
Exosome derived from stem cell:
A promising therapeutics for
wound healing

Hui Lv, Hanxiao Liu, Ting Sun, Han Wang, Xiao Zhang and
Wei Xu*

Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University &
Shandong Provincial Qianfoshan Hospital, Jinan, China

A wound occurs when the epidermis and dermis of the skin are damaged

internally and externally. The traditional wound healing method is

unsatisfactory, which will prolong the treatment time and increase the

treatment cost, which brings economic and psychological burdens to

patients. Therefore, there is an urgent need for a new method to accelerate

wound healing. As a cell-free therapy, exosome derived from stem cell (EdSC)

offers new possibilities for wound healing. EdSC is the smallest extracellular

vesicle secreted by stem cells with diameters of 30–150 nm and a lipid bilayer

structure. Previous studies have found that EdSC can participate in and promote

almost all stages of wound healing, including regulating inflammatory cells;

improving activation of fibroblasts, keratinocytes, and endothelial cells; and

adjusting the ratio of collagen Ⅰ and Ⅲ. We reviewed the relevant knowledge of

wounds; summarized the biogenesis, isolation, and identification of exosomes;

and clarified the pharmacological role of exosomes in promoting wound

healing. This review provides knowledge support for the pharmacological

study of exosomes.
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Introduction

The skin is the largest multifunctional organ in the body. It can prevent bacterial

invasion and resist chemical and physical assaults by forming a strong barrier between the

organism and the environment (Proksch et al., 2008; Wang et al., 2019). A wound is a

disruption of normal anatomic structure and function because of internal and external

breakage of the epidermis and dermis and occurs when the skin is torn and burned and

has pressure ulcer and diabetes ulcer (Reinke and Sorg, 2012; Kanji and Das, 2017; Ayavoo

et al., 2021). A prompt and suitable wound healing is necessary for the repair of functional

tissues as well as disordered structures after an injury (Gurtner et al., 2008; Ayavoo et al.,

2021). Normal wound healing is a sophisticated and dynamic activity that involves many

physiological activities, such as inflammation, cell proliferation, and extracellular matrix

remodeling (Wang et al., 2018). Chronic wounds fail to heal orderly and timely through
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normal healing mechanisms (Velnar et al., 2009), which are

characterized by long healing time and scar hyperplasia.

According to the statistics, chronic wounds affect more than

6 million people. It is anticipated that the number of people with

chronic wounds will increase among our growing elderly and

diabetes population (Powers et al., 2016). Chronic nonhealing

wounds will make patients experience serious pain and become

physically anxious (Järbrink et al., 2017), which would bring

strong pressure on society (Järbrink et al., 2017). Therefore, the

development of novel technologies and practices in the best

practice clinical management of chronic wounds is imperative

to diminish the possible burdens on the health and economy of

the society and optimize the healthcare management for this

prospective silent pandemic.

Conventional wound care methods include wound dressings

(Han and Ceilley, 2017), skin substitutes (Dai et al., 2020), and

growth factors (Shpichka et al., 2019). However, the drawbacks of

these methods such as long healing time, immune rejection, high

cost, and easy infection (Goodarzi et al., 2018; Vu et al., 2021) limit

their application. In recent years, stem cells for wound healing have

become one of their most important tools because of their strong

self-renewal and differentiation ability (Nourian Dehkordi et al.,

2019). Studies have confirmed that the effect of stem cell therapy has

to do with the paracrine effect mediated by stem cell secretory factor

exosomes (Yang J. et al., 2020). The exosome is the smallest

extracellular vesicle, which is released into the extracellular

environment after the fusion of late endosomes with the plasma

membrane (Hessvik and Llorente, 2018). Exosome derived from

stem cell (EdSC) is secreted by stem cells, which can transfer

functional cargos such as proteins, DNA, and RNA from donor

cells to the recipient cells (Nikfarjam et al., 2020; Gurung et al., 2021)

and mediate intercellular communication to promote the activities

of wound healing–related cells, such as fibroblasts and keratinocytes

(Arishe et al., 2021). In this review, we reported the biogenesis,

isolation, and identification of exosomes; elaborated on the

mechanism of exosomes promoting wound healing; and

discussed the clinical trials of exosomes in the treatment of

wound healing.

