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Causal mechanisms and balancing selection
inferred from genetic associations with polycystic
ovary syndrome
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Polycystic ovary syndrome (PCOS) is the most common reproductive disorder in women, yet

there is little consensus regarding its aetiology. Here we perform a genome-wide association

study of PCOS in up to 5,184 self-reported cases of White European ancestry and 82,759

controls, with follow-up in a further B2,000 clinically validated cases and B100,000 con-

trols. We identify six signals for PCOS at genome-wide statistical significance (Po5� 10� 8),

in/near genes ERBB4/HER4, YAP1, THADA, FSHB, RAD50 and KRR1. Variants in/near

three of the four epidermal growth factor receptor genes (ERBB2/HER2, ERBB3/HER3 and

ERBB4/HER4) are associated with PCOS at or near genome-wide significance. Mendelian

randomization analyses indicate causal roles in PCOS aetiology for higher BMI

(P¼ 2.5� 10� 9), higher insulin resistance (P¼6� 10�4) and lower serum sex hormone

binding globulin concentrations (P¼ 5� 10�4). Furthermore, genetic susceptibility to later

menopause is associated with higher PCOS risk (P¼ 1.6� 10� 8) and PCOS-susceptibility

alleles are associated with higher serum anti-Müllerian hormone concentrations in girls

(P¼ 8.9� 10� 5). This large-scale study implicates an aetiological role of the epidermal

growth factor receptors, infers causal mechanisms relevant to clinical management and

prevention, and suggests balancing selection mechanisms involved in PCOS risk.
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P
olycystic ovary syndrome (PCOS) is a common
reproductive disorder in women that is defined by
two out of three criteria: (1) menstrual irregularity

(oligo-ovulation or anovulation), (2) hyperandrogenism (clinical
or biochemical) and (3) polycystic ovarian morphology1,2.
Phenotypic heterogeneity between cases has limited the ability
to make definitive conclusions regarding its aetiology and
pathophysiology. Obesity is associated with PCOS, but its
causal role has yet to be determined3; alternative explanations
include reverse causality (that is, PCOS increases susceptibility to
weight gain) and synergistic but independent roles for obesity and
PCOS in infertility4. Hence, the role of lifestyle modification to
prevent or reverse the reproductive abnormalities of PCOS is
not well established5,6. Furthermore, although there is extensive
evidence linking insulin resistance to PCOS, it is widely
considered that the cellular and molecular mechanisms of
insulin resistance in PCOS differ from those in other common
insulin-resistant states such as obesity and diabetes3,7.
Consequently, the role of insulin sensitisation therapy in PCOS
remains limited to the prevention of cardiovascular disease and
type 2 diabetes (T2D)8,9.

Genetic studies could identify underlying genes and pathways,
and thereby provide insights into the aetiology of PCOS. The
results of candidate gene studies have been inconclusive, in large
part due to underpowered studies, lack of replication and limited
prior understanding of its pathogenesis10. Two, large genome-
wide association studies (GWAS) for PCOS in overlapping Han
Chinese populations identified in total 11 genomic loci11,12.
Although these loci were enriched for candidate genes related to
insulin signalling, steroid hormone regulation and T2D, and
also for genes related to calcium signalling and endocytosis, the
ability to make mechanistic interpretations from those findings
was limited and only a few of these loci have been replicated in
PCOS cases of European ancestry13–17. Furthermore, the striking
paradox of a highly heritable yet common condition that impairs
fertility has led to multiple theories for a balancing advantage of
PCOS susceptibility4. Suggested mechanisms include enhanced
fetal growth and development18 or reproductive advantages, such
as earlier pubertal maturation19 or retarded ovarian ageing
leading to a sustained reproductive lifespan20.

Here we present a large-scale GWAS for PCOS in cases and
controls of Caucasian European ancestry. As well as being the
largest such study to date, we use dense imputation of genotypes
to better implicate the probable genes underlying the association
signals. As the GWAS is based on self-reported PCOS cases, we
present follow-up in additional studies of clinically validated
cases. We find six genetic loci associated with PCOS, highlighting
aetiological roles for the epidermal growth factor receptors
(EGFRs) and for the pituitary-derived gonadotrophins.
Furthermore, using a genetic instrumental variable approach
(i.e., Mendelian randomization)21, we infer causal roles in PCOS
aetiology for higher body mass index (BMI), higher insulin
resistance and lower serum sex hormone binding globulin
(SHBG) concentrations. Finally, we find a robust association
between menopause age-delaying alleles and higher risk of PCOS,
suggesting a potential evolutionary advantage for PCOS genetic
susceptibility.

