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Abstract

Objective

Gastric cancer (GC) is one of the most common tumour diseases worldwide and has poor

survival, especially in the Asian population. Exploration based on biomarkers would be effi-

cient for better diagnosis, prediction, and targeted therapy.

Methods

Expression profiles were downloaded from the Gene Expression Omnibus (GEO) database.

Survival-related genes were identified by gene set enrichment analysis (GSEA) and univari-

ate Cox. Then, we applied a Bayesian hierarchical lasso Cox model for prognostic signature

screening. Protein-protein interaction and Spearman analysis were performed. Kaplan–

Meier and receiver operating characteristic (ROC) curve analysis were applied to evaluate

the prediction performance. Multivariate Cox regression was used to identify prognostic fac-

tors, and a prognostic nomogram was constructed for clinical application.

Results

With the Bayesian lasso Cox model, a 9-gene signature included TNFRSF11A, NMNAT1,

EIF5A, NOTCH3, TOR2A, E2F8, PSMA5, TPMT, and KIF11 was established to predict

overall survival in GC. Protein-protein interaction analysis indicated that E2F8 was likely

related to KIF11. Kaplan-Meier analysis showed a significant difference between the high-

risk and low-risk groups (P<0.001). Multivariate analysis demonstrated that the 9-gene sig-

nature was an independent predictor (HR = 2.609, 95% CI 2.017–3.370), and the C-index of

the integrative model reached 0.75. Function enrichment analysis for different risk groups

revealed the most significant enrichment pathway/term, including pyrimidine metabolism

and respiratory electron transport chain.
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Conclusion

Our findings suggested that a novel prognostic model based on a 9-gene signature was

developed to predict GC patients in high-risk and improve prediction performance. We hope

our model could provide a reference for risk classification and clinical decision-making.

Introduction

Gastric cancer (GC) has become a pervasive cancer worldwide and was responsible for over 1

million new cases and approximately 0.78 million deaths in 2018, making it the third leading

cause of cancer death [1]. In addition, the incidence and diagnosis rates of GC in Asia were

higher than those in other regions, especially among men [1]. Although constant improve-

ments in therapy have been made, the survival rate of GC is still unsatisfactory, especially in

the advanced stage [2]. With the development of high-throughput genome sequencing tech-

niques, the exploration and application of various molecular biomarkers in GC would be effi-

cient for better diagnosis, prediction, and targeted therapy [3]. Therefore, it is necessary and

significant to establish a robust model based on genomic information for predicting prognosis.

However, the occurrence and development of tumours are so complicated that considering a

single gene to predict the survival of GC patients may not be accurate enough. Thus, it is feasi-

ble to construct a model by combining multiple genes with clinical characteristics to predict

the survival prognosis of GC patients.

Further, identifying prognostic genes from high-dimensional data is critical, and several

methods have been fully discussed [4]. Recently, Bayesian approaches have increased, thereby

providing another option for variable selection and modelling based on high-dimensional sur-

vival data [5–11]. In previous research, Tang and Yi et al. proposed a novel Bayesian hierarchi-

cal Cox proportional hazards model (i.e., the spike-and-slab lasso Cox) for adapting high-

dimensional molecular data [12]. Extensive simulation studies showed that the spike-and-slab

lasso Cox outperformed other methods, such as lasso Cox. However, few studies apply the

Bayesian model to specific tumours in practice.

This study aimed to apply the spike-and-slab lasso Cox for identifying potential prognostic

genes using the GSE66229 dataset. We constructed a 9-gene signature and established an inte-

grative prognostic model for predicting overall survival (OS) in GC patients. Model perfor-

mance was assessed in an independent external validation set. Functional enrichment analysis

for different risk groups was performed by GSEA. Then, an instructive nomogram was drawn

for prediction in clinical application. This study not only enriches the practical application of

Bayesian methods but also provides new ideas and references for clinical prognosis prediction

modelling.

Materials and methods

Cancer database download and processing

The mRNA expression profile and clinical information were publicly downloaded from the

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). The gene expression

microarray dataset GSE66229 came from an Asian Cancer Research Group (ACRG) study that

included 300 tumour tissue samples (mainly adenocarcinoma) and 100 normal tissue samples,

and this was used as the training set in this study. Another Singapore cohort dataset,

GSE15459, was an independent external validation set and included 182 tumour tissue
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samples. Both datasets were generated by the Affymetrix Human Genome U133 Plus 2.0 plat-

form, and GSE66229 was normalized by robust multiarray average with the Affymetrix Power

Tools package. GSE15459 was handled by Microarray Suite version 5.0 using Affymetrix

default analysis settings and global scaling as a normalization method. Log2 transformation

was utilized in this study.