Representative therapeutics for
wound healing

Wounds are disruption of normal anatomic structure and

function because of internal and external breakage of the

epidermis and dermis (Reinke and Sorg, 2012; Kanji and Das,

2017; Ayavoo et al., 2021) (Figure 1). Current strategies for

wound healing include wound dressings (Han and Ceilley,

2017), skin substitutes (Dai et al., 2020), and growth factors

(Shpichka et al., 2019).

Wound dressings

Wound dressing is a sterile pad that is used in direct contact

with the injury (Tang et al., 2021), which can keep a local moist

environment around the wound, protect the wound from micro-

organisms, and sustain good gas transmission (Kamoun et al.,

2017). Common wound dressings include cotton gauze, human

amniotic membrane, and polysaccharide-based factors (Zeng

et al., 2018). However, traditional wound dressings are limited

in providing a proper sterile environment for wounds (Farahani

and Shafiee, 2021).

Skin substitutes

Skin substitutes are heterogenous biomaterials that can

provide a substitute for the extracellular matrix to accelerate

the healing process of wounds (Auger et al., 2009; Dai et al.,

2020). According to different sources, it can be divided into

allografts of human origin and xenografts of animal origin

(FerreiraCastropaggiaro et al., 2011). This way provides a

physical barrier from bacteria (Wei et al., 2022) and

trauma and can keep a moist microenvironment in the

wound bed (Dai et al., 2020), but allogenic skin grafts have

the risk of immune rejection (Iy and Al-Rubaiy, 2009).

Growth factors

Growth factors can affect the microenvironment in the

wound bed when released. (Dolati et al., 2020), such as

promoting intercellular communication, including endothelial

cells and fibroblasts (Werner and Grose, 2003). Although the

direct application of growth factors is beneficial to wound

healing, it also has certain limitations. For example, under the

action of protein hydrolases, growth factors will degrade quickly

(Golchin et al., 2018).

FIGURE 1
Schematical illustration of a wound. A wound occurs when
the dermis and epidermis of the skin, as well as blood vessels, are
damaged.
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Recent emerging novel tool:
exosome derived from stem cell

Stem cells play an important role in wound healing and skin

regeneration because of their strong self-renewal and

differentiation ability (Mazini et al., 2020; Guillamat-Prats,

2021; Jo et al., 2021). The main tissue sources of stem cells for

wound healing and skin regeneration include fat, bone marrow,

and umbilical cord. In the process of wound treatment, using

stem cells can close the wound early and reduce scar formation

(Isakson et al., 2015; Guillamat-Prats, 2021). Of note, many

studies have reported the effect of mesenchymal stem cells

(MSCs) in wounds and regenerative medicine through their

paracrine factors such as exosomes.

The emergence of EdSC offers new possibilities for wound

healing. As a cell-free therapy, EdSC overcomes the limitations of

stem cells. EdSC therapy is easy to use and time-saving and has

low immune rejection (Ha et al., 2020). Studies have found that

EdSC can induce benefits in nearly all phases of wound healing.

For instance, it can inhibit inflammation, control immune

responses, and promote cell proliferation and angiogenesis

(He et al., 2019; Chen Md et al., 2021).

Biogenesis of exosome derived from stem
cell

Exosomes are a subset of extracellular vesicles that are

secreted by the majority of the types of cell-like dendritic

cells, T cells, stem cells, and a variety of cancer cells (Isaac

et al., 2021). According to the biogenesis and size, extracellular

vesicles can be divided into exosomes, microvesicles, and

apoptotic bodies (Crescitelli et al., 2013; Thakur et al., 2021).

The diameter of exosomes is 30–150 nm, which is the smallest

extracellular vesicle (Raposo and Stoorvogel, 2013). The release

of exosomes occurs via three major steps (Figure 2): 1) Cell

membrane invaginates to form primary endosomes, and the

early endosomes are acidified into late endosomes. 2) The late

endosomes bud inward to form a multivesicular body (MVB)

