrated fault diagnosis result shows
that the T2 statistic does not exceed the limit, the principal component space has no fault,
and the residual subspace represented by SPE detects the fault in the fluctuation interval.
Therefore, it shows that there is an error in the system. The fault identification result also
shows that only variable 8 exceeds the control limit, and variable 8 is a measured variable.
Therefore, it can be determined that case 2 is a false indication of data fluctuation of the
sensor where variable 8 is located. The system remains normal.

Case 3 is a step fault, which is an instantaneous fault, and a single variable in the
system is instantly amplified. The existence of a step fault can be detected immediately,
and the fault identification result shows that the variable 3 single variable exceeds the
limit. Other variables are normal. Thus, it is determined that the sensor where variable 3 is
located has a transient fault, which generates the false indication of the data.
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Case 4 is the simulation fault 1 of the TE process. The fault diagnosis results show
that both T2 and SPE have detected the fault. The fault identification result shows that
variables 1 and 44 exceed the average fault contribution rate. Variable 44 is the control
variable: material A flow rate. Hence, it can be determined that case 4 is a process fault.

In addition to distinguishing the fault types of the system, the accuracy and speed
of fault detection is also an important part of the fault diagnosis framework. Therefore,
this study compares the FDR and TD of the four cases of the TE process with other PCA-
derived algorithms. The results are presented in Table 4.

Table 4. Comparison with PCA, KPCA, DKPCA in FDR and TD.

Case No
PCA KPCA DKPCA This Study

FDR (%) TD (s) FDR (%) TD (s) FDR (%) TD (s) FDR (%) TD (s)

1 48.6 278.0 67.6 55.0 72.5 50.0 79.9 25.0
2 16.5 125.0 78.5 65.0 89.2 25.0 91.3 5.0
3 83.0 12.0 95.0 10.0 98.0 2.0 100 0.0
4 31.0 35.0 83.0 20.0 91.0 11.0 99.2 3.0

Mean 44.78 112.5 81.03 37.5 87.68 22.0 92.6 8.25

The comparison results show that the fault detection method combined with CTA and
DKPCA is far superior to other PCA algorithms in terms of FDR and TD. In terms of time
delay, the fault detection algorithm proposed in this paper can detect faults faster than
other algorithms. The average fault diagnosis rate and time delay are 92.6% and 8.25 s.

The results show that the integrated fault diagnosis framework proposed in this paper
can clearly distinguish between process faults and sensor faults. The fault detection part
has excellent performance in FDR and TD. Therefore, when a fault occurs, the operator can
respond in time and guide the follow-up operation according to the fault identification part.

4.2. Case Study of an Acid Gas Absorption Process from Natural Gas

Methyldiethanolamine (MDEA) is often used as an absorbent in chemical processes to
absorb acid gases. A flowchart of the typical absorption process is shown in Figure 9.
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Stream 111 is the absorbent MDEA. It first exchanges heat with cooling water at
room temperature through the heat exchanger E-105 and is then cooled to 21 ◦C, and then
enters the absorption tower C-101 from the top. The raw material gas stream 102 enters
the absorption tower C-101 from the bottom, flows counter currently with the absorbent
MDEA, and absorbs acid gases (H2S and CO2) from the natural gas. The overhead gas of
the absorption tower C-101 is natural gas containing a large amount of moisture, and then
it enters the downstream dehydration system for further dehydration and purification to
meet the national natural gas standards. The bottom product of the absorption tower C-101
is rich amine liquid containing acid gas. After heat exchange, the rich amine liquid enters
the regeneration tower to resolve acid gas and regenerate the absorbent. According to
the Piping and Instrument Diagram (P&ID) chart, the following variables: V1: absorbent
MDEA volume flow rate, V2: absorption tower absorbent feed temperature, V3: absorp-
tion tower top pressure, V4: Natural gas feed flow, V5: Bottom liquid level height of
absorption tower.

Three types of faults are set in the acid gas absorption process, including drift, stuck,
and actual fault. The integrated fault diagnosis framework is used to distinguish the three
types of faults in detail. Examples of the fault cases are listed in Table 5.

Table 5. Three faults in acid gas adsorption process.

