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Abstract

Background: Zipf’s law and Heaps’ law are two representatives of the scaling concepts, which play a significant role in the
study of complexity science. The coexistence of the Zipf’s law and the Heaps’ law motivates different understandings on the
dependence between these two scalings, which has still hardly been clarified.

Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipf’s law and the
Heaps’ law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their
inconsistency at the larger time before reaching a stable state, where the Heaps’ law still exists with the disappearance of
strict Zipf’s law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical
results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological
details of disease. Employing the United States domestic air transportation and demographic data to construct a
metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad
heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence.

Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution
of scalings, indicating the coexistence of the Zipf’s law and the Heaps’ law depends on the collective dynamics of epidemic
processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment
strategies at the early time of a pandemic disease.
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Introduction

Scaling concepts play a significant role in the field of complexity

science, where a considerable amount of efforts is devoted to

understand these universal properties underlying multifarious

systems[1–4]. Two representatives of scaling emergence are the

Zipf’s law and the Heaps’ law. G.K. Zipf, sixty years ago, found a

power law distribution for the occurrence frequencies of words

within different written texts, when they were plotted in a

descending order against their rank[5]. This frequency-rank

relation also corresponds to a power law probability distribution

of the word frequencies[32]. The Zipf’s law is found to hold

empirically for a great deal of complex systems, e.g., natural and

artificial languages[5–9], city sizes[10,11], firm sizes[12], stock

market index[13,14], gene expression[15,16], chess opening[17],

arts[18], paper citations[19], family names[20], and personal

donations[21]. Many mechanisms are proposed to trace the origin

of the Zipf’s law[22–24].

Heaps’ law is another important empirical principle describing

the sublinear growth of the number of unique elements, when the

system size keeps on enlarging[25]. Recently, particular attention

is paid to the coexistence of the Zipf’s law and the Heaps’ law,

which is reported for the corpus of web texts[26], keywords in

scientific publication[27], collaborative tagging in web applica-

tions[28,29], chemoinformatics[30], and more close to the interest

in this article, global pandemic spread[31], and etc.

In [33,34], an improved version of the classical Simon model[35]

was put forward to investigate the emergence of the Zipf’s law,

which is deemed to be a result from the existence of the Heaps’ law.

However, [26,32] concluded that the Zipf’s law leads to the Heaps’

law. In fact, the interdependence of these two laws has hardly been

clarified. This embarrassment comes from the fact that the

empirical/simulated evidence employed to show the emergence of

Zipf’s law mainly deals with static and finalized speicmens/results,

while the Heaps’ law actually describes the evolving characteristics.

In this article, we investigate the relation between these scaling laws

from the perspective of coevolution between the scaling properties

and the epidemic spread. We take the scenarios of large-scale spatial

epidemic spreading for example, since the empirical data contain

sufficient spatiotemporal information making it possible to visualize

the evolution of the scalings, which allows us to analyze the inherent

mechanisms of their formation. The Zipf’s law and the Heaps’ law of

the laboratory confirmed cases are naturally shaped to coexist during

the early epidemic spread at both the global and the U.S. levels, while

the crossover comes with the emergence of their inconsistency as the

epidemic keeps on prevailing, where the Heaps’ law still exists with
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the disappearance of strict Zipf’s law. With the U.S. domestic air

transportation and demographic data, we construct a fine-grained

metapopulation model to explore the relation between the two

scalings, and recognize that the broad heterogeneity of the

infrastructure plays a key role in their temporal evolution, regardless

of the biological details of diseases.

Results

Empirical and Analytical Results
With the empirical data of the laboratory confirmed cases of the

A(H1N1) provided by the World Health Organization(WHO)(see the

data description in Materials and Methods), we first study the probability-

rank distribution(PRD) of the cumulative confirmed number(CCN) of

every infected country at several given dates sampled about every two

weeks. Cj(t) denotes the CCN in a given country j at time t. Since Cj(t)
grows with time, the distributions at different dates are normalized by

the global CCN, CT (t)~
X

j
Cj(t), for comparison. Fig. 1(A) shows

the Zipf-plots of the PRD Pt(r) of the infected countries’ confirmed

cases by arranging every Cj(t)=CT (t)w0 in a descending order for

each specimen. The maximal rank rt,max(on x-axis) for each specimen

denotes the total number of infected countries at a given date, and

grows as the epidemic spreading.