Results
Genome-wide association signals for PCOS. Six independent
common signals reach genome-wide significance (logistic
regression Po1� 10� 8) for association with PCOS in the meta-
analysis of discovery and follow-up studies (Table 1, Fig. 1 and
Supplementary Fig. 1); four are novel signals and two represent
refinements of previously reported signals at the YAP1 and

THADA loci. All signals show at least nominally significant
(Po0.05) directionally concordant associations in the follow-up
studies of clinically validated PCOS cases, with no significant
heterogeneity by PCOS case definition (Supplementary Table 2).

Our strongest novel PCOS signal (rs1351592, odds ratio: 1.18
(1.13–1.23), P¼ 1.2� 10� 12) is intronic in ERBB4/HER4, which
encodes a member of the EGFR family. Notably, we find further
sub-genome-wide significant signals in/near genes encoding
two of the other three EGFR family members: rs7312770
(P¼ 2.1� 10� 7) in/near ERBB3/HER3 is correlated (r2¼ 0.40)
with the reported PCOS signal (rs705702) at 12q13.2 and
rs7218361 (P¼ 9.6� 10� 7) is a low-frequency variant B200 kb
downstream of ERRB2/HER2.

Our second strongest novel signal (rs11031006, P¼ 1.3� 10� 9)
lies near FSHB, which encodes the hormone-specific b-subunit of
follicle stimulating hormone (FSH), a key promoter of ovarian
follicle growth and oestrogen production. Interestingly, in
deCODE samples, the PCOS-susceptibility allele at rs11031006
is also robustly associated with lower circulating FSH con-
centrations (b¼ � 0.089 s.d. per allele, P¼ 9.2� 10� 10,
n¼ 15,586 women), higher luteinizing hormone (LH) concentra-
tions (b¼ 0.115 s.d. per allele, P¼ 3.6� 10� 15, n¼ 17,469
women) and higher LH/FSH ratio (b¼ 0.272 s.d. per allele,
P¼ 5.94� 10� 68, n¼ 14,310 women). This variant represents
the strongest association signal for FSH, LH and LH/FSH ratio at
this FSHB locus. Notably, a variant rs12294144 correlated with
the PCOS risk allele is reportedly associated with later age at
menopause22. Furthermore, FSH signalling was implicated in
PCOS in the Han Chinese GWAS study through association with
the FSH receptor gene FSHR12. However, that signal is only
weakly associated with PCOS in our data (Table 2, rs2268361,
P¼ 1.6� 10� 2).

Our third novel signal (rs13164856, P¼ 3.5� 10� 9) is near
RAD50, which encodes a protein involved in DNA double-strand
break repair. Fourth, rs1275468 (P¼ 1.9� 10� 8) indicates a
novel PCOS signal near KRR1, which encodes a ribosome
assembly factor.

Previously reported PCOS loci. Of the 11 PCOS signals
reported in Han Chinese11,12, we observe directionally consistent
associations for 10 variants, 6 of which are at least nominally
associated (Po0.05) in our discovery GWAS samples (Table 2).
Effect estimates are consistently smaller in our data, and in
several instances the risk allele frequency is markedly different
between these Han Chinese and white European populations.
At three reported Han Chinese PCOS loci (YAP1, THADA and
DENND1A), we observe different lead signals in our white
European samples (Table 1). Our lead YAP1 signal, rs11225154
intronic to YAP1, is highly correlated with the reported YAP1
signal (r2¼ 0.74 with rs1894116) and reaches genome-wide
significance in our combined discovery and follow-up
analysis (P¼ 7.6� 10� 11). Our lead THADA signal, rs7563201
intronic to THADA, also reaches genome-wide significance
(P¼ 3.3� 10� 10) but is only weakly correlated with the
reported THADA signal (r2¼ 0.08 with rs13429458). Our lead
DENND1A signal (rs10760321) is also weakly correlated with the
reported DENND1A signal (r2¼ 0.02 with rs2479106) but was
not confirmed in our follow-up samples. These findings probably
reflect differences in allelic structure between Chinese and
European ancestry groups, as has been concluded by other
investigators15, and limit the potential for conventional meta-
analysis across these populations.