Case Number Fault Situation Description

1 data drift Set a slowly varying drift of the natural gas feed flow (V4) at data point 250
2 data stuck Set a stuck of the absorption tower top pressure (V3) at data point 250
3 Fault 1 Heat exchanger inlet temperature rises to 31 °C at data point 300

An acid gas absorption process is provided for the three different faults. In case 1,
a graded drift of the gas flow rate is monitored at the sampling point 250. In case 2, the top
pressure of the absorption tower is monitored and a stuck fault is set at the sampling point
250. In case 3, an actual fault is simulated by HYSYS, that is, the temperature of the heat
exchanger inlet rises to 30 ◦C. The integrated fault diagnosis framework is used to detect
and identify the three faults, and then distinguish the fault type as a process fault or a
sensor fault. The fault diagnosis results are shown in Figure 7.

The diagnosis results for the acid gas absorption process can be obtained. For case 1,
because the sensor sensitivity of the actual chemical process and the simulation process are
different, the data drift of the actual process will be rapidly detected as the fault occurs,
as shown in Figure 10d. The fault identification results show that variable 4 exceeds the
average fault contribution rate of 20%, other variables are in a normal state, and variable
4 is the measurement variable of the condenser outlet temperature. Thus, case 1 is a
sensor fault.

The actual chemical process often has a sudden stuck. The stuck is also an instanta-
neous fault; therefore, it will be detected instantaneously. The result of the fault variable
also shows that the measured variable 3, absorption tower pressure, exceeds the average
contribution rate, and other variables are normal. Hence, it is determined that case 2 is also
a sensor fault.

For case 3, we introduced an actual fault of the acid gas absorption process and used
the integrated fault diagnosis framework to detect and identify the fault. The detection
results show that the fault can be accurately detected. The fault identification result shows
that variables 1, 2, and 3 all exceed the control limit, indicating that the system has an offset
condition. Therefore, it is determined that case 3 is a process fault.

In the acid gas absorption process, to determine the advantages of the proposed
fault detection method in the actual chemical process, the two statistics of FDR and TD
are compared with the PCA and its derivative algorithms. The comparison results are
presented in Table 6.
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Table 6. Comparison with PCA, KPCA, DKPCA in FDR and TD.

Case No
PCA KPCA DKPCA This Study

FDR (%) TD (s) FDR (%) TD (s) FDR (%) TD (s) FDR (%) TD (s)

1 56.1 24.0 77.0 15.0 90.1 5.0 99.2 2.0
2 78.9 12.0 89.0 8.0 98.2 4.0 100.0 0.0
3 65.5 34.0 80.0 19.0 89.5 6.0 100.0 0.0

Mean 66.83 23.33 82.0 14.0 92.6 5.0 99.73 0.67

The comparison results of various fault detection methods in the acid gas absorption
case show that for actual chemical process faults, the fault detection part of the fault
diagnosis framework proposed in this paper is far superior than the other algorithms in
terms of fault diagnosis accuracy and speed. The FDR reached 99.73%. In cases 2 and 3
TD is 0, and the mean TD is 0.67 s, which proves that the proposed method has the best
timeliness for fault detection.
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Based on the above fault diagnosis results, it is shown that the CTA proposed in this
paper optimises the speed and accuracy of fault detection and detects fault occurrence data
points in time. The fault identification part based on the RBC graph can distinguish the
chemical process sensor faults and process faults in detail. The group forms an integrated
fault diagnosis framework suitable for modern chemical processes.

5. Conclusions

The distinction between sensor and process faults has always been an important part of
chemical process fault diagnosis. This paper proposes an integrated fault diagnosis model
that can effectively distinguish between sensor faults and process faults in modern chemical
processes. First, a CTA is proposed to improve the calculation speed and accuracy of the
model. The proposed algorithm is combined with the DKPCA for fault detection, and it is
then combined with the RBC graph model to diagnose fault variables and comprehensively
judge the process and sensor faults.

This study used a CTA combined with a DKPCA fault detection model to detect
18 faults in the TE process and verified its advantages in fault detection. Then, we selected
four common fault types in the chemical process, including data drift, jitter, step, and actual
fault. The fault detection model and the RBC fault diagnosis model were combined to
distinguish the four types of faults as process faults or sensor faults in detail. Finally, based
on variable correlation and fault transfer characteristics, the data drift, jitter, and step faults
were determined as sensor faults, whereas the actual simulated fault was identified as
process fault.

Finally, the integrated fault diagnosis model was applied to the acid gas absorption
process to verify the effectiveness of the model in an actual chemical process. For the acid
gas absorption process, three types of faults, namely, data drift, stuck, and actual faults,
were selected to distinguish the fault types through the integrated fault diagnosis model.
The results showed that data drift and sticking were sensor faults, and the actual fault
was determined as the process fault. Based on the above results, this fault classification
framework provides a strong foundation for the safety of chemical processes and ideas for
follow-up research on chemical process fault diagnosis.
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