At the early stage(the period between April 30th and June 1st,

2009), Pt(r) shows a power law pattern Pt(r)*r{h, which

indicates the emergence of the Zipf’s law. We estimate the power

law exponent h for each specimen of this stage by the maximum

likelihood method[22,37], and report its temporal evolution in the

left part of Fig. 1(C). About sixty countries were affected by the

A(H1N1) on June 1st, and most of them are countries with large

population and/or economic power, e.g., U.S., Mexico, Canada,

Japan, Australia, China. After June 1st, the disease swept much

more countries in a short time, and the WHO announcement on

June 11th[38] raised the pandemic level to its highest phase, phase

6(see Text S1), which implied that the global pandemic flu was

occurring. At this stage(after June 1st, 2009), Pt(r) gradually

displays a power law distribution with an exponential cutoff

Pt(r)*r{hexp({r=rc), where rc is the parameter controlling the

cutoff effect(see Text S1), and the exponent h gradually reduces to

around 1.7, as shown in Fig. 1(C). Surprisingly, Pt(r) at different

dates eventually reaches a stable distribution as time evolves(see

those curves since June in Fig. 1(A)). Indeed, after June 19th, h
seems to reach a stable value with mild fluctuations, as shown in

Fig. 1(C). The characteristics of the temporal evolution of the

parameter rc is similar to h, thus we mainly present the empirical

results of the exponent h in the main text and hold the results of rc

in Figure S1. In the following, we analyze the evolution of the

normalized distribution Pt(r) by the contact process of an

epidemic transmission, regardless of the biological details of

diseases.

Straightforwardly, according to the mass action principle in the

mathematical epidemiology[39,40](see Text S1), which is widely

applied in studying the epidemic spreading process on a

network[41–56], we consider the SIR epidemic scheme here,

(D½S�j ,D½I �j ,D½R�j )?
(D½S�j {1,D½I �j z1,D½R�j ),with rate bD½S�j D

½I �
j =Nj ,

(D½S�j ,D½I �j {1,D½R�j z1), with rate mD½I �j ,

8<
: ð1Þ

where D½Q�j denotes the number of individuals in compartment

½Q�(susceptible(S), infectious(I) or permanently recovered(R)) in a

given country j, b denotes the disease transmission rate, and

infectious individuals recover with a probability m. The population

in a given country j at time t is Nj(t)~
X

Q
D½Q�j (t), where t~0

means the time when initially confirmed cases in the entire system

are reported. At the early stage of a pandemic outbreak, the new

introductions of infectious individuals dominate the onset of

outbreak in unaffected countries. However, after the disease

already lands in these countries, the ongoing indigenous

transmission gradually exceeds the influence of the new introduc-

tions, and becomes the mainstream of disseminators[57,58].

According to Eq.(1), in a given infected country j, there are

D½Inew�
j (tz1)~bD½S�j (t)D½I �j (t)=Nj(t) ð2Þ

new infected individuals on average at tz1 days, and the average

number of illness at tz1 days is

D½I �j (tz1)~(1{mzbD½S�j (t)=Nj(t))D½I �j (t): ð3Þ

Defining x(t)~{mzbD½S�j (t)=Nj(t) and Y(t)~D½S�j (t)=Nj(t),
we have

D½I �j (tz1)~ P
t

t’~t1

½1zx(t’)�D½I �j (t1) and D½Inew �
j (tz1)

~bY(t) P
t{1

t’~t1

½1zx(t’)�D½I �j (t1),

ð4Þ

where D½I �j (t1) denotes the number of initially confirmed or

introduced cases in country j, and is always a small positive

integer. The CCN of country j at tz1 days is

Cj(tz1)~Cj(t)zD½Inew �
j (tz1). When t is large enough, we have

Cj(tz1)=Cj(t)~1zbY(t) P
t{1

t’~t1

½1zx(t’)�D½I �j (t1)=Cj(t): ð5Þ

Before the disease dies out in country j, Cj(t) keeps increasing

from the onset of outbreak[59]. When t is large enough, it is

obviously Cj(t)&0, 0ƒY%1,{mƒX (t’)%b{m, thus

P
t{1

t’~t1

½1zx(t’)� is definitely larger than 0 and can hardly be

infinity. D½I �j (t1) is a small positive integer, thus D½I �j (t1)=Cj(t)*0
when t is large enough. We therefore have

Cj(tz1)=Cj(t)*1, jƒM(tz1) for large t, where M(tz1) is the

total number of infected countries after tz1 days of spreading.

Thus the normalized probability Ptz1(r(j)) at tz1 day is:

Ptz1 r(j)ð Þ~ Cj tz1ð Þ
CT tz1ð Þ~

Cj tð ÞP
j

Cj tð Þ

~Pt r jð Þð Þ, jƒM tz1ð Þ, with large t,

ð6Þ

where r(j) is the rank of the CCN of country j in the descending

order of the CCN list of all infected countries. Eq.(6) indicates that

each probability Pt(r(j)) is invariant for large t, thus the

normalized distribution Pt(r) becomes stable when t is large

enough. The intrinsic reasons for the emergence of these scaling

properties are discussed in Modeling and Simulation Results.