Mendelian randomization analyses. Our Mendelian randomi-
zation analyses indicate causal effects on PCOS aetiology for
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higher BMI (odds ratios: 1.90 per þ 1 s.d., 95% confidence
interval: 1.55–2.34, P¼ 2.5� 10� 9), higher insulin resistance
(1.11 per þ 1 s.d., 1.05–1.19, P¼ 6� 10� 4) and lower circulating
SHBG concentrations (0.86 per þ 1 s.d., 0.78–0.93, P¼ 5� 10� 4)
(Table 3). Furthermore, the multiple allele score for menopausal
age is positively associated with PCOS risk (1.60 per þ 1 s.d.,
1.35–1.91, P¼ 1.6� 10� 8), indicating a common biological
mechanism that promotes both PCOS susceptibility and later
menopause. Our sensitivity analyses show apparent dose–
response effects across individual single-nucleotide polymorph-
isms (SNPs) in each of these scores (Fig. 2) and Funnel plots show
no SNPs with outlier effects (Supplementary Fig. 3). In contrast,
we find no evidence for causal effects on PCOS for birth weight
(P¼ 0.22) or age at menarche (P¼ 0.23).

Other biological mechanisms associated with PCOS. By
systematic testing of all GWAS SNPs across all known biological
pathways using meta-analysis gene-set enrichment of variant
associations (MAGENTA) software, we find one further
pathway (ATP-binding cassette transporters) that is enriched
for PCOS-associated variants. This pathway includes the
genome-wide significant signal at the DNA repair gene RAD50
(rs13164856) and 37 other genes.

The PCOS-susceptibility alleles at our six PCOS loci are also
consistently associated with higher anti-Mullerian hormone
(AMH) concentrations in girls (cumulative score: P¼ 8.9� 10� 5)
(Supplementary Fig. 3). However, none of these six genome-wide
significant PCOS loci (nor any of the four suggestive loci) overlap
with reported signals of positive selection and we can find no
evidence of polygenic selection on the set of six loci considered
together (P¼ 0.22) (Supplementary Note). Furthermore, these
PCOS SNPs (or their proxies) are not associated with BMI
(in aggregate: P¼ 0.22).

Discussion
This large-scale genetic study reveals a number of insights into
the aetiology and pathophysiology of PCOS. The findings from
our Mendelian randomization analyses have perhaps most
immediate relevance for treatment and prevention21, as these
infer causal roles of greater BMI and insulin resistance. The role
of interventions aimed at these targets in PCOS is debated.
A recent US Endocrine Society Task Force found evidence that
lifestyle modification reduces fasting blood glucose and insulin
concentrations in women with PCOS but has uncertain effects on
the key clinical features of PCOS, including reproductive
outcomes5. The same conclusion was reached for the use of the

Table 1 | Genetic variants associated with risk of PCOS.

Region Gene SNP Alleles* Discovery
(self-reported)

Follow-up (2003
Rotterdam criteria)

Follow-up
(NIH criteria)

Combinedw

Effect P-values Effect P-values Effect P-values Effect P-values

Novel loci
2q34 ERBB4 rs1351592 G/C/0.17 1.16 (1.10–1.22) 3.0E�08 1.16 (1.06–1.27) 1.2E�03 1.34 (1.15–1.56) 1.6E�04 1.18 (1.13–1.23) 1.2E� 12
11q22.1 YAP1z rs11225154 A/G/0.09 1.16 (1.08–1.24) 2.6E�05 1.37 (1.23–1.54) 5.6E�08 1.24 (1.02–1.51) 3.1E�02 1.22 (1.15–1.29) 7.6E� 11
2p21 THADAy rs7563201 G/A/0.54 1.11 (1.07–1.16) 1.1E�06 1.13 (1.05–1.22) 1.2E�03 1.19 (1.05–1.36) 6.2E�03 1.13 (1.09–1.17) 3.3E� 10
11p14.1 FSHB rs11031006 A/G/0.14 1.11 (1.05–1.18) 2.9E�04 1.25 (1.14–1.37) 4.4E�06 1.29 (1.11–1.52) 1.4E�03 1.16 (1.11–1.22) 1.3E�09
5q31.1 RAD50 rs13164856 T/C/0.73 1.13 (1.07–1.18) 8.8E�07 1.15 (1.06–1.25) 8.0E�04 1.15 (1.00–1.32) 5.4E�02 1.13 (1.09–1.18) 3.5E�09
12q21.2 KRR1 rs1275468 C/T/0.75 1.13 (1.08–1.19) 8.0E�07 1.12 (1.03–1.22) 1.1E�02 1.13 (0.98–1.31) 9.5E�02 1.13 (1.08–1.18) 1.9E�08