(Tiwari A. et al., 2021). 3) Exosomes are released into the

extracellular environment after the fusion of MVB and plasma

membrane by exocytosis (Huotari and Helenius, 2011; Van Niel

et al., 2018; Gurunathan et al., 2021). The exosomes secreted by

stem cells such as adipose-derived stem cells and umbilical cord

MSCs are EdSCs (Yu et al., 2014). EdSC contains many

biomolecules of donor stem cells, such as DNA, RNA,

nucleic acid, lipids, metabolites, and cytosolic (Kalluri and

Lebleu, 2020; Gurung et al., 2021). Surrounded by lipid

bilayers, EdSC can regulate cell–cell communication by

transferring a lot of functional biomolecules to recipient cells

(Tran et al., 2020; An et al., 2021; Arishe et al., 2021). As the

main paracrine factors of stem cells, many studies established

that EdSCs are also involved in the immune response (Hodge

et al., 2021; Dai et al., 2022), cancer prevention and treatment

(Jiang et al., 2022; Nik Nabil et al., 2022), antigen presentation

(You et al., 2021; Zheng et al., 2022), angiogenesis (Yang et al.,

2021), drug delivery (Riau et al., 2019; Ding et al., 2022; Rao

et al., 2022), and inflammation (Shen et al., 2021). Multiple

pharmacological effects make EdSC attract much attention in

enhancing skin wound healing (Las Heras et al., 2020; Al

Gailani et al., 2022; Dong et al., 2022; Opoku-Damoah et al.,

2022).

FIGURE 2
Schematical illustration of the exosome biogenesis. (A) the cell membrane forms early endosomes in the form of endocytosis. (B) the early
endosomesmature into MVB containing exosomes after further acidification. (C) the MVB fuses with the cell membrane and releases exosomes into
the extracellular space in the form of exocytosis.

Frontiers in Pharmacology frontiersin.org03

Lv et al. 10.3389/fphar.2022.957771

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.957771


Technologies for isolating exosome
derived from stem cell

The isolation of pure EdSC is critical to understanding its

mechanism and application to wound healing. Conventional

methods include ultracentrifugation-based techniques, size-

based techniques, and immunoaffinity capture-based

techniques (Wu et al., 2019).

(1) For ultracentrifugation-based techniques: Ultracentrifugation-

based techniques are known as the “gold standard” for EdSC

isolation technology (YangD. et al., 2020), which is according to

the difference in size and density of each constituent in mixture

solution (Livshits et al., 2015; Saad et al., 2021).

Ultracentrifugation can be divided into density gradient

ultracentrifugation and differential ultracentrifugation

(Konoshenko et al., 2018; Gurunathan et al., 2019).

Differential ultracentrifugation is easy to operate and low in

cost (Zhao R. et al., 2021). However, compared with differential

centrifugation, the purity of EdSC isolated by density gradient

centrifugation is higher (Shirejini and Inci, 2021; Tarasov et al.,

2021).

(2) For size-based techniques: Size exclusion chromatography is a

typical technology for separation based on the size of exosomes.

The sample containing exosomes flows through a stationary

phase column filled with a porous matrix. The sample

molecules smaller than the pore size can diffuse into the

matrix and need a longer time to pass through the column,

whereas large molecules get eluted faster (Tiwari S. et al., 2021).

This method cannot distinguish EdSC and microvesicles of the

same size, and the yield of exosomes is low. However, it is quick,

easy, and cheap, and the isolated EdSCs are uniform in size and

intact biophysically and functionally (Heydari et al., 2021;

Purghe et al., 2021; Saad et al., 2021).

(3) For immunoaffinity capture-based techniques:

Immunoaffinity-based isolation strategies use antibodies

that were embedded with different materials such as

magnetic beads (Kandimalla et al., 2021) to target the

specific surface antigens of exosomes (Li S. et al., 2021).

Then, antibody-recognized exosomes are captured (Alzhrani

et al., 2021). This method can evidently increase the purity of

EdSC and save time and samples of isolation (Li S. et al.,

2021). However, the defect of this method is that it is not

suitable for the isolation of large sample volumes (Alzhrani

et al., 2021). Moreover, it only works with cell-free samples

and isolates EdSC with low yield (Fu et al., 2019).

Tools for identifying exosome derived
from stem cell

Once EdSCs are isolated, they need to be further quantified

and analyzed (Li S. et al., 2021). According to the International

Society of Extracellular Vesicles, the identification techniques of

EdSCs can be based onmorphology, size, and specific proteins on

the surface of exosomes (Thery et al., 2018), such as electron

microscope, nanoparticle tracking analysis (NTA), and western

blot.