Since the normalized PRD Pt(r) displays the Zipf’s law pattern

Pt(r)*r{h at the early stage of the epidemic, the CCN of the
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country ranked r is Cr(t)*CT (t):r{h at this stage. Considering the

CCN of the countries with ranks between r and rzdr, where dr is

any infinitesimal value, we have dCr(t)*{hr{h{1CT (t)dr.

Supposing dr*PCr
(t)dCr(t) with PCr

denoting the probability

density function, we have

PCr (t)*{h{1rhz1C{1
T (t): ð7Þ

Thus

PCr (t)~A(1{w)C
w{1
T (t)C{w

r (t), ð8Þ

where w~1zh{1, A is a constant. According to the normaliza-

tion condition

ð Cmax(t)

Cmin(t)
PCr

(t)dCr(t)~1, where Cmax(t)(Cmin(t))
is the CCN of the country with the maximal(minimal) value at a

give time t, we have A~{C
1{w
T (t)Cmin(t)w{1 because

w~1zh{1
w1 and Cmax(t)&0. Then

PCr (t)~(w{1)Cmin(t)w{1C{w
r (t): ð9Þ

At a given date, r can be regarded as the number of countries

with the amount of cumulated confirmed cases which is no less

than Cr(t), then

Figure 1. The empirical results of A(H1N1). (A) The Zipf-plots of the normalized probability-rank distributions Pt(r) of the cumulated confirmed
number of every infected country at several given date sampled about every two weeks, data provided by the WHO. (B) The Zipf-plots of Pus

t (r) at
several given data sampled about every two weeks, data provided by the CDC. (C) Temporal evolution of the estimated exponent h of the normalized
distribution Pt(r). (D) Temporal evolution of the estimated exponent hus of the normalized distribution Pus

t (r) of the period after May 15th. (E) The
sublinear relation between the number of infected countries M(t) and the cumulative number of global confirmed cases CT (t), data collected by the
WHO. (F) The sublinear relation between the number of infected states Mus(t) and the cumulative number of national confirmed cases Cus

T (t), data
collected by the CDC. The shaded areas in the figures (C,E,F) corresponds to their different evolution stages, respectively.
doi:10.1371/journal.pone.0021197.g001
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r~

ð Cmax(t)

Cr(t)

M(t)P(Cr
0(t))dCr

0(t): ð10Þ

Recalling r*(CT (t)=Cr(t))
1
h, we have

M tð Þ* CT tð Þ
Cmin tð Þ

� �g

, ð11Þ

where g~1=h. At the early stage corresponding to the period

between April 30th and June 1st, Cmin(t) is one according to the

WHO data. Therefore, we have

M(t)*C
g
T (t),g~1=h, ð12Þ

which indicates that the Heap’s law[25,26,31,32] can be observed

in this case. The empirical evidence for the emergence of the

Heap’s law at this stage is shown in the middle part of Fig. 1(E).

The Heaps’ exponent g is obtained by the least square

method[31,32], and the relevance between h and g is reported

in Table 1.

At the latter stage(the period after June 1st, 2009), the

exponential tail of the distribution Pt(r) leads to a deviation from

the strict Zipf’s law. However, with a steeper exponent g&0:473,

the Heaps’ law still exists, as shown in the right part of Fig. 1(E).

Though the two scaling laws are naturally shaped to coexist during

the early epidemic spreading, their inconsistency gradually

emerges as the epidemic keeps on prevailing. Indeed, in the

Discussion of [32], without empirical or analytical evidence, Lü et al

have intuitively suspected that there may exist some unknown

mechanisms only producing the Heaps’ law, and it is possible that

a system displaying the Heaps’ law does not obey the strict Zipf’s

law. Here we not only verify this suspicion with the empirical

results, but also explore the substaintial mechanisms of the

evolution process in Modeling and Simulation Results, where we

uncover the important role of the broad heterogeneity of the

infrastructure in the temporal evolution of scaling emergence.

We also empirically study the evolution of scaling emergence of

the epidemic spreading at the countrywide level. Since the United

States is one of the several earliest and most seriously prevailed

countries of the A(H1N1)[60], we mainly focus on the A(H1N1)

spreading in the United States. With the empirical data of the

laboratory confirmed cases of the A(H1N1) provided by the

Centers for Disease Control and Prevention(CDC)(see the data

description in Materials and Methods), in Fig. 1(B) we report the PRD

of the CCN of infected states, Pus
t (r), at several given dates sampled

about every two weeks. Our findings suggest a crossover in the

temporal evolution of Pus
t (r). At the early stage(the period before

May 15th), Pus
t (r) shows a power law pattern Pus

t (r)*r{hus with a

much smaller exponent hus than that of the WHO results.