Suggestive loci
12q13.2 ERBB3|| rs7312770 C/T/0.47 1.11 (1.07–1.16) 9.0E�07 1.04 (0.97–1.12) 2.6E�01 1.15 (1.02–1.30) 2.4E�02 1.1 (1.06–1.15) 2.1E�07
17q12 ERBB2 rs7218361 A/G/0.04 1.24 (1.12–1.37) 2.9E�05 1.17 (0.95–1.44) 1.5E�01 1.36 (1.00–1.85) 4.7E�02 1.25 (1.14–1.37) 9.6E�07
9q33.3 DENND1Az rs10760321 A/G/0.71 1.13 (1.07–1.19) 2.7E�06 1.07 (0.98–1.16) 1.5E�01 1.09 (0.94–1.26) 2.4E�01 1.11 (1.07–1.16) 1.4E�06

Unconfirmed
8q23.3 TRPS1 rs7012056 T/C/0.98 1.99 (1.5–2.6) 2.3E�07 1.15 (0.8–1.65) 4.4E�01 0.88 (0.48–1.61) 6.8E�01 1.55 (1.24–1.94) 1.4E�04

PCOS, polycystic ovary syndrome; SNP, single-nucleotide polymorphism.
*Effect allele (risk increasing)/other allele/effect allele frequency.
wThe two follow-up arms contain some overlapping cases (that is, some cases satisfy both clinical criteria); however, only unique cases were used in the combined meta-analysis.
zReported locus (R2 0.47).
yReported locus (R2 0.08).
||Reported locus (R2 0.40).
zReported locus (R2 0.02).
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Figure 1 | Manhattan and QQ plots displaying PCOS genome-wide association results. Results shown are from discovery phase only.
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insulin sensitizer Metformin in PCOS5,23. Conversely, a recent
non-quantitative synthesis of dietary interventions positively
concluded that weight-reducing diets have clinical benefits in
PCOS24. The limitations of Mendelian randomization analyses
are well-recognized; its major assumptions regarding lack of
heterogeneity and pleiotropy are supported by the consistency of
our findings across individual SNPs. Furthermore, the reported
inverse association between the insulin resistance genetic score
and BMI25 might attenuate our observed positive univariate
effects of these traits on PCOS risk. Other uncertainties remain,
such as possible canalization and age-specific effects. Our findings
should encourage the development and testing of more effective
interventions to lower BMI and insulin resistance in women with
PCOS.

Our findings also infer a causal protective role of SHBG for
PCOS, as has been reported for T2D26. SHBG regulates the
bioavailability of testosterone. Therefore, genetic variants that
lower circulating SHBG concentrations might directly modify the
key hyperandrogenic phenotype of PCOS and also the related
adverse metabolic profile27. Circulating SHBG concentrations rise
markedly with the introduction of combined oral contraceptive
pills, which are used by many women with PCOS for treatment of

menstrual irregularity, acne and hirsutism28; however, there are
as yet no therapeutic agents that specifically target SHBG
concentrations or activity. Despite the lack of any overlap
between SNPs used in the SHBG and insulin resistance scores, it
remains possible that these traits might lie on the same causal
pathway, in which case joint interventions might have synergistic
effects.

