
TECHNOLOGY AND CODE
published: 17 June 2022

doi: 10.3389/fninf.2022.882552

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 882552

Edited by:

Felix Schürmann,

Swiss Federal Institute of Technology

Lausanne, Switzerland

Reviewed by:

Michael Hines,

Yale University, United States

Nathan Gouwens,

Allen Institute for Brain Science,

United States

Werner Van Geit,

Swiss Federal Institute of Technology

Lausanne, Switzerland

*Correspondence:

Alexander Ladd

zladd@berkeley.edu

Roy Ben-Shalom

rbenshalom@ucdavis.edu

Received: 23 February 2022

Accepted: 18 May 2022

Published: 17 June 2022

Citation:

Ladd A, Kim KG, Balewski J,

Bouchard K and Ben-Shalom R

(2022) Scaling and Benchmarking an

Evolutionary Algorithm for

Constructing Biophysical Neuronal

Models.

Front. Neuroinform. 16:882552.

doi: 10.3389/fninf.2022.882552

Scaling and Benchmarking an
Evolutionary Algorithm for
Constructing Biophysical Neuronal
Models
Alexander Ladd 1*, Kyung Geun Kim 1, Jan Balewski 2, Kristofer Bouchard 3,4 and

Roy Ben-Shalom 5*

1 Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States, 2NERSC,

Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 3Helen Wills Neuroscience Institute & Redwood Center

for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA, United States, 4 Scientific Data Division and

Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States,
5Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States

Single neuron models are fundamental for computational modeling of the brain’s

neuronal networks, and understanding how ion channel dynamics mediate neural

function. A challenge in defining such models is determining biophysically realistic

channel distributions. Here, we present an efficient, highly parallel evolutionary algorithm

for developing such models, named NeuroGPU-EA. NeuroGPU-EA uses CPUs and

GPUs concurrently to simulate and evaluate neuron membrane potentials with respect

to multiple stimuli. We demonstrate a logarithmic cost for scaling the stimuli used

in the fitting procedure. NeuroGPU-EA outperforms the typically used CPU based

evolutionary algorithm by a factor of 10 on a series of scaling benchmarks. We

report observed performance bottlenecks and propose mitigation strategies. Finally,

we also discuss the potential of this method for efficient simulation and evaluation of

electrophysiological waveforms.

Keywords: biophysical neuron model, high performance computing, evolutionary algorithms, non-convex

optimization, strong scaling, weak scaling, electrophysiology

1. INTRODUCTION

Since Hodgkin and Huxley’s seminal work on recording and mathematically formulating the
activity of the giant squid axon (Hodgkin and Huxley, 1952), great progress has been made
in understanding the electrical properties of single neuron models. The development of the
patch-clamp technique (Sakmann and Neher, 1984), which enabled recording neurons in finer
resolution, and the work by Rall (1959, 1962, 1964) on modeling the cable properties of
dendritic trees have been the basis of extensive research in numerical methods for compartmental
neuron models (Rall, 2009). The formulation of electrical properties of neurons in digital
computers (Hines, 1984; Carnevale and Hines, 2006; Bower and Beeman, 2012) enabled simulating
experimental observation in computational models (Traub et al., 1991, 2005; De Schutter and
Bower, 1994; Mainen et al., 1995). These advancements have brought the field of computational
neuroscience closer to realistically modeling biological neurons on computers (Markram et al.,
2015; Nogaret et al., 2016; Ben-Shalom et al., 2017; Bouchard et al., 2018; Gouwens et al., 2018;
Daou and Margoliash, 2020; Spratt et al., 2021). Multi-compartmental biophysical models, such

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.882552
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.882552&domain=pdf&date_stamp=2022-06-17
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zladd@berkeley.edu
mailto:rbenshalom@ucdavis.edu
https://doi.org/10.3389/fninf.2022.882552
https://www.frontiersin.org/articles/10.3389/fninf.2022.882552/full