Gene Set Enrichment Analysis (GSEA)

In contrast to traditional analysis, GSEA was not limited to providing a clear threshold (e.g.,

log2FC) for differentially expressed genes but was focused on genes contributing to specific

biological function gene sets [13]. It could avoid removing important genes with no statistically

significant expression differences. In this study, samples from GSE66229 were divided into the

tumour and non-tumour groups. Then, GSEA v4.1.0 was used to analyze gene data. Based on

the Molecular Signatures Database, the gene sets of Kyoto Encyclopedia of Genes and

Genomes (KEGG, c2.cp.kegg.v7.2.symbols.gmt) and Gene Ontology (GO, c5.go.v7.2.symbols.

gmt) were set as reference datasets. Nom-P value<0.05 and false discovery rate (FDR) <0.25

were set as the cut-off values. In addition, function enrichment analysis based on the same set-

tings was performed for different risk groups.

Establishment of the prognostic signature

To screen prognostic genes, we split this process into two steps. First, univariate Cox regres-

sion was used to choose survival-related genes from the leading edge analysis in GSEA. Then,

the spike-and-slab lasso Cox proposed by Tang and Yi et al. [12] was used to further identify

prognostic genes. The spike-and-slab mixture double-exponential prior applied in this model

was the key part and was expressed as follows:

βjjγj; s0; s1 � ð1 � γjÞDEðβjj0; s0Þ þ γjDEðβjj0; s1Þ ð1Þ

It had two positive value parameters, s1 and s0 (s1>s0>0), which need to be preset. s0 was cho-

sen to be small and regarded as a “spike scale” for giving strong shrinkage on coefficient esti-

mation, while s1 was set to be large so that it served as a “slab scale” for giving weak shrinkage

on important variables. γj was the indicator variable that linked the scale parameters with the

coefficients. The algorithm for fitting the spike-and-slab Cox model was called the expecta-

tion-maximization (EM) cyclic coordinate descent algorithm, which had a fast computing

speed [12].

After filtering prognostic genes by the Bayesian hierarchical lasso Cox model, the risk score

was calculated for each patient, and the formula was as follows:

Risk Score ¼
Pn

i¼1
ðβi � expressionðgeneiÞÞ ð2Þ

βi represents the corresponding coefficient of a specific gene, and the expression () indicates

the expression level of the corresponding gene. Next, samples were divided into high-risk or

low-risk groups according to the median risk score. Kaplan-Meier and receiver operating char-

acteristic (ROC) curve analysis were performed to assess the predictive effect. Also, we inte-

grated the risk score and clinical factors into one model to build the final prognostic model

and evaluated the performance by the C-index in the training set and validation set. Then, for-

est plots, nomogram plots, and calibration plots were used to demonstrate the main result

fully.
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Correlation and validation analysis

To further explore possible associations, we firstly applied the Search Tool for the

Retrieval of Interacting Genes (STRING, https://cn.string-db.org/) [14] to construct the

Protein-Protein interaction (PPI) network based on the above genes. Then Spearman cor-

relation analysis was performed to investigate the association at expression levels. On the

other hand, the protein expression levels of the 9 genes were verified using the publicly

Human Protein Altas (HPA) database (https://www.proteinatlas.org/) [15]. To better deal

with the HPA data, we adopted the HPAanalyze package, a powerful tool for searching

and analyzing the HPA database [16].

External validation of prognostic model

We downloaded GSE15459 as an independent external validation set, which comprised the

gene expression and clinical data of 182 samples. The risk scores of the GC patients were calcu-

lated and divided into high-risk and low-risk groups based on the median value. The robust-

ness of this model was tested by Kaplan-Meier and ROC curve analysis.

Implementation

Statistical analysis was performed based on R v4.0.2. bmlasso() was used for fitting the Bayes-

ian hierarchical lasso Cox model, and cv.bh() was executed to select optimal s0 based on the

predictive performance of the model. These functions are from the freely available R package

BhGLM [17].