Washington D.C. and 46 states(excluding Alaska, Mississippi,

West Virginia, Wyoming) were affected by A(H1N1) on May 15th.

After May 15th, Pus
t (r) gradually becomes a power law distribution

with an exponential cutoff, Pt
us(r)*r{hus exp({r=rus

c ), which

leads to a deviation from the strict Zipf’s law. In this case, the

exponent hus gradually reduces and reaches a stable value 0.45(see

Fig. 1(D)), which conforms to the fact that Pt
us(r) of different dates

eventually reaches a stable distribution as time evolves. The

temporal evolution of the exponent hus of all data are shown in

Figure S2. rc keeps the value around 14 after June 12th, 2009.

The relation between Mus(t) and Cus
T (t) is shown in Fig. 1(F).

Though at first glance this figure provides us an impression of the

sublinear growth of the number of infected states Mus(t) when the

cumulative number of national total patients Cus
T (t) increases, we

could not use the least square method here to estimate the Heaps’

exponent gus for several reasons: (i) the amount of data at each stage

is quite small; (ii) there are several periods that Mus(t) keeps

unchanged(May 6th ? May 7th, Mus(t)~41; May 12th ? May

13th, Mus(t)~45; May 18th ? May 27th, Mus(t)~48); (iii) the

magnitude of Cus
T (t) is much larger than that of Mus(t); (iv) after

June 1st, 2009, Washington D.C. and all 50 states of the United

States were affected by the A(H1N1). Define Mmax the maximal

number of the geographical regions the epidemic spreads to. In the

U.S. scenario, Mmax
us ~51. When Mus(t) reaches Mmax

us on June 1st,

Pus
t (r) evolves and becomes stable after June 26th(see Fig. 1(B,D)).

In the Modeling and Simulation Results, we explore the relation between

these two scalings with a fine grained metapopulation model

characterizing the spread of the A(H1N1) at the U.S. level in detail.

Note that these scaling properties are not exceptive for the

A(H1N1) transmission. More supported exemplifications are report-

ed in Figure S3, e.g. the cases of SARS, Avian Influenza(H5N1). It is

Table 1. The empirical results of the parameters h and g, and
their relevance at the early time(the period between April 30th
and June 1st, 2009), using 2009 Pandemic A(H1N1) data
collected by the WHO.

Date h g h:g

April 30th 3.12 0.349 1.046

May 1st 3.23 0.349 1.127

May 2th 3.00 0.349 1.047

May 3th 3.32 0.349 1.159

May 4th 2.93 0.349 1.022

May 5th 3.29 0.349 1.148

May 6th 3.35 0.349 1.169

May 7th 3.5 0.349 1.222

May 8th 3.39 0.349 1.183

May 9th 3.2 0.349 1.117

May 10th 3.16 0.349 1.103

May 11th 2.96 0.349 1.033

May 12th 3.06 0.349 1.068

May 13th 2.96 0.349 1.033

May 14th 3.00 0.349 1.047

May 15th 3.07 0.349 1.071

May 16th 3.07 0.349 1.071

May 17th 2.95 0.349 1.030

May 18th 2.93 0.349 1.023

May 19th 2.98 0.349 1.040

May 20th 2.97 0.349 1.037

May 21th 2.92 0.349 1.019

May 22th 2.82 0.349 0.984

May 23th 2.77 0.349 0.967

May 26th 2.62 0.349 0.914

May 27th 2.54 0.349 0.886

May 29th 2.44 0.349 0.852

June 1st 2.33 0.349 0.813

doi:10.1371/journal.pone.0021197.t001
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worth remarking that the normalized distribution Pt(r) almost keeps

the power law pattern during the whole spreading process of the

global SARS. This phenomenon might result from the intense

containment strategies, e.g. patient isolation, enforced quarantine,

school closing, travel restriction, implemented by individuals or

governments confronting mortal plague.

Modeling and Simulation Results
The above analyses, however, do not tell the whole story, because

the intrinsic reasons for the emergence of these scaling properties

have not been explained. Some additional clues from the perspective

of Shannon entropy[61] of a system might unlock the puzzle.

Nowadays, population explosion in the urban areas, massive

interconnectivity among different geographical regions, and huge

volume of human mobility are the factors accelerating the spread of

infectious disease[62,74]. At a large geographical scale, one main

class of models is the metapopulation model dividing the entire

system into several interconnected subpopulations[58,63–74,87,88].