(1) For electron microscope: Electron microscopy techniques

have been widely used to detect the morphology and size of

EdSC (Alzhrani et al., 2021). It mainly includes a cryo-

electron microscope and a transmission electron

microscope (TME). In TME, two electron beams pass

through the samples and are subsequently collected and

magnified (Liu Q. et al., 2021). However, EdSCs show a

saucer-like structure under TME (Zhao R. et al., 2021). Many

researchers attribute this phenomenon to the collapse of

samples caused by drying during sample processing (Cizmar

and Yuana, 2017). Unlike TME, EdSCs detected using a

cryo-electron microscope are round (Jin et al., 2021). This

technique is now widely used since the destruction of the

sample is avoided.

(2) For NTA: NTA can identify the dimension as well as the

concentration of EdSC (Zara et al., 2020). The Brownian

motion of suspended particles and light scattering are the

basic principles of NTA (Pelissier Vatter et al., 2020; Zhao R.

et al., 2021). By viewing in the mind each very small bit

through image observations using either distributed widely

light or gave out fluorescence, NTA measures the Brownian

motion of person EdSC and connects it to a very small bit

size (Carnino et al., 2019; Alzhrani et al., 2021). The

advantages of this method include high detection

sensitivity, easy sample preparation, fast analysis speed,

and suitability for a large number of samples (Zara et al.,

2020; Singh et al., 2021). However, this technique is

accompanied by the problems of poor sensitivity, low

efficiency of sorting targeted EdSC, and poor

reproducibility (Jin et al., 2021).

(3) For western blot: Western blot identifies EdSC based on the

specific proteins on the surface. Specific proteins (such as

CD9, CD81, and CD63) are separated by electrophoresis and

then combined with the corresponding antibodies (Zhao

et al., 2019; Jalaludin et al., 2021). This identification method

has high sensitivity and specificity (Singh et al., 2021).

However, workflow is prolonged (Singh et al., 2021).

A promising therapeutics, exosome
derived from stem cell, for wound
healing

EdSC can be administered to the wound through intravenous

injection and subcutaneous injection (Hu et al., 2016). After

administration of EdSC to the wound site, it can induce benefits

in almost all stages of wound healing, such as inhibiting
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inflammation by controlling immune cells, accelerating wound

closure and angiogenesis by promoting proliferation and

migration of cells, and reducing scar formation by regulating

the proportion of collagen (Li D. et al., 2018; Wei et al., 2021).

This part mainly discusses the delivery systems and mechanisms

of EdSC that promote wound healing (Figure 3).

Exosome derived from stem cell delivery
systems for wound healing

The most common way of administration of EdSC is

intravenous injection. For instance, delivering EdSC to the

wound site of mice through intravenous injection can stimulate

the activities of fibroblasts, to accelerate wound healing (Hu et al.,

2016). Subcutaneous injection is another delivery method of EdSC

for wound healing. Liu et al. injected melatonin-stimulated EdSCs

subcutaneously into the wound and found that EdSCs enhance

diabetic wound healing by regulating the polarization of

macrophage M1 phenotype to M2 phenotype through targeting

PTEN/AKT pathway (Liu et al., 2020). Although the method of

direct injection seems more efficient, it is highly invasive (Kosaka

et al., 2012; Akbari et al., 2020). Although injection is simple and

effective, it can limit EdSC therapeutic function because the

clearance rate of this route is relatively rapid (Takahashi et al.,

2013). In recent years, many researchers have combined EdSC

with hydrogel to prolong the efficacy time and improve the

stability of EdSC, to accelerate wound healing. As a new

dressing, a hydrogel is a three-dimensional structure formed by

physical or chemical crosslinking between hydrophilic polymer

chains (Zhao Y. et al., 2021; Ma andWu, 2022; Safari et al., 2022).

Hydrogels can load EdSC by absorbing a large amount of solution

containing EdSC because of the hydrophilic functional groups in

polymers (Xu et al., 2018; Golchin et al., 2022). Applying the EdSC-

loaded hydrogel dressing to the wound bed, the hydrogel network

can control the release concentration and time of EdSC and

increase the moisture content of the wound (Kim et al., 2017;

Shafei et al., 2020). It maintains a good microenvironment in the

wound bed that supports the activities of loaded cells to accelerate

wound healing (Kim et al., 2017; Riha et al., 2021). Hence,

hydrogels are utilized as desirable therapeutic agents for EdSC

on wound healing.