Results

Identification of survival-related genes

To summarize this study more comprehensively, a schematic diagram was provided in Fig

1. GSE66229 had 400 samples (with a total of 20161 genes), including 300 cases and 100

normal samples. The GSEA results revealed that 331 genes involved in 15 pathways from

KEGG and 2611 genes involved in 595 terms (biological process, molecular function, and

cellular component) were filtered out with FDR<0.25 and Nom-P<0.05 (S1 Table). After

removing duplicated genes, a total of 2641 genes were selected for the subsequent process.

Among the above processes, pyrimidine metabolism (Nom-p = 0), spliceosome (Nom-

p = 0.024), RNA export from the nucleus (Nom-p = 0), and viral gene expression (Nom-

p = 0) from KEGG and GO based on the largest absolute normalized enrichment score

(NES) were shown in Fig 2.

After excluding samples with missing values (i.e., survival time<1 month, survival out-

come, pathological stage, age and sex), univariate Cox proportional hazards regression analysis

was used to identify survival-related genes. Basic clinical characteristics were described

completely in Table 1, and the results showed that 1109 genes were significantly correlated

with OS at P<0.05.

Bayesian hierarchical lasso Cox for screening final prognostic genes

The selection criterion of two parameters, s1 and s0, has been sufficiently discussed in a previ-

ous study [18]. The variety of the C-indexes of the survival model was sensitive to the change

in s0 but less susceptible to s1. Therefore, we decided to fix s1 at 1 according to previous

research. Regarding the value of s0, we first used the glmNet() function from BhGLM package

to simulate 10-fold cross-validation repeated 10 times to obtain the stable penalty parameter λ
(i.e., sλ) and then adjusted the value with a limited range from -0.04 to 0.06 with intervals of
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0.01. Our goal was to find an optimal value that simultaneously made the C-index larger and

deviance smaller. According to the results of 10-fold cross-validation with repeated 10 times,

we ultimately decided to choose s0 = sλ-0.04 as an optimal value (Table 2). At the same time,

the C-index and deviance of the constructed Bayesian hierarchical lasso Cox model were 0.684

(sd = 0.004) and 1582.454 (sd = 3.734), respectively. The C-index of traditional lasso Cox

regression was 0.643 (sd = 0.011), which was lower than our Bayesian hierarchical lasso Cox

model. Afterwards, we chose 9 prognostic genes whose coefficients were not zero, including

tumour necrosis factor receptor superfamily member 11A (TNFRSF11A), nicotinamide nucle-

otide adenylyltransferase 1 (NMNAT1), eukaryotic translation initiation factor 5A (EIF5A),

notch receptor 3 (NOTCH3), torsin family 2 member A (TOR2A), E2F transcription factor 8

(E2F8), proteasome 20S subunit alpha 5 (PSMA5), thiopurine S-methyltransferase (TPMT),

and kinesin family member 11 (KIF11) (Table 3).

Fig 1. Schematic diagram of this study.

https://doi.org/10.1371/journal.pone.0266805.g001
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PPI, Spearman correlation and validation analysis

PPI analysis was carried out to investigate possible inter-relationships of 9 genes (Fig 3A).

According to the STRING database, there existed an interaction between E2F8 and KIF11.

Except for the association between NMNAT1 and EIF5A (P>0.05), other pairs were statisti-

cally significant (P<0.05) (S2 Table). Notably, the expression of NOTCH3 was negatively asso-

ciated with other genes, and the strongest association came from the expression of E2F8 and

Fig 2. GSEA outcome of KEGG (a-b) and GO (c-d) with the largest absolute normalized enrichment size (NES).

https://doi.org/10.1371/journal.pone.0266805.g002

Table 1. Clinical characteristics of patients with gastric cancer.

Training set Validation set

count % count %

Survival status Alive, 0 148 49.33 87 47.80

Dead,1 152 50.67 95 52.20

Age <65 161 53.67 75 41.21

> = 65 139 46.33 107 58.79

Sex female 101 33.67 66 36.26

Male 199 66.33 116 63.74

Stage I 30 10.00 31 17.03

II 97 32.33 28 15.39

III 96 32.00 66 36.26

IV 77 25.67 57 31.32

https://doi.org/10.1371/journal.pone.0266805.t001
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KIF11 (r = 0.61) (Fig 3B). Further, the protein levels of these genes were also explored through

the HPA database (S2 Fig). The result showed that three genes (E2F8, KIF11, TPMT) had been

found to be highly expressed in GC tissue.