Within each subpopulation, the infectious dynamics is described by

the compartment schemes, while the spread from one subpopulation

to another is due to the transportation and mobility infrastructures,

e.g., air transportation. Individuals in each subpopulation exist in

various discrete health compartments(status), i.e. susceptible, latent,

infectious, recovered, and etc., with compartmental transitions by the

contagion process or spontaneous transition, and might travel to

other subpopulations by vehicles, e.g., airplane, in a short time. The

metapopulation model can not only be employed to describe the

global pandemic spread when we regard each subpopulation as a

given country, but also be used to simulate the disease transmission

within a country when each subpopulation is regarded as a given

geographical region in the country. Here we mainly consider the

spread of pandemic influenza at the U.S. country level for threefold

reasons: (i) the computational cost of simulating global pandemic

spread is too tremendous to implement on a single PC or

Server[58,70,72,81,87]; (ii) the IATA or OAG flight schedule data,

which is widely used to obtain the global air transportation network,

do not provide the attendance and flight-connecting information(see

data description in Materials and Methods); (iii) the United States is one

of the several earliest and most seriously prevailed countries[60].

We construct a metapopulation model at the U.S. level with the

U.S. domestic air transportation and demographic statistical

data[75–78](detailed data description is provided in Materials and

Methods, and a full specification of the simulation model is reported

in Text S1). Define a subpopulation as a Metropolitan/Micro-

politan Statistical Areas(MSAs/mSAs)[75] connected by a trans-

portation network, in this article, the U.S. domestic airline

network(USDAN). The USDAN is a weighted graph comprising

V~406 vertices(airports) and E~6660 weighted and directed

edges denoting flight courses. The weight of each edge is the daily

amount of passengers on that flight course. The infrastructure of

the USDAN presents high levels of heterogeneity in connectivity

patterns, traffic capacities and population(see Fig. 2). The disease

dynamics in a single subpopulation is modeled with the

Susceptible-Latent-Infectious-Recovered(SLIR) compartmental

scheme, where the abbreviation L denotes the latent compartment

which experiences e{1 days on average for an infected person(The

SIR epidemic dynamics discussed at Empirical and Analytical Results

is an reasonable approximation, which actually simplifies the

epidemic evolution to a Markov chain to help us study the issue,

and the value of the reproductive number R0 does not depend on

e, we therefore ignore the compartment L there).

The key parameters determining the spreading rate of infections

are the reproductive number R0 and the generation time Gt. R0 is

defined as the average amount of individuals an ill person infects

during his or her infectious period m{1 in a large fully susceptible

population, and Gt refers to the sum of the latent period e{1 and

the infectious period m{1. In our metapopulation model,

R0~b:m{1. The initial conditions of the disease are defined as

the onset of the outbreak in San Diego-Carlsbad-San Marcos, CA

MSA on April 17th, 2009, as reported by the CDC[79]. Assuming

a short latent period value e{1~1:1 days as indicated by the early

estimates of the pandemic A(H1N1)[80], which is compatible with

Figure 2. The heterogeneity of the USDAN’s infrastructure. (A)
The degree distribution P(k) follows a power law pattern on almost two
decades with an exponent 1.30+0.03. (B) shows that the probability-
rank distribution of the traffic outflux Sj~

X
‘[u

vj‘ , where u denotes
the set of neighbors belonging to the vertex j and the weight vj‘ of a
connection between two vertices (j,‘) is the number of passengers
traveling a given route per day, is skewed and heterogeneously
distributed. (C) shows that the probability-rank distribution of
populations is skewed and heterogeneously distributed.
doi:10.1371/journal.pone.0021197.g002
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other recent studies[81,82], we primarily consider a baseline case

with parameters: Gt~3:6,m{1~2:5 days and R0~1:75, which

are higher than those obtained in the early findings of the

pandemic A(H1N1)[80], but they are the median results in other

subsequent analyses[81,83]. Fixing the latency period to e{1~1:1
days, we also employ a more aggravated baseline scenario with

parameters: Gt~4:1,m{1~3 days and R0~2:3, which are close

to the upper bound results in[81,83–85].

In succession, we characterize the disease spreading pattern by

information entropy, which is customarily applied in information

theory. To quantify the heterogeneity of the epidemic spread at

the U.S. level, we examine the prevalence at each time t,
ij(t)~D

½I �
j (t)=Nj(t), for all subpopulations, and introduce the

normalized vector ~pp½i� with components p
½i�
j (t)~ij(t)=

X
k

ik(t).
Then we measure the level of heterogeneity of the disease

prevalence by quantifying the disorder encoded in ~pp½i� with the

normalized entropy function

H ½i�(t)~{
1

log V

X
j

p
½i�
j (t) log p

½i�
j (t), ð13Þ

which provides an estimation of the geographical heterogeneity of

the disease spread at time t. If the disease is uniformly influencing

all subpopulations(e.g., all prevalences are equivalent), the entropy

reaches its maximum value H ½i�~1. On the other hand, starting

from H ½i�~0, which is the most localized and heterogeneous

situation that just one subpopulation is initially affected by the

disease, H ½i�(t) increases as more subpopulations are influenced,

thus decreasing the level of heterogeneity.