FIGURE 3
Bioeffects of stem cells derived exosomes on wound healing. (A) EdSC can inhibit inflammation by regulating the number of inflammatory cells
and the polarization of macrophages. (B) EdSC can promote re-epithelialization by increasing the activity of fibroblasts as well as keratinocytes and
activating pathways. (C) EdSC can improve angiogenesis by stimulating the release of angiogenic factors and regulating the activity of endothelial
cells. (D) EdSC can improve tissue remodeling by regulating the ratio of collagen and myofibroblast differentiation.

Frontiers in Pharmacology frontiersin.org05

Lv et al. 10.3389/fphar.2022.957771

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.957771


Inflammation

Inflammation is characterized by removing debris and

preventing infection through activation and recruitment of

resident immune cells, such as neutrophils, mast cells, and

eosinophils (Wang et al., 2018). Accumulating evidence

suggests that EdSCs inhibit the process of inflammation in

various pathways. Studies have confirmed that MSC-exosomes

can block the infiltration of neutrophils and reduce the number

of neutrophils in wounds to prevent excessive inflammation (Li

et al., 2016; Shojaati et al., 2019). In addition, MSC-exosomes

from different sources reduce pro-inflammatory factors such as

IL-1, IL-6, TNF-ɑ, IFN-γ, IL-17, TNF-ɑ, and IL-1β along with

increase anti-inflammatory factors such as IL-10, TSG-6, IL-4,

and TGF-β in wounds to accelerate the inflammatory process

(Liu et al., 2014; Chen et al., 2016; Nojehdehi et al., 2018; Li K. L.

et al., 2021; Shen et al., 2021). In the later stage of inflammatory,

pro-inflammatory M1 macrophages are transformed into anti-

inflammatory M2 macrophages, which can activate fibroblasts,

keratinocytes, and endothelial cells to promote re-

epithelialization as well as angiogenic processes (Rani and

Ritter, 2016; Sorg et al., 2017). For one thing, Xu et al. found

that under LPS stimulation, exosomes from BMSCs resulted in

an increase in M2 macrophage polarization and a decrease in

M1 macrophage polarization (Xu et al., 2019). For another thing,

some researchers have found that stem cell–derived exosomes

from different sources can also induce the polarization of

macrophage M1 phenotype to M2 phenotype through various

biological pathways. For example, exosomes derived from MSCs

stimulated by melatonin have been shown to enhance diabetic

wound healing by targeting the PTEN/AKT pathway (Liu et al.,

2020). Meanwhile, Khare et al. demonstrated that BMSC-derived

exosomes promote the inflammation process by decreasing the

proliferation and activation of B cells (Khare et al., 2018). In

addition, EdSC also can suppress inflammatory T cell

proliferation (Blazquez et al., 2014; Di Trapani et al., 2016;

Monguio-Tortajada et al., 2017), activate T cells into T

regulatory cells (Chen et al., 2016), and increase the number

and proliferation of Tregs (Del Fattore et al., 2015; Chen et al.,

2016; Du et al., 2018; Nojehdehi et al., 2018; Zhang et al., 2018;

Riazifar et al., 2019; Li K. L. et al., 2021). In the immune system,

dendritic cells are the cells that present antigens that can enhance

T cell proliferation (Xie et al., 2020). Reis et al. found that

dendritic cells can be inhibited by exosome treatment, which

indirectly inhibits T cell activity (Reis et al., 2018). Therefore, all

evidence suggests that SCdEs have anti-inflammatory potential

and the ability to prevent excessive inflammation.

Re-epithelialization

In the phase of re-epithelialization, fibroblasts proliferate and

migrate in large numbers and produce and deposit ECM to form

granulation tissues that replace initial fibrin clots and repair

tissue losses (Wilkinson and Hardman, 2020). EdSCs were

readily taken up by fibroblasts that stimulate cell activity to

promote wound healing (Hu et al., 2016; Chen Md et al., 2021;

Tutuianu et al., 2021). As a scaffold, granulation tissue supports

migration as well as the proliferation of wound cells and

promotes new angiogenesis. Meanwhile, fibroblasts can

stimulate keratinocytes by secreting keratinocyte-derived

growth factors, which can undergo a partial

epithelial–mesenchymal transition (Sorg et al., 2017). Then,

keratinocytes proliferate and migrate toward the wound center

until contact with reverse cells stops (Han and Ceilley, 2017).