Our novel genetic signals indicate a major role of the EGFRs in
the pathogenesis of PCOS. There are four members of the EGFR
family: EGFR, ERBB2, ERBB3 and ERBB4 (the last three are also
known as the human epidermal receptors: HER-2, HER-3 and
HER-4)29. These receptors form ligand-activated homo- or
heterodimers with each other, which activates tyrosine kinase,
and in cancer cells result in cell proliferation, blocking of
apoptosis, activation of invasion and metastasis, and stimulation
of neovascularization. EGFR signalling mediates LH-induced
steroidogenesis, which in turn promotes late follicular
maturation30,31. EGFRs are overexpressed in ovarian cancer32,33

and repression of ERBB2/HER-2 determines the breast cancer
response to the oestrogen receptor inhibitor tamoxifen34. Small
molecules or monoclonal antibodies that block EGFR activation
are effective cancer chemotherapy agents29. Variable reported

Table 2 | PCOS associations in white Europeans for PCOS variants previously reported in Han Chinese.

Region Genes SNP Risk allele Chinese White Europeans*

RAF P-values OR RAF OR P-values

11q22.1 YAP1 rs1894116 G 0.19 1.0E� 22 1.27 0.09 1.14 (1.06–1.22) 3.2E�04
12q13.2 RAB5B/SUOX rs705702 G 0.25 9.0E� 26 1.27 0.32 1.08 (1.03–1.12) 9.4E�04
2p21 THADA rs13429458 A 0.91 4.0E� 13 1.49 0.88 1.10 (1.03–1.17) 4.8E�03
16q12.1 TOX3 rs4784165 G 0.33 4.0E� 11 1.15 0.26 1.07 (1.02–1.12) 6.6E�03
2p16.3 FSHR rs2268361 C 0.50 1.0E� 12 1.15 0.36 1.05 (1.01–1.1) 1.6E�02
12q14.3 HMGA2 rs2272046 A 0.91 2.0E� 21 1.43 0.98 1.18 (1.02–1.37) 2.1E�02
19p13.2 INSR rs2059807 G 0.30 1.0E�08 1.14 0.61 0.97 (0.93–1.01) 1.0E�01
2p16.3 LHCGR rs13405728 A 0.76 4.0E�09 1.35 0.95 1.07 (0.97–1.17) 1.6E�01
20q13.2 SUMO1P1 rs6022786 A 0.34 2.0E�09 1.13 0.43 1.01 (0.97–1.06) 5.2E�01
9q33.3 DENND1A rs2479106 G 0.22 5.0E� 10 1.35 0.30 1.01 (0.97–1.06) 6.2E�01
9q22.32 C9orf3 rs3802457 G 0.90 5.0E� 14 1.3 0.98 1.03 (0.9–1.18) 6.2E�01

OR, odds ratio; PCOS, polycystic ovary syndrome; RAF, risk allele frequency; SNP, single-nucleotide polymorphism.
*Estimates are from our discovery samples.

Table 3 | Mendelian randomization analyses for PCOS risk.

Trait 23andMe study Rotterdam study Combined

Effect* P-values Effect* P-values Effect* P-valuesw Pheterogeneity

BMI 2.05 (1.63–2.57) 5.6E� 10 1.20 (0.71–2.03) 0.49 1.90 (1.55–2.34) 2.5E�09 0.07
Age at menopause 1.60 (1.35–1.91) 1.3E�07 1.57 (1.02–2.43) 0.04 1.60 (1.35–1.91) 1.5E�08 0.94
SHBG 0.86 (0.79–0.95) 0.002 0.81 (0.64–1.03) 0.08 0.86 (0.78–0.93) 5.4E�04 0.62
Insulin resistance 1.11 (1.04–1.19) 0.003 1.16 (0.99–1.36) 0.06 1.11 (1.05–1.19) 5.6E�04 0.59
DHEAS 1.11 (0.99–1.23) 0.06 — — — — —
HDL cholesterol 0.37 (0.13–1.11) 0.08 — — — — —
Insulin secretion Higher risk 0.19 — — — — —
Birth weight Higher risk 0.22 — — — — —
Age at menarchez 0.91 (0.79–1.06) 0.23 — — — — —
Diastolic BP 1.01 (0.99–1.03) 0.24 — — — — —
LDL cholesterol 1.04 (0.94–1.16) 0.43 — — — — —
Adult height Lower risk 0.51 — — — — —
Triglycerides 1.03 (0.90–1.18) 0.65 — — — — —
Systolic BP 1.05 (0.82–1.34) 0.68 — — — — —
Total cholesterol 0.98 (0.88–1.09) 0.71 — — — — —