In order to better uncover the origin of the emergence of the scaling

properties, we compare the baseline results with those obtained on a

null model UNI. The UNI model is a homogeneous Erdös-Rényi

random network with the same number of vertices as that of the

USDAN, and the generating regulation is described as follows: for each

pair of vertices (i,j), an edge is independently generated with the

uniform probability pe~SkT=V , where SkT~16:40 is the average

out-degree of the USDAN. Moreover, the weights of the edges and the

populations are uniformly equal to their average values in the USDAN,

respectively. Therefore, the UNI model is completely absent from the

heterogeneity of the airline topology, flux and population data.

Different evolving behaviors between the UNI scenarios and the

baselines(real airline cases) provide a remarkable evidence for the direct

dependence between the scaling toproperties and the heterogeneous

infrastructure. Fig. 3(A,C) show the comparison of the PRD between

the baseline results and the UNI outputs at several given dates sampled

about every 30 days, where each specimen is the median result over all

runs that led to an outbreak at the U.S. level in 100 random Monte

Carlo realizations. In Fig. 3(A), we consider the situation of R0~1:75,

and do observe that the evolution of PRD of the baseline case

experiences two stages: a power law at the initial time and an

exponentially cutoff power law at a larger time. However, the UNI

scenario shows a distinct pattern: as time evolves, the middle part of the

PRD grows more quickly, and displays a peak which obviously deviates

scaling properties. Fig. 3(C) reports the situation of R0~2:3. In this

aggravated instance, the PRD of the UNI scenario actually becomes

rather homogeneous when t is large enough(see the curve of July 17th

of the UNI scenario in Fig. 3(C)). Fig. 3(B,D) present the comparison of

the information entropy profiles between the baseline results and the

UNI outputs when R0~1:75,R0~2:3, respectively. The completely

homogeneous network UNI shows a homogeneous evolution(H ½i�&1)

of the epidemic spread in a long period(see the light cyan areas in

Fig. 3(B,D)), with sharp fallings at both the beginning and the end of the

outbreak. However, we observe distinct results in the baselines, where

H ½i� is significantly smaller than 1 for most of the time, and the long

tails indicate a long lasting heterogeneity of the epidemic prevalence.

These analyses signal that the broad heterogeneity of infrastructure

plays an essential role in the emergence of scalings.

We further explore the properties of the two scalings and their

relation with the baseline case of R0~1:75 in detail. Since each

independent simulation generates a stochastic realization of the

spreading process, we analyze the statistical properties with 100

random Monte Carlo realizations, measure the normalized PRD of

the CCN of infected MSAs/mSAs for each realization that led to an

outbreak at the U.S. level, and report the median result of the PRD

P’us
t (r) of each day. From t~26 to t~39, P’us

t (r) clearly shows a

power law pattern P’us
t (r)*r{h’us , which implies the emergence of

the Zipf’s law(when tv26, just several regions are affected by the

disease). The exponent h’us at each date is estimated by the

maximum likelihood method[22,37], and the temporal evolution

of h’us is reported in the left part of Fig. 4(A). When tw39, P’us
t (r)

gradually becomes an exponentially cutoff power law distribution

P’us
t (r)*r{h’us exp({r=rus’

c ), and the exponent h’us gradually

reduces and reaches a stable value of 0.574 with neglectable

fluctuations when tw126(see Fig. 4(A)). Here we do not show the

error bar since the fitting error on the exponent is far less(10{2)

than the value of h’us by the average of 100 random realizations.

The inset of Fig. 4(A) shows the increase of the number of infected

regions M ’us(t) as time evolves. When tw110, more than 400

subpopulations reports the existence of confirmed cases, thus

M ’us(t) tends to reach its saturation.

Fig. 4(B) shows the relation between M ’us(t) and C’us
T (t)(the

national cumulative number of patients). Since P’us
t (r) displays a

power law of P’us
t (r)~b:rh’us at the early stage of the period

between t~26 and t~39, it is reasonable to deduce the existence

of the Heaps’ law

M ’us(t)~ C’us
T tð Þ:b

� �g’us ,g’us~1=h’us, ð14Þ

according to the analyses in Empirical and Analytical Results. In order

to verify this assumption, we estimate the exponent g’us using

Eq.(14), and report the relevance between h’us and g’us in Table

2(the amount of data in this period is not sufficient to get a

accurate estimation of the exponent g’us with the least square

method). When tw39, though P’us
t (r) gradually deviates the strict

Zipf’s law, the Heaps’ law of the relation between M ’us(t) and

C’us
T (t) still exists till M ’us(t) tends to reach its saturation(see the

middle part in Fig. 4(B)).