Prognostic analysis of the 9-gene signature

We developed a prognostic signature based on the risk score constructed by the above 9 genes,

and the formula of the risk score was given as follows: Riskscore = (-0.2277)�TNFRSF11A
+(-0.1997)�NMNAT1+(-0.1693)�EIF5A+0.1525�NOTCH3+(-0.1423)�TOR2A+(-0.0393)�E2F8
+(-0.0363)�PSMA5+(-0.0214)�TPMT+(-0.0060)�KIF11.

After calculating the risk score for each patient, the median risk score (median = -0.077)

was regarded as the cut-off value that stratified GC patients into low-risk and high-risk groups.

Among them, the range of risk scores was [-1.569, 2.104]. The low-risk group was defined as

[-1.569, -0.077), and the high-risk group was defined as [-0.077, 2.104]. The Kaplan-Meier sur-

vival analysis demonstrated a statistically significant difference between the low-risk and high-

risk groups (P<0.0001, Fig 4A), and the AUC of the risk score was 0.765 (Fig 4B). The distri-

bution of survival status is also shown in Fig 5A. As the risk score of the GC patients increased,

Table 2. Outcome of 10 times 10-fold cross-validation.

Method C-index Deviance

mean sd mean sd

lasso 0.643 0.011 1602.125 5.641

sλ-0.04,1 0.684 0.004 1582.454 3.734

sλ-0.03,1 0.643 0.001 1601.508 1.258

sλ-0.02,1 0.642 0.001 1602.134 1.720

sλ-0.01,1 0.642 0.004 1603.394 5.236

sλ,1 0.636 0.009 1608.835 8.323

sλ+0.01,1 0.648 0.012 1600.793 6.695

sλ+0.02,1 0.653 0.012 1600.796 8.380

sλ+0.03,1 0.654 0.011 1605.169 11.075

sλ+0.04,1 0.657 0.011 1611.989 14.075

sλ+0.05,1 0.657 0.011 1623.413 16.959

sλ+0.06,1 0.655 0.012 1642.332 20.961

sλ = 0.0400874379965632

https://doi.org/10.1371/journal.pone.0266805.t002

Table 3. Bayesian hierarchical lasso Cox model of 9 genes associated with OS in GC patients.

Gene Coefficient HR

TNFRSF11A -0.2277 0.7964

NMNAT1 -0.1997 0.8190

EIF5A -0.1693 0.8443

NOTCH3 0.1525 1.1648

TOR2A -0.1423 0.8673

E2F8 -0.0393 0.9615

PSMA5 -0.0363 0.9644

TPMT -0.0214 0.9788

KIF11 -0.0060 0.9941

https://doi.org/10.1371/journal.pone.0266805.t003
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the expression of the mRNAs in the high-risk group (TNFRSF11A, NMNAT1, EIF5A, TOR2A,

E2F8, PSMA5, TPMT, KIF11) showed obvious downregulation, whereas the expression of

mRNAs in the low-risk group (NOTCH3) was upregulated. Additionally, the Kaplan-Meier

analysis of the expression of each gene is shown in S1 Fig.

Fig 3. Interaction and correlation analysis. a) possible interactions in 9 genes based on STRING analysis. b) Spearman

correlation plot of 9 genes based on expression profile.

https://doi.org/10.1371/journal.pone.0266805.g003

Fig 4. a) Kaplan-Meier curve of GSE66229 survival data for high-risk and low-risk groups with p<0.0001. b) The

ROC curve of the risk score for predicting survival in the GSE66229 dataset. c) Kaplan-Meier curve of GSE15459

survival data for high-risk and low-risk groups with p = 0.0001. d) The ROC curve of the risk score for predicting

survival in the GSE15459 dataset.

https://doi.org/10.1371/journal.pone.0266805.g004
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Function enrichment analysis

To elucidate the possible biological terms or pathways associated with the risk score, we also

utilized GSEA to perform GO and KEGG pathway analyses based on differentially expressed

risk genes (DRGs) between the low-risk and high-risk groups. As shown in the chart, we intui-

tively discovered that DRGs were enriched mainly in particular molecular terms/pathways,

such as pyrimidine metabolism and respiratory electron transport chain (Fig 6A and 6B).