EdSC can promote wound healing by regulating keratinocyte and

fibroblast characteristics and enhancing re-epithelialization. In

addition, ADSC-derived exosomes enhance keratinocyte

activities by activating Wnt/β-catenin signaling, AKT/HIF-

1alpha signaling, or AKT pathway to promote wound healing

(Ma et al., 2019; Zhang et al., 2020). According to Chen et al.,

highly expressed microRNA-21 in ADSC-exosomes can increase

the MMP-9 expression via the PI3K/AKT to promote the activity

of the keratinocytes (Yang C. et al., 2020). Moreover, ADSC-

exosomes inhibited miR-19b expression via lncRNA H19 (H19)

and activated the Wnt/β-catenin pathway using upregulated

SPY-related high-mobility group box 9 (SOX9), resulting in

enhanced human skin fibroblast function (Miao et al., 2021;

Qian et al., 2021). Human ADSC-exosomes contain lncRNA

MALAT1, which is capable of increasing fibroblast migration in

the dermis (Cooper et al., 2018). Jeffrey et al. suggested that

CD63+ exosomes from BMSCs contribute to the transport

exterior Wnt3a signal to recipient cells significantly, thereby

promoting fibroblast and endothelial functions (Mcbride et al.,

2017). In addition, the study also found that umbilical

cord–derived MSC (uMSC)-exosomes contain microRNAs

such as miR-21, miR-23a, and miR-125b, which can suppress

the differentiation of fibroblasts into myofibroblasts formation

via inhibiting collagen deposition (Mcbride et al., 2017) to

accelerated re-epithelialization (Fang et al., 2016; Li D. et al.,

2021). Taken together, the role of exosomes in promoting re-

epithelialization is mainly achieved by enhancing the function of

keratinocytes and fibroblasts.

Angiogenesis

Angiogenesis is another important process in the

proliferative phase. Promoting angiogenesis is the main factor

for stem cell–derived exosomes to promote wound healing.

Angiogenesis provides oxygen, blood supply, and metabolic

pathways for wound healing. Hypoxic environment after

injury has induced the release of fibroblast growth factor

2 and vascular endothelial growth factor A. This stimulates

vascular endothelial cell proliferation to build new blood

vessels. TutuiaNu et al. demonstrated that exosomes
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stimulated endothelial cell migration via scratch test assay

(Tutuianu et al., 2021). In addition, stimulators of

angiogenesis such as angiopoietin-2 (Ang-2) and endothelin

(ET-1) were found in EdSC (Tutuianu et al., 2021).

Meanwhile, exosomes derived from human uMSCs can

improve angiogenesis by delivering angiopoietin-2 to promote

wound healing (Liu J. et al., 2021). Wounds in the feet of diabetic

rats treated with exosomes from ADSCs overexpressing

Nrf2 exhibited reduced ulcer area, granulation tissue

formation, enhanced growth factor expression, and increased

angiogenesis (Li X. et al., 2018). In recent years, it is reported that

embryonic stem cell–derived exosomes can activate Nrf2 to

improve endothelial senescence (Chen B. et al., 2019). Some

studies have found that stem cell–derived exosomes can transfer

RNA or protein, such as miR-125a (Liang et al., 2016), miR-31

(Kang et al., 2016), miR-21 (An et al., 2019), and DMBT1 protein

(Chen et al., 2018), to promote angiogenesis for wound healing.

Ding et al. demonstrated that exosomes from human BMSCs can

stimulate angiogenesis by activating the PI3K/AKT signaling

pathway in vitro (Ding et al., 2019). Signaling pathways with

similar efficacy include AKT/eNOS pathway (Yu et al., 2020) and

Wnt4/β-Catenin pathway (Zhang et al., 2015). As mentioned

above, stem cell–derived exosomes accelerate wound healing via

promoting angiogenesis.