BMI, body mass index; BP, blood pressure; DHEAS, dehydroepiandrosterone sulphate; HDL, high-density lipoprotein; LDL, low-protein lipoprotein; PCOS, polycystic ovary syndrome; SHBG, sex hormone
binding globulin.
*Effect estimates are odds ratios for PCOS per 1 s.d. increase (based on s.d. from the genome-wide studies, approximated in the case of SHBG and DHEAS, as the discovery analysis used natural log units)
in the candidate trait. For some traits, insufficient reported data were available to calculate an effect estimate, and in these cases only the direction of effect on PCOS risk is stated.
wAssociations are displayed that passed the multiple test corrected P-value threshold (0.05/15¼0.0033).
zAny SNPs reported at genome-wide significance for adult BMI were omitted from this score.
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associations between PCOS and risks of breast, endometrial and
ovarian cancers are limited by small sample sizes and
confounding due to related risk factors such as nulliparity,
infertility and its treatment, anovulation and obesity3. Our
findings provide a possible genetic link between PCOS
and cancer risk, and also suggest potential ovary-targeted
pharmaceutical interventions for treatment of PCOS.

The novel PCOS locus at FSHB represents striking biological
complementarity to the locus at the FSH receptor gene FSHR
reported in Han Chinese12. However, the impact of that FSHR
variant on FSH receptor activity is unclear and that locus shows
only nominal association in our data, likely to be due to
population differences in genetic architecture. Non-synonymous
variants in FSHR that confer lower FSH receptor activity are
inconsistently associated with PCOS35. We show that the PCOS-
susceptibility allele at FSHB is robustly associated with a higher
LH/FSH ratio, which is the hallmark biochemical PCOS trait that
promotes ovarian androgen production and arrests follicular
growth36. Although the high LH/FSH ratio observed in PCOS
might be exacerbated by central feedback effects of peripheral
hyperandrogenemia37, our findings establish a co-primary
neuroendocrine pathogenesis of PCOS.

Our findings inform the long-standing debate regarding the
evolutionary paradox of PCOS as a common yet highly heritable
disorder characterized by infertility. We cannot find evidence for
recent, strong positive selection of PCOS-susceptibility alleles;
however, available tests may be insensitive to detect signals
that affect complex traits38,39. The robust association between
menopause age-raising alleles and PCOS susceptibility implicates
a common mechanism that retards ovarian ageing. GWAS studies
for age at menopause has highlighted a key role for DNA repair
pathways22,40 and their putative relevance to PCOS is supported
by the novel PCOS locus near to RAD50, a gene that is involved
in DNA double-strand break repair and is mutated in the

Nijmegen breakage syndrome-like disorder. Anovulation in
women with PCOS is characterized by arrested follicle growth
at the early antral stage, when AMH secretion from follicular
granulosa cells is highest. Higher AMH concentrations
consequently inhibit the recruitment of further primordial
follicles, possibly representing more efficient use of the
primordial ovarian pool20. This mechanism could possibly
explain the consistent association we find between PCOS-
susceptibility alleles and higher serum AMH concentrations,
and might be a further mechanism towards slower ovarian
ageing. Alternatively, higher AMH concentrations could indicate
a larger ovarian primordial follicle pool size4. Such evolutionary
debates are not just interesting arguments, but may be eventually
informative to clinical practice. The anticipated persistence of
reproductive lifespan may inform the use of artificial reproductive
therapies or long-term lifestyle intervention strategies in women
with PCOS.

Progress in identifying PCOS-susceptibility variants has been
slow compared with other complex diseases, in part due to the
relatively small collections of cases10. We demonstrate here, as
previously reported for other traits41, that online self-reports of
disease status is a highly efficient study design to identify large
numbers of disease cases, providing sufficient power to identify
robust genetic signals for PCOS. This is evident by our
confirmation of previously identified PCOS signals in Han
Chinese, by the highly consistent validation of our novel loci in
cases defined by stringent clinical criteria and by the lack of
heterogeneity in variant effect sizes between these case groups.
That said, it remains important to confirm any findings of
self-reported case studies in clinically validated cases.