Discussion

Zipf’s law and Heaps’ law are two representatives of the scaling

concepts in the study of complexity science. Recently, increasing

evidence of the coexistence of the Zipf’s law and the Heaps’ law

motivates different understandings on the dependence between

these two scalings, which is still hardly been clarified. This

embarrassment derives from the contradiction that the empirical

or simulated materials employed to show the emergence of Zipf’s

law are often finalized and static specimens, while the Heaps’ law

actually describes the evolving characteristics.

In this article, we have identified the relation between the Zipf’s

law and the Heaps’ law from the perspective of coevolution

between the scalings and large-scale spatial epidemic spreading.

We illustrate the temporal evolution of the scalings: the Zipf’s law

and the Heaps’ law are naturally shaped to coexist at the early

stage of the epidemic at both the global and the U.S. levels, while
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the crossover comes with the emergence of their inconsistency at a

larger time before reaching a stable state, where the Heaps’ law

still exists with the disappearance of strict Zipf’s law.

With the U.S. domestic air transportation and demographic

data, we construct a metapopulation model at the U.S. level. The

simulation results predict main empirical findings. Employing

information entropy characterizing the epidemic spreading

pattern, we recognize that the broad heterogeneity of the

infrastructure plays an essential role in the evolution of scaling

emergence. These findings are quite different from the previous

conclusions in the literature. For example, studying a phenome-

nologically self-adaptive complete network, Han et al. claimed that

scaling properties are dependent on the intensity of containment

strategies implemented to restrict the interregional travel[31]. In

[36], Picoli Junior et al. considered a simple stochastic model

based on the multiplicative process[23], and suggested that

seasonality and weather conditions, i.e., temperature and relative

humidity, also dominates the temporal evolution of scalings

because they affect the dynamics of influenza transmission. In

this work, without the help of any specific additional factor, we

directly show that the evolution of scaling emergence is mainly

determined by the contact process underlying disease transmission

on an infrastructure with huge volume and heterogeneous

structure of population flows among different geographic regions.

(The effects of the travel-related containment strategies imple-

mented in real world can be neglected, since the number of

scheduled domestic and international passengers of the U.S. air

transportation only declined in 2009 by 5.3% from 2008[86]. In

fact, the travel restrictions would not be able to significantly slow

down the epidemic spread unless more than 90% of the flight

volume is reduced[58,66,69,70,88].)

In summary, our study suggests that the analysis of large-scale

spatial epidemic spread as a promising new perspective to understand

the temporal evolution of the scalings. The unprecedented amount of

information encoded in the empirical data of pandemic spreading

provides us a rich environment to unveil the intrinsic mechanisms of

scaling emergence. The heterogeneity of epidemic spread uncovered

by the metapopulation model indicates the significance of performing

targeted containment strategies, e.g. vaccination of prior groups,

targeted antiviral prophylaxis, at the early time of a pandemic disease.

Materials and Methods

Data Description
In this article, in order to construct the U.S. domestic air

transportation network, we mainly utilize the ‘‘Air Carrier Traffic and

Capacity Data by On-Flight Market report(December 2009)’’ provided by the

Bureau of Transportation Statistics(BTS) database[76]. This report

contains 12 months’ data covering more than 96% of the entire U.S.

domestic air traffic in 2009, and provides the monthly number of

Figure 3. Comparisons of the scaling properties between the UNI scenarios and the baseline cases. (A,C) present the comparison of the
PRD P’us

t (r) of the CCN of every infected MSA/mSA between the baselines and the UNI scenarios at several given date sampled about every 30 days
when R0~1:75,R0~2:3, respectively. (B,D) present the comparison of the information entropy profiles between the baselines and the UNI results
when R0~1:75,R0~2:3, respectively. Each data in these figures are the median results over all runs that led to an outbreak at the U.S. level in 100
random Monte Carlo realizations.
doi:10.1371/journal.pone.0021197.g003
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passengers, freight and/or mail transported between any two airports

located within the U.S. boundaries and territories, regardless of the

number of stops between them. This BTS report provides a more

accurate solution for studying aviation flows between any two U.S.

airports than other data sources(the attendance and the flight-

connecting information in the OAG flight schedule data are

commonly unknown, while the datasets adopted in [63,64,66,69]

primarily consider the international passengers). In order to study the

epidemic spread in the Continental United States where we have a

good probability to select citizens living and moving in the mainland,

we get rid of the airports as well as the corresponding flight courses

located in Hawaii, and all offshore U.S. territories and possessions

from the BTS report.

In order to obtain the U.S. demographic data, we resort to the

‘‘OMB Bulletin N0. 10–02: Update of Statistical Area Definitions and

Guidance on Their Uses’’[75] provided by the United States Office of

Management and Budget(OMB), and the ‘‘Annual Estimates of the

Population of Metropolitan and Micropolitan Statistical Areas: April 1, 2000 to

July 1, 2009’’[77] provided by the United States Census Bureau(CB).

OMB defines a Metropolitan Statistical Area(MSA)(Micropolitan

Figure 4. The statistical results of the scaling properties of our metapopulation model. (A) Temporal evolution of the estimated exponent
h’us of the normalized distribution P’us

t (r). The inset shows the growing of the number of infected subpopulations M ’us(t) with time t. (B) The relation
between the number of infected subpopulations M’us(t) and the national cumulative confirmed cases C’us

T (t). The shaped areas in the figures
corresponds to their different evolution stages, respectively. Each data in these figures are the median results over all runs that led to an outbreak at
the U.S. level in 100 random Monte Carlo realizations.
doi:10.1371/journal.pone.0021197.g004
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Statistical Area, mSA) as one or more adjacent counties or county

equivalents that have at least one urban core area of at least 50,000

population(10,000 population but less than 50,000), plus adjacent

territory that has a high degree of social and economic integration

with the core. For other regions with at least 5,000 population but less

than 10,000, we use the American FactFinder[78] provided by the

CB to get the demographic information. We do not consider sparsely

populated areas with population less than 5,000, because they are

commonly remote islands, e.g. Block Island in Rhode Island, Sand

Point in Alaska.

Before constructing the metapopulation model, we take into account

the fact that there might be more than one airport in some huge

metropolitan areas. For instance, New York-Northern New Jersey-

Long Island(NY-NJ-PA MSA) has up to six airports(their IATA codes:

JFK, LGA, ISP, EWR, HPN, FRG), Los Angeles-Long Beach-Santa

Ana(CA MSA) has four airports(their IATA codes: LAX, LGB, SNA,

BUR), and Chicago-Joliet-Naperville(IL-IN-WI MSA) has two air-

ports(their IATA codes: MDW, ORD). Assuming a homogeneous

mixing inside each subpopulation, we need to assemble each group of

airports serving the same MSA/mSA, because the mixing within each

given census areas is quite high and cannot be characterized by fine-

grained version of subpopulations for every single airport. We searched

for groups of airports located close to each other and belonged to the

same metropolitan areas, and then manually aggregated the airports of

the same group in a single ‘‘super-hub’’.

The full list of updates of the pandemic A(H1N1) human cases of

different countries is available on the website of Global Alert and

Response(GAR) of World Health Organization(WHO)(WHO web-

site. http://www.who.int/csr/disease/swineflu/updates/en/index.

html. Accessed 2011 May 24). It is worth remarking that WHO

was no longer updating the number of the cumulated confirmed cases

for each country after July 6th, 2009, but changed to report the

number of confirmed cases on the WHO Region level(the Member

States of the World Health Organization(WHO) are grouped into six

regions, including WHO African Region(46 countries), WHO

European Region(53 countries), WHO Eastern Mediterranean

Region(21 countries), WHO Region of the Americas(35 countries),

WHO South-East Asia Region (11 countries), WHO Western Pacific

Region(27 countries). (WHO website. http://www.who.int/about/

regions/en/index.html. Accessed 2011 May 24).

The cumulative number of the laboratory confirmed human cases

of A(H1N1) flu infection of each U.S. state is available at the website

of 2009 A(H1N1) Flu of the Centers for Disease Control and

Prevention(CDC)(CDC website. http://cdc.gov/h1n1flu/updates/.

Accessed 2011 May 24), where the detailed data were started from

April 23, 2009, to July 24, 2009. After July 24, the CDC discontinued

the reporting of individual confirmed cases of A(H1N1), and began to

report the total number of hospitalizations and deaths weekly.

The data of the human cases of global SARS and global Avian

influenza(H5N1) are available at the website of the Disease

covered by GAR of WHO(WHO website. http://www.who.int/

csr/disease/en/. Accessed 2011 May 24).
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Figure S1 The temporal evolution of the estimated
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Figure S2 The temporal evolution of the estimated
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Figure S3 The empirical results of the SARS and avian
influenza(H5N1). (A) shows the normalized probability-rank

distribution of the cumulated confirmed number of every infected

country around the world at several given date sampled about every

four weeks, data provided by the WHO(WHO website. http://www.

who.int/csr/sars/country/en/index.html. Accessed 2011 May 24.).

(B) shows the normalized probability-rank distribution of the

cumulated confirmed number of every infected country around the
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provided by the WHO(WHO website. http://www.who.int/csr/

disease/avian_influenza/country/en/. Accessed 2011 May 24.).

(EPS)
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