Remodeling

In the remodeling stage, the primary task is to reduce scar

formation. Uncontrolled accumulation of myofibroblasts that

contract the wound and excessive proportion of collagenⅢ in the

wound lead to scar formation (Zeng and Liu, 2021). In

granulation tissue, collagen Ⅰ replaced collagen Ⅲ gradually to

promote scar-free repair. In recent years, some studies observed

the effects of exosomes on matrix remodeling. Liu et al. injected

exosomes secreted by human ADSCs intravenously into murine

incisional wounds and found that ADSC-exosomes can

reconstruct ECM in wound bed by regulating the proportion

of collagen-like type Ⅲ to type Ⅰ and reduce scar formation by

regulating differentiation of fibroblast (Wang et al., 2017; Wang

et al., 2021). MiR-192-5p expressing exosomes derived from

human ADSCs can mitigate hypertrophic scar fibrosis by

modulating the smad pathway. Its performance in wound

healing is attenuated collagen deposition, transdifferentiation

of fibroblasts to myofibroblasts, and formation of

hypertrophic scars (Li Y. et al., 2021). In addition,

microRNAs enriched in epidermal stem cell–derived exosomes

(EPSC-exos) include miR-16, let-7a, miR-425-5p, and miR-142-

3p (Duan et al., 2020). EPSC-exos-specific microRNAs, such as

miR-425-5p and miR-142-3p, can reduce the TGF-β1 expression
in dermal fibroblasts to inhibit myofibroblast differentiation

(Duan et al., 2020). Furthermore, EdSC suppressed scar

formation by reducing collagen deposition and regulating

inflammation (Jiang et al., 2020). The findings of li et al.

indicated that ADSCs-exosomes facilitate scar-free healing by

enhancing the characteristics of fibroblasts (Hu et al., 2016;

2020). EdSC increased collagen Ⅰ and Ⅲ production through

systemic administration at the initial stage of wound healing,

whereas EdSC may inhibit collagen expression to reduce scar

formation in the late stage (Hu et al., 2016). Taken together,

EdSC can reduce scar formation by regulating the proportion of

collagen.

Clinical applications of exosomes in
wound healing therapy

The therapeutic potential of stem cells and EdSC for wound

treatment have been conducted in various kinds of animal

studies. It demonstrated that stem cell injection not only

effectively suppresses inflammation but also enhances re-

epithelialization and angiogenesis and reduces scar formation,

which can promote the repair of skin wounds through secretion

of stem cell-like EdSC. However, the structure and physiology of

animal skin are different from those of human skin. Therefore, it

is important to understand the mechanism of EdSC in human

skin wounds.

From clinicaltrials.gov, we retrieved several clinical trials

about wound healing treated with MSCs, but only two have

exosomes. Using stem cells to treat burns as early as 2005, this

study demonstrates that BM-MSC therapy is safe, which

promoted angiogenesis and accelerated granulation tissue

formation (Rasulov et al., 2005). Another completed

clinical trial, which began in 2019, used stem

cell–conditioned medium containing exosomes or

microbubbles to treat chronic ulcerative wounds and found

that conditioned medium stem cells can improve skin ulcer

healing as an additional growth factor for the first time

(NCT04134676). In addition, we retrieved a clinical trial

initiated by Kumamoto University—the effect of plasma-

derived exosomes on skin wound healing. Participants’

wounds were treated with plasma rich in exosomes for

28 days to evaluate the effect of exosomes on skin wound

healing (NCT0256526). This study found that compared with

normal subjects, patients with chronic wounds such as skin

ulcers had significantly lower levels of serum exosomes. In

conclusion, the results of existing clinical trials show that

exosomes can accelerate skin wound healing.

Similar to wound treatment, we can retrieve 258 clinical trials

when the key word is exosome, such as for periodontitis

(NCT04270006), melanoma (NCT02310451), chronic low

back pain (NCT04849429), knee osteoarthritis

(NCT05060107), and COVID-19 (NCT05216562). With the

increasing number of clinical trials on the therapeutic effect of

exosomes, it is believed that exosomes will come out as a

therapeutic drug as soon as possible.
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Conclusion

EdSCs are small in size and efficient, have low immune rejection,

and have special physiological and biological functions, which have

significant advantages for the treatment of wounds. With scientific

and technological progress, a deeper understanding of EdSC, and the

treatment of related diseases in the medical field, interdisciplinary

integrationwill complement and enhance the application of EdSC in

various fields. For example, combining the advantages of exosomes

as carriers with advanced design methods of nano-medicine can

establish a nano-treatment platform based on EdSC. In addition,

understanding the interaction between exosomes and other

organelles is helpful to better understand the process of disease

(Chen Q. et al., 2019; Chen et al., 2020). The most difficult

component of the research of exosomes is the inadequate

number of exosomes meeting the application standards. In the

near future, advances in the scaling-up technology for GMP-

compliant exosome manufacturing will enhance the applications

of exosomes for wound healing.
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