The range of biological mechanisms that we can currently test
by Mendelian randomization is limited by available GWAS
findings. In particular, future analyses are needed to investigate
the roles of androgen production and activity once robust genetic
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Figure 2 | Scatter plots of the associations between four significant intermediate traits. Panels show (a) BMI, (b) age at menopause, (c) SHBG and

(d) insulin resistance, in each case showing the associations between the SNP and the trait of interest, and the odds ratio for PCOS for that SNP,
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markers for those traits are identified. Indeed, we anticipate that
future genetic instruments will allow wider and deeper testing of
causal biological pathways. Although such analyses cannot infer
possible developmental stage-specific effects of these pathways,
the findings should encourage experimental studies that target
these pathways, both to confirm the causal inferences and also to
inform effective intervention and preventive strategies.

In conclusion, this genetic study reveals new biological and
evolutionary insights into the pathogenesis of PCOS, including a
major role of EGFRs, a co-primary neuroendocrine pathogenesis
and genetic mechanisms towards slower ovarian ageing. Further-
more, the causal inferences from our Mendelian randomization
analyses should support future efforts to develop and test effective
interventions, to reduce body weight and insulin resistance in the
treatment and prevention of PCOS.

Methods
Discovery phase. Genome-wide SNP data were available on 5,184 women of
White European ancestry with self-reported PCOS and 82,759 controls from the
23andMe study (see Supplementary Table 1 and Supplementary Note for details of
the 23andMe study). Imputation was performed against the 1000 Genomes
reference (March 2012 v3 release), yielding B9 M variants that passed imputation
and minor allele frequency criteria. A logistic regression model adjusting for
age- and study-specific principal components was performed assuming an additive
allelic model including covariates for age and the top five principal components to
account for residual population structure. Test statistics were further adjusted for
the observed l-value 1.041. 23andMe participants provided informed consent to
take part in this research under a protocol approved by Ethical and Independent
Review Services, an accredited institutional review board.

Follow-up studies. From our discovery GWAS phase results, we selected for
follow-up in additional studies: (a) all signals that showed at least suggestive
associations (Po1� 10� 6) with PCOS (N¼ 5 signals, where a signal is defined by
the most significant SNP within a 1-Mb window; Table 1); (b) all possible signals
for PCOS (Po1� 10� 5) located within 500 kb of signals previously reported in
Han Chinese (N¼ 3 signals; in/near YAP1, THADA and DENND1A); and
(c) possible signals for PCOS near to biological candidate genes (N¼ 2 signals;
in/near ERBB2/HER2 and FSHB). Follow-up was performed in three independent
studies of clinically validated PCOS cases and control women: deCODE, Rotterdam
and Boston (see Supplementary Table 1 and Supplementary Note for details and
parameters of follow-up studies). Separate follow-up analyses were performed
using PCOS case definitions either by Rotterdam 2003 criteria1 (1,875 cases from
Rotterdam and deCODE) or by NIH criteria2 (861 cases from Boston and
deCODE). Final association test statistics were produced from a combined
meta-analysis of 7,229 cases and 181,645 controls across non-overlapping
discovery and follow-up (2,045 cases and 98,886 controls) samples; as the two
PCOS groups in deCODE include overlapping cases, only deCODE cases defined
by NIH criteria were included in this combined meta-analysis. The follow-up
studies were approved by local research ethics committees and all participants
provided informed consent.

Mendelian randomization analyses. Mendelian randomization is an analytical
method to infer the unconfounded causal relationship between an exposure trait
and an outcome, using genetic variants that are associated with the exposure
trait and do not influence the outcome by other unrelated biological pathways
(‘pleitropy’)21. In both the 23andMe and Rotterdam studies, we approximated
weighted multiple allele scores (single variables summarizing multiple genetic
variants associated with a risk factor, as described by Dastani et al.42), to represent
genetic instrumental variables for 15 traits (birth weight, BMI, height, age at
menarche, age at menopause, dehydroepiandrosterone sulphate, SHBG, total
cholesterol, high-density lipoprotein cholesterol, low-protein lipoprotein
cholesterol, triglycerides, systolic and diastolic blood pressure, insulin resistance
and insulin secretion) based on reported GWAS signals for those traits. Each score
was calibrated to a 1-s.d. change in the exposure trait, using the published effect
estimates of individual alleles on those traits in the replication stages of those
GWAS reports (Supplementary Table 3). To account for the multiple traits tested,
we set a corrected P-value threshold (0.05/15¼ 0.0033) to indicate statistically
significant associations. To test for pleiotropy, which can invalidate inferences from
Mendelian randomization, we performed sensitivity analyses to examine the
consistency in causal estimates derived from individual SNPs.