Combining 9-gene signature with clinical characteristics

Next, we integrated the gene signature plus several clinical factors, including age, sex and

stage, into a super prognostic model to completely predict the OS of GC patients. After inte-

gration, the C-index of the final prognostic model reached 0.75, in contrast to the model that

Fig 5. Risk score model based on 9 genes in the training and validation sets. a) The training set. b) The validation

set. The top row shows the tendency of the risk score with the cut-off value in each dataset. The middle row shows the

distribution of the survival status of patients in each dataset. The bottom row shows the mRNA expression of 9 genes

based on the median risk score in each dataset.

https://doi.org/10.1371/journal.pone.0266805.g005
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considered only clinical factors (C-index = 0.686) (Fig 7A). The HR of the risk score was 2.609,

95% CI: 2.017–3.370. Finally, considering the application of clinical practice, we utilized a

nomogram to predict the survival probability of GC patients (Fig 8A). Moreover, calibration

plots were used to illustrate the stability of the nomogram in predicting 1-year, 3-year, or

5-year OS (Fig 8B–8D).

Independent external validation in GSE15459

To assess the robustness of the 9-gene prognostic signature, we selected GSE15459 as an inde-

pendent external validation set. Similar to the training set, Kaplan-Meier analysis indicated

that low-risk patients had longer survival times than high-risk patients (P = 0.0001, Fig 4C),

and the overall AUC of the risk score was 0.703 (Fig 4D). The distribution between the risk

score and survival status is displayed in Fig 5B. We observed that the expression levels between

different risk groups were similar to those in the training set, which further verified the accu-

racy of our results. After integrating clinical characteristics, the C-index of the final prognostic

model also increased to 0.75, in contrast to the model with only clinical characteristics (C-

index = 0.696). Multivariate analysis demonstrated that the risk score could be a stable prog-

nostic factor for the prediction of OS (HR = 1.815, 95% CI: 1.288–2.560, P<0.001) (Fig 7B).

Fig 6. Functional enrichment analysis based on low-risk and high-risk groups. a) Top 10 enrichment pathways in

KEGG based on the largest absolute NES. b) Top 10 enriched GO pathways based on the largest absolute NES.

https://doi.org/10.1371/journal.pone.0266805.g006

Fig 7. Integrative prognostic models combining the risk score and clinical factors in GC patients. a) Forest plot

combining the risk score with clinical factors (age, sex, stage) in the training set. b) Forest plot combining the risk score

with clinical factors (age, sex, stage) in the validation set.

https://doi.org/10.1371/journal.pone.0266805.g007
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Discussion

As one of the most common tumour diseases, GC has a relatively high incidence and mortality

rate, especially in Asia [1]. Reliable markers could be applied as the vital indicator for GC risk

stratification and following treatment. Compared to the traditional model with clinical charac-

teristics, the prognostic model combining biomarkers would be more powerful for prediction

performance, especially in the current era of precision medicine. However, the high-dimen-

sional feature of genetic data makes it difficult to model directly, and some effective statistical

methods are needed, such as PCA, ridge, and lasso [4]. In this study, we used a Bayesian

approach (also known as spike-and-slab lasso Cox) to screen target genes [12]. This method

integrated mainly the penalized lasso and Bayesian variable selection, which was superior to

lasso. First, this Bayesian model could achieve the same function of variable selection as lasso

Cox. Second, compared with lasso Cox giving the same penalty parameter to all coefficients,

spike-and-slab lasso Cox could achieve more flexibility. In other words, it could selectively

shrink different predictors based on different scales from the data (i.e., giving relatively small

shrinkage to those predictors with large effect and giving strong shrinkage to irrelevant or

weak predictors at the same time). Therefore, to some extent, this Bayesian model could

reduce the estimation bias of lasso Cox. Our study also demonstrated that the cross-validated

C-index of the Bayesian model was better than the traditional lasso (0.684 vs 0.643).

After choosing the optimal model, 9 prognostic genes with non-zero coefficients were

selected. Next, we established the risk score index based on these genes, and Kaplan-Meier

analysis demonstrated that GC patients in the high-risk group (> = -0.077) had a shorter sur-

vival time than those in the low-risk group (<-0.077). Additionally, we tested the predictive

power of the 9-gene signature alone, and the results showed that it was a great predictor for OS

Fig 8. Nomogram and calibration plots for the prognostic model. a) Nomogram plotted by gene signature and

clinical factors. b-d) Calibration plots demonstrating the consistency between predicted and observed 1-year, 3-year,

and 5-year survival outcomes.

https://doi.org/10.1371/journal.pone.0266805.g008
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(AUC = 0.765 in the training set; AUC = 0.703 in the validation set). Compared to a 4-gene

signature reported by a previous study, our signature acquired a higher level (AUC for OS,

0.765 vs 0.684) [19]. Furthermore, we integrated the risk score with clinical factors (age, sex,

pathological stage) to construct a multivariate Cox regression model. The results proved that

this risk signature could be an independent prediction marker for GC. The C-index of the inte-

grative model reached 0.75 in both the training set and validation set, which showed the reli-

able performance of our model. Finally, considering the possible clinical application, a

nomogram was provided to visually predict the GC patients’ survival. By evaluating 1-year,

3-year, and 5-year OS calibration curves, the drawn nomogram had a relatively high accuracy

of prediction.