Ladd et al. Scaling Neuronal Model Fitting

as the Mainen & Sejnowski model (Mainen and Sejnowski,
1996) and those comprising the large-scale neocortical column
simulation (Markram et al., 2015; Ramaswamy et al., 2015;
Gouwens et al., 2018; Billeh et al., 2020), aim to simulate the
electrical properties of single neuron. TheNEURON (Hines et al.,
2004; Carnevale and Hines, 2006) simulation environment is a
commonly used software for simulating how different channel
conductances contribute to the electrical activity of the neuron.
However, constraining the conductance of variousmembrane ion
channels and biophysical properties of the membrane remains a
major obstacle in fitting these models to experimental data (Prinz
et al., 2004; Druckmann et al., 2007; Almog and Korngreen, 2016;
Nogaret et al., 2016). As the number of free parameters that
characterize the neuronal model increase, so does the cardinality
of the optimization search space, thus making the optimization
less tractable. Adding more parameters that govern channel
and membrane dynamics makes the simulated neuron more
specific to a physical neuron, but also adds more unknown
variables with complex relationships. Thus, there exist trade-
offs between the amount of detail in the model, computation
time, computational power, and the questions that need to
be answered by such models (Eliasmith and Trujillo, 2014;
Almog and Korngreen, 2016; Sáray et al., 2020). Researchers
must make limiting assumptions to constrain the number of
free parameters to maintain feasible simulation and model
fitting times.

With increasing model complexity comes the need for more
efficient optimization methods. One challenge with constraining
the parameters of electrophysiological neuron models is that the
search space of possible model parameters is large. Furthermore,
neurons with substantially different parameters can produce
qualitatively similar responses (Goldman et al., 2001; Golowasch
et al., 2002; Prinz et al., 2003). However, a small perturbation
in the conductance of a single channel parameter can have a
significant impact on the simulated voltage trace. In constraining
single neuron parameters, there are several approaches including
brute force search, Monte Carlo optimization algorithms such
as evolutionary algorithms and simulated annealing, or heuristic
algorithms (Keren et al., 2005; Druckmann et al., 2007; Van Geit
et al., 2007, 2008, 2016). For the construction of biophysical
neuron models in this paper, we chose to use the evolutionary
algorithm (EA), a prevalent method for this optimization
problem (Vanier and Bower, 1999; Keren et al., 2005; Druckmann
et al., 2011; Masoli et al., 2017; Gouwens et al., 2018; Ben-
Shalom et al., 2020). Our objective function is constructed from
score functions comparing electrophysiological firing properties
between simulated and experimental target voltages (Druckmann
et al., 2007). This multi-objective optimization (MOO) is
formulated using the Indicator-Based evolutionary algorithm
(IBEA) (Zitzler and Künzli, 2004). EA searches for solutions that
present optimal trade-offs between electrophysiological score
functions. We focused on efficiently scaling EA to mitigate
computational bottlenecks and highlight potential benefits. We
considered the construction of the objective function outside the
scope of this work. We show the motivation for accelerating this
algorithm through scaling the parameter search algorithm on a
motivating example model.

Advancements in chip capacity (Schaller, 1997) and software
for high performance computing (HPC) platforms (Fan et al.,
2004; Strohmaier et al., 2015) have the potential to accelerate
electrophysiological simulation (Bouchard et al., 2018) and
consequently the EA algorithm. We focused on benchmarking
two classes of software modules—neuron simulators and
electrophysiological spike train feature extractors, due to their
central importance in EA. While it is important to experiment
with performance benchmarks that are specific to individual
modules it is also important to develop benchmarks that
assess the application of combinations of modules. This study
draws from previous work in benchmarking for computer
science (Hoefler and Belli, 2015; Bouchard et al., 2016;
Coleman et al., 2019; Wu et al., 2019) by applying established
performance benchmarks to software for neuron simulation
and biophysical modeling. These experiments utilize two well-
established benchmarking strategies: strong scaling and weak
scaling (Bailey et al., 2010; Balasubramanian et al., 2020). In total,
we used three benchmarks:

• “Compute Fixed and Problem Scales”: The number of neuron
models used in EA increases across experiments but the
allocation of computing nodes, cores, and/or GPUs available
is fixed.
• “Compute Scales and Problem Fixed” or strong scaling: The

allocation of computing nodes, cores, and/or GPUs increases
across experiments but the number of neuron models used in
EA is fixed.
• “Compute Scales and Problem Scales” or weak scaling: The

allocation of computing nodes, cores, and/or GPUs and the
number of neuron models used in EA both increase across
experiments at a fixed ratio.

These experiments investigate the impact of modularizing
EA using different software tools for simulation and
electrophysiological feature extractors. Using this experimental
design in conjunction with various software and hardware
configurations demonstrates the state of the art, challenges, and
opportunities, related to efficiently utilizing HPC resources for
complex biophysical neuronal modeling.

Adapting well-known performance benchmarks to EA helps
understand how the algorithm can scale using different
configurations of computational resources and softwaremodules.
While (Knight and Nowotny, 2018; Van Albada et al., 2018;
Criado et al., 2020; Kulkarni et al., 2021), all provide
relevant examples of benchmarking simulation modules and
computational platforms, such as neuromorphic hardware, there
is a gap in benchmarking the performance of such simulators
applied to the neuron fitting problem. This work aims to
address this gap by evaluating the run time performance of the
evolutionary algorithm as a method to construct biophysical
neuron models. Thus, the principal contributions of this paper
are as follows:

1. We present an optimized implementation of the evolutionary
algorithm, NeuroGPU-EA, that aims to accelerate the time
it takes to fit a biophysical neuronal model by leveraging
parallelism on high performance GPU nodes.

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 882552

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

2. We benchmark the run time of this algorithm using
well-established performance benchmarks weak scaling and
strong scaling.

3. We vary implementation by:

3a. Running experiments on CPU only nodes with the CPU-
EA algorithm or CPU-GPU experiments with NeuroGPU-
EA algorithm.

3b. Using different electrophysiological feature
extraction libraries.

3c. Using different GPU-based neuron simulation modules,
such as CoreNeuron in CoreNeuron-EA.

In the following sections of this paper, we first give a brief
overview of the implementation of the evolutionary algorithm
and how simulation and feature extraction drive the algorithm
toward increasingly realistic neuronal modeling. Next, we
specify the hardware and software on the machines we used.
Then we give a description of National Energy Research
Scientific Computer Center’s (NERSC) supercomputer Cori1,
which was used to test the scaling of each variation of this
algorithm. The experimental design allows for the comparison
of different algorithms, using GPU and CPU, as well as different
software modules in the simulate-evaluate loop. Subsequently,
we demonstrate the results of such experiments and discuss the
implications. We show how scaling the evolutionary algorithm
for an example cell results in a more realistic model. Finally, we
discuss challenges faced in benchmarking EA and future steps
for analysis.

2. METHODS

2.1. Evolutionary Algorithm
The optimization problem considered in this paper is the
fitting of biophysically accurate parameters of a neuron using
evolutionary algorithms (EAs). EAs are a class of optimization
methods that rely on natural selection in a population through
biologically inspired operators such as mutation, crossover, and
fitness-based selection (Mitchell, 1998). This version of EA
encodes solutions to an optimization problem into continuous
vector representations of neuron model parameters. We refer to
this group of parameterized neuron models as the “population”
and a singlemodel as an “individual”. EAs represent the quality of
these vector representations by evaluating an objective function
that takes this population as an input and compares the models’
responses to experimental data. The algorithm is known as the
(µ, λ) evolutionary algorithm (Beyer and Schwefel, 2002; Beyer,
2007) and is implemented using DEAP (Fortin et al., 2012) and
BluePyOpt2 (Van Geit et al., 2016). In this implementation, µ

and λ are the size of the parent population and the number
of offspring to produce for the next generation, respectively.
The parameter cxRate is the probability that an offspring
was produced by crossover and the parameter mutRate is the

1https://docs.nersc.gov/systems/cori/
2https://github.com/BlueBrain/BluePyOpt

probability that an offspring is produced viamutation3. Mutation
is a perturbation of one or more parameters and crossover is
a combination between a pair of parameter sets. The function
VARIATION in the EA algorithm, Algorithm 1, applies mutation,
reproduction, or crossover exclusively to each individual, or pair
in the case of crossover, to produce λ new offspring from aµ sized
parent generation.

Algorithm 1 Evolutionary Algorithm

1: procedure OPTIMIZE(µ, λ, cxRate, mutRate nGenerations)
2: parents← INITIALIZE()
3: hof← []
4: parents.scores← EVALUATE(parents)
5: for generation← 1, nGenerations do
6: offspring← VARIATION(parents, λ, cxRate,mutRate)
7: offspring.scores← EVALUATE(offspring)
8: population← parents + offspring
9: parents← SELECT(population, µ) ⊲ keep

µ individuals using indicator value tournament selection
(Zitzler and Künzli, 2004)

10: hof← hof.update(population) ⊲ hof tracks 10 lowest
scoring models

end

11: return argmin
hofi ∈ hof

sum(hofi.scores)⊲ the best model has the

lowest sum of scores

Algorithm 2 Objective Function

1: procedure EVALUATE(offspring)
2: scores← {}
3: for all stim ∈ Stims do ⊲ stimuli parallelism
4: responses← SIMULATE(offspring,stim)
5: for all scoreFunction ∈ scoreFunctions do ⊲ score

function parallelism
6: scores[scoreFunction] ←

scoreFunction(responses, target)
end

end

7: return scores

Formally, the optimization problem posed in this paper defines
an individual i as xi ∈ R

13. Boldface x denotes a one-dimensional
vector. The entire population is defined as X ∈ R

13×N , where
13 is the number of free parameters of the neuron model
and N is the size of the population (typically 50–5,000). The
OBJECTIVE FUNCTION is computed using electrophysiological
score functions, thus the term “score function” refers to one
electrophysiological feature and the term objective function
refers to the function characterizing the joint optimization
such score functions (MOO). Initially, a model xi is simulated

3https://deap.readthedocs.io/en/master/api/algo.html#deap.algorithms.

eaMuPlusLambda

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 882552

https://docs.nersc.gov/systems/cori/
https://github.com/BlueBrain/BluePyOpt
https://deap.readthedocs.io/en/master/api/algo.html#deap.algorithms.eaMuPlusLambda
https://deap.readthedocs.io/en/master/api/algo.html#deap.algorithms.eaMuPlusLambda
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 1 | Stimuli and electrophysiological score functions used in algorithm: (A) Various stimuli used in the fitting procedure of EA. (B) Corresponding target

voltages that are recorded from patch clamp experiments as a result of the stimuli in (A). (C) Demonstrates how electrophysiological score functions are computed on

a single trace. These score functions are used to compare target and simulated firing traces.

using s ∈ S stimuli, shown in Figure 1A, and evaluated
against an experimental waveform, shown in Figure 1B, using F
electrophysiological score functions, shown in Figure 1C. This
procedure results in a set of scores for each individual. These
scores are computed across each stimuli and score function
(Druckmann et al., 2007). Then, BluePyOpt (VanGeit et al., 2016)
uses an indicator based objective function (IBEA) that computes
binary comparisons between individuals and their respective
electrophysiological scores. These comparisons are calculated
using the sum of indicator functions of the form I({xi}, {xj}),
resulting in an indicator based fitness value, as referenced in
line 6 of Algorithm 1. This definition of fitness is derived from
Zitzler and Künzli (2004). The aforementioned µ individuals are
obtained through an iterative process that acquires the winner
of a tournament of binary comparisons between all individuals
untilµ individuals have been selected. The selectedµ individuals,
termed the “parents”, are used to produce a new set of offspring
for the subsequent generation, as demonstrated in line 4 of
Algorithm 1. After all individuals in the population, consisting
of offspring and parents, are scored, the 10 individuals with the
lowest sum of score functions are added to a hall of fame. The
hall of fame has no impact on the evolution of the population,
as it tracks the 10 lowest scoring individuals over all generations
of EA. When the EA algorithm has terminated, on line 11
Algorithm 1, the lowest scoring individual is selected from the
hall of fame.

In total, we used a set 18 stimulations consisting of 8 long
square, 6 noisy, 2 short square, and 2 ramp stimuli, as represented
in Figure 1A. In benchmarking tasks 3.2,3.3, 3.4 and 3.5, stimuli
were chosen in a random order. The optimization in Section

3.6 used the same stimuli as benchmarking tasks 3.2,3.3, 3.4.
However, the optimization in Section 3.7 only utilized the 8 long
square stimuli. We chose to benchmark a diverse set of stimuli as
the practice of EA for fitting neuron model parameters utilizes a
wide range of stimuli, including passive stimuli not represented
in this study. The full list of score functions is included as a
Supplementary Material.

2.2. Implementations
In our implementation of EA, we used 20 scoring
electrophysiological score functions from Blue Brain Project’s
Electrophys Feature Extraction Library (eFEL) library4 (Van Geit
et al., 2016). The total offspring score is the unweighted sum
of the selected score functions. Figure 1C is an illustration of
how these scoring functions are computed on a single trace. The
size of EA is defined as having cardinality N × S × F, which
represents the population size× the number of stimuli presented
× the number of score functions used. As mentioned above,
the population for the evolutionary algorithm is comprised
of parameter sets for the multi-compartment neuron model.
We used a layer 5 thick tufted pyramidal neuron from the
Blue Brain Project (Ramaswamy et al., 2015) with 13 different
ionic channel parameters in the axon, soma, and dendrite.
This cell morphology and parameterization can be found
in Blue Brain Model portal5 as L5 TTPC1 cADpyr232 1.
The Supplementary Table 1 shows how the parameters were
distributed across axonal, somatic sections, as well as the

4https://efel.readthedocs.io/en/latest/
5https://bbp.epfl.ch/nmc-portal/downloads.html

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 882552

https://efel.readthedocs.io/en/latest/
https://bbp.epfl.ch/nmc-portal/downloads.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

upper and lower optimization bounds for each conductance.
Supplementary Table 1 also shows that some of these parameters
were modeled separately in the soma and the axon. The model
used in Section 3.7, Figure 7, and Supplementary Figure 1 does
not include a parameter for non-specific cation current Ih but
the model used in the benchmarking Sections 3.2, 3.3, and 3.4
did include this parameter. This channel was not included in the
optimization to reduce the complexity of the optimization task.

In the objective function Algorithm 2 there are three
opportunities to implement parallelism:

1. Population level parallelism: run the simulate-evaluate loop
in parallel across the entire population.

2. Stimuli parallelism: run all the simulations for each stimulus
in parallel.

3. Score function parallelism: run all the score functions
in parallel.

In the objective function Algorithm 2, scores and responses
are lists containing the voltages and scores for each individual
of the population respectively. The objective function can be
implemented as a triple for loop by including an initial loop
over the population. Alternatively, Algorithm 2 implements
a double for loop by defining scores as a vector of
scores corresponding to each individual. Each stimulus response
and score are computed without using information about
other simulations, other electrophysiological score functions,
or individuals in the population. Thus, the problem is
embarrassingly parallel (Herlihy and Shavit, 2012). For reference,
the sequential representation is summarized in Figure 2A. Our
CPU-EA and NeuroGPU-EA algorithm took advantage of this
feature in the following ways.

• NeuroGPU-EA employed all three approaches to implement
parallelism, as demonstrated in Figure 2C. (i) The population
level parallelism was achieved by dividing the entire
population (MPI_SCATTER) across nodes and then
aggregating (MPI_GATHER) at the rank 0 node at the end
of evaluation. (ii) The simulations for each stimuli were
computed in parallel across each available GPU. (iii) Each
electrophysiological score function was computed in parallel
on CPUs once the simulation responses were obtained.
• CPU-EA implementation, shown in Figure 2B, was

parallelized over the population and one CPU core per
individual was allocated using IPyParallel6. The parallelized
CPU-EA procedure was run in parallel across the entire
population (MAP) and aggregated (REDUCE) into a list once
all scores have been calculated. Thus, CPU-EA leverages
population level parallelism across all available CPU cores.

ForNeuroGPU-EA, if there are more stimuli than GPUs available,
it is necessary to launch batches of simulations while the CPU
cores handle electrophysiological score function evaluation for
the previous batch of stimuli. This case is demonstrated in
Figure 2D and will be referenced in Section 3.5 in experiments
that scale up the number stimuli used in EA. We compute scores
on CPU and acquire additional CPU-GPU data transfer cost

6https://ipyparallel.readthedocs.io/en/latest/

because we did not have access to a GPU implementation of the
eFEL library.

2.3. Hardware
The experiments presented here were executed on the Cori-GPU
cluster at NERSC7. Each Cori GPU node has two sockets of
20-core Intel Xeon Gold 6148 (“Skylake”) CPUs with 384 GB
DDR4 RAM memory and a clock rate of 2.40 GHz. Each of
these nodes also has 8 NVIDIA Tesla V100 (“Volta”) GPUs,
connected with NVLink interconnect, each with 16 GB HBM2
memory. We used Cray’s Programming Environment version
2.6.2. Allocated nodes were chosen by the batch system (SLURM
20.11.8) and were allocated exclusively to eliminate on-node
interference. The system uses InfiniBand host network adapters
(HCA) and network interface cards (NICs). Each Cori CPU
node has two sockets, each socket is populated with a 2.3 GHz
16-core Haswell Intel Xeon Processor E52698 v3. Each core
supports 2 hyperthreads, and has two 256-bit-wide vector units
36.8 Gflops/core (theoretical peak), 1.2 TFlops/node (theoretical
peak) and 2.81 PFlops total (theoretical peak). Each node has 128
GB DDR4 2133 MHz memory (four 16 GB DIMMs per socket)
and 298.5 TB total aggregate memory. The interconnect is Cray
Aries with Dragonfly topology with 45 TB/s global peak bisection
bandwidth. We used Cray’s Programming Environment version
2.6.2. Allocated nodes were chosen by the batch system (SLURM
20.11.8) and were allocated exclusively to eliminate on-node
interference. For all experiments, we used Cori SCRATCH which
is a Lustre file system designed for high performance temporary
storage of large files. All experiments were run on x86 64
computing architecture, SUSE Linux Enterprise 15 and kernel
4.12.14-150.75-default.

2.4. Software
We used GCC compiler version 8.3.0, CUDA version 11.1.1,
OpenMPI version 4.0.3, Python 3.8.6. As in previous work (Ben-
Shalom et al., 2012, 2013, 2022), the evolutionary algorithm
was implemented using the DEAP 1.3 (Fortin et al., 2012)
and BluePyOpt 1.9.126 (Van Geit et al., 2016) python libraries.
Score functions were implemented using Blue Brain Project’s
Electrophys Feature Extract Library 3.2.4 (eFEL)8 (Van Geit
et al., 2016) and Allen Institutes’s IPFX9. The CPU based
neuron simulations were run using NEURON 7.6.7 .mod files
and the NEURON python interface10. the software versions
and requirements are added as Supplementary Materials. For
GPU based neuron simulations we used NeuroGPU 1.011 (Ben-
Shalom et al., 2022) and CoreNeuron 1.012 (Kumbhar et al.,
2019). For the installation of CoreNeuron we used the Intel PGI
compiler, version 20.11-0 and we used Cori’s cray-python version
3.7.3.2 to avoid compilation issues with anaconda python used in
other experiments.

7https://docs-dev.nersc.gov/cgpu/
8https://github.com/BlueBrain/eFEL
9https://github.com/AllenInstitute/ipfx
10https://neuron.yale.edu/neuron/
11https://github.com/roybens/NeuroGPU
12https://github.com/BlueBrain/CoreNeuron

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2022 | Volume 16 | Article 882552

https://ipyparallel.readthedocs.io/en/latest/
https://docs-dev.nersc.gov/cgpu/
https://github.com/BlueBrain/eFEL
https://github.com/AllenInstitute/ipfx
https://neuron.yale.edu/neuron/
https://github.com/roybens/NeuroGPU
https://github.com/BlueBrain/CoreNeuron
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 2 | (A) Sequential execution EA. (B) CPU-EA maps the simulation/evaluation of a model to a single core. (C) GPU-EA maps each stimuli to a GPU, then

scores the simulation in parallel on each CPU core. (D) Timeline of NeuroGPU-EA for two generations. The algorithm starts new stimuli on GPUs while the CPUs are

still completing the previous ones.

3. RESULTS

3.1. Experimental Design
The primary metric of EA performance was the wall time needed

to complete one simulation-evaluation step. The three main

experimental contexts are NeuroGPU-EA, CoreNeuron-EA, and

CPU-EA. The version of NeuroGPU-EA that uses CoreNeuron

is termed CoreNeuron-EA. We refer to both NeuroGPU-EA
and CoreNeuron-EA as GPU-EA to represent GPU based
evolutionary algorithms. CPU-EA experiments are run on CPU
only nodes with 64 single-threaded cores. Unlike simulators used
inGPU-EA, CPU-EA using NEURON offers an adaptive timestep
option, with command h.cvode_active(1), which allows
the simulator to perform fewer integration solves when there

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2022 | Volume 16 | Article 882552

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

TABLE 1 | Compute fixed and problem scales: Stimuli and score functions are

fixed 8 and 20, respectively.

Population NeuroGPU-EA

run time (s)

CPU-EA run

time (s)

CoreNeuronGPU-EA

run time (s)

500 36.8 ± 5.71 401 ± 82.4 58.7 ± 2.72

1,000 70.6 ± 8.83 679 ± 98.6 89.2 ± 5.25

1,500 91.6 ± 5.52 1,000 ± 159 123 ± 12.8

2,000 123 ± 8.88 1,380 ± 285 151 ± 53

2,500 150 ± 6.48 1,740 ± 296 182 ± 6.92

3,000 182 ± 3.98 1,930 ± 490 210 ± 3.58

3,500 212 ± 3.56 2,270 ± 494 242 ± 3.72

4,000 242 ± 10.4 - 272 ± 3.78

4,500 270 ± 4.87 - 304 ± 7.77

5,000 295 ± 11.8 - 333 ± 9.52

Each experiment uses one node. CPU node has 64 cores. GPU nodes have 80 CPU

cores and 8 GPUs. ± values indicate 1 standard deviation.

are fewer spikes. CPU-EA uses the h.cvode_active(1)
setting for applicable stimuli as this setting accelerates NEURON
simulation time. As demonstrated in Supplementary Figure 1,
NEURON with adaptive timestep had a notably faster
average simulation time than standard NEURON settings.
For benchmarking experiments, 50 trials were run using an
initial population with the same seed. Supplementary Figure