Serum AMH concentrations. The cumulative influence of PCOS-associated
variants on childhood serum AMH concentrations, a marker of ovarian primordial
follicle pool size4, was estimated by analysis of data in 1,455 girls (aged 15 years)

from the ALSPAC study43. Serum AMH concentrations (ng ml� 1) were natural
log transformed before analysis in an additive linear regression framework.

Tests for positive selection. Allelic variants that increase the reproductive fitness
of their carriers should become more prevalent in the population. The resulting
genomic characteristics of strong recent positive selection include low haplotype
diversity, high linkage disequilibrium and marked shifts in allele frequency between
populations. However, there is often poor consistency between signals identified
from available tests38,39. We therefore looked for evidence of selection at the ten
PCOS loci in Table 1, using various strategies.

We investigated whether any of the lead SNPs overlapped with signals of
positive selection identified in 1000 Genomes data using the composite of multiple
signals test44. None of the lead PCOS SNPs lies in any of the 424 non-overlapping
regions with evidence of positive selection, a total of 19 Mb of sequence (http://
www.broadinstitute.org/mpg/cmsviewer/download/cms_localized_regions_
062712.txt). Three of the ten signals lie within 1 Mb of one of these regions (a total
of 726 Mb of sequence), which is not more than expected by chance (P¼ 0.56
assuming an accessible genome length of 2.6 Gb).

We tested whether the lead PCOS SNPs are more differentiated across
populations compared to with randomly chosen loci, using the test described by
Berg and Coop45, and Omni chip data from phase 1 of the 1000 Genomes Project46

as a reference panel (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_
results/supporting/omni_haplotypes/). As only two of the ten PCOS SNPs were
genotyped by the Omni chip, we added the remaining eight SNPs from the
sequence data. Using 10,000 bootstrap replicates of SNP frequency matched in
20 bins, we find no evidence of polygenic selection in European (P¼ 0.38),
Asian (P¼ 0.37), or combined European and Asian (P¼ 0.42) populations.

We also tested PCOS susceptibility variants with minor allele frequency 40.2
using the integrated haplotype score38, which measures the difference in haplotype
homozygosity associated with the ancestral and derived alleles, and the derived
intra-allelic nucleotide diversity test38, which measures the differences in
nucleotide diversity associated with the ancestral and derived alleles. We find
no significant test statistics (Po0.01).

Pathway analyses. MAGENTA (https://www.broadinstitute.org/mpg/magenta/)
was used to test for enrichment of genome-wide SNP associations with PCOS
in pre-defined biological pathways (Gene Ontology, PANTHER, KEGG and
Ingenuity) using the full discovery data set. MAGENTA implements a gene-set
enrichment analysis-based approach, where each gene throughout the genome is
mapped to a single index SNP with the lowest P-value within a 110-kb upstream
and 40-kb downstream window. This P-value, representing a gene score, is then
corrected for confounding factors such as gene size, SNP density and linkage
disequilibrium (LD)-related properties in a regression model. Genes within the
human leukocyte antigen region were excluded from analysis, owing to difficulties
in accounting for gene density and LD patterns. Each gene is then ranked by its
adjusted gene score. At a given significance threshold (95th or 75th percentiles of
all gene scores), the observed number of gene scores in a given pathway, with a
ranked score above the specified threshold percentile, is calculated. This observed
statistic is then compared with 1,000,000 randomly permuted pathways of identical
size. This generates an empirical gene-set enrichment analysis P-value for each
pathway. In total, 2,529 pathways were tested for enrichment of multiple modest
associations with PCOS. Significant pathways are indicated by a false discovery rate
o0.05 in either model (95th or 75th percentiles).
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