Through the Bayesian hierarchical lasso Cox model, the 9 genes we found were also the

focus of other basic researches or population studies. NOTCH3, a member of the NOTCH

family, is involved in the NOTCH signalling pathway, which is regarded as one of the key path-

ways constituting the stem cell signalling network [20]. Our results demonstrated that the

increased expression of NOTCH3 was associated with poor OS among GC patients, which was

consistent with previous studies [21, 22]. TNFRSF11A, also regarded as the receptor activator

of NF-κB (RANK), can activate several pathways, such as NF-κB, JNK, ERK, p38, and Akt/

PKB, and was reported to be a novel and frequent target for de novo methylation in gliomas

[23]. Our study showed that the expression of TNFRSF11A was positively associated with sur-

vival (HR = 0.7964<1), which was consistent with another study [24]. In population-based

studies, TPMT, TOR2A, KIF11, and EIF5A were reported to be associated with prognosis in

other tumours, such as childhood acute lymphoblastic leukaemia [25, 26], ovarian cancer [27,

28], breast cancer [29], and colorectal cancer [30].

NMNAT1 is involved in the NAD+ salvage/recycling pathway, which is crucial for main-

taining the functions of a wide variety of NAD+-dependent enzymes in the cytoplasm and

nucleus [31]. Knockdown of NMNAT1 enhanced rRNA transcription, which might facilitate

increased ribosome biogenesis and tumour development [32]. However, to our knowledge, for

the NMNAT1 signature, there have been no relevant studies based on populations. Our study

revealed that high expression of NMNAT1 was associated with lower mortality risk and higher

OS than low expression. E2F8 is a member of the E2F family of transcription factors that regu-

lates various cellular functions related to the cell cycle and apoptosis [33]. E2F8 is considered

to be a kind of transcriptional repressor that is similar to E2F7 in that it can inhibit E2F-driven

promoters [34]. A previous study found that the increased expression of E2F family members

(E2F2, E2F5, E2F6, and E2F7) was significantly associated with favourable OS in GC [35]. Our

research further revealed that increased expression of E2F8 was also associated with favourable

prognosis.

Notably, some previously reported genes, such as PSMA5 and KIF11, can be treated as

potential therapeutic targets for tumours [36, 37]. Previous studies demonstrated that the

upregulation of PSMA5, by activating the key Nrf2/ARE signalling pathway, played a critical

role in the mechanism of inducing tumour cell apoptosis caused by combined chemotherapy

regimens [38, 39]. KIF11 silencing induced chromosome instability (CIN), which might con-

tribute to cancer development and progression [40]. However, other studies showed that the

suppression of PSMA5 could strengthen the sensitivity of myeloma to bortezomib [41]. Api-

genin induced apoptosis in prostate cancer cells, which was accompanied by the downregu-

lated expression of PSMA5 [42]. These studies suggested that the same gene might involve

different mechanisms in different tumour types.

In general, our study used a Bayesian hierarchical lasso Cox model to screen a prognosis-

related gene signature. It was the first to apply this Bayesian approach to construct prognosis-

related models in GC. Notably, there might be some restrictions regarding generalizability to
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populations in other regions because this model we built was based on the Asian population.

Moreover, our analysis focused mainly on mRNA expression data, but other molecular types,

such as microRNA, CNV, or methylation, might contain important prognostic information in

GC. Therefore, in further research, we would consider establishing a more generalized model

that combines different molecular data for better prediction based on our Bayesian approach.

Finally, although the 9-gene signature was explored by statistical analysis or database valida-

tion, we expect to further verify these genes by in vitro/vivo experiments in the future study.

Conclusion

Our research confirmed that the Bayesian hierarchical lasso Cox model had great prediction

power than the traditional Cox model. Based on this Bayesian approach, we proposed a 9-gene

prognostic signature as an independent predictor for the overall survival of GC patients.

Finally, combined with clinical characteristics, a comprehensive nomogram was provided for

clinical application. Overall, our study offers certain reference significance for clinical progno-

sis prediction in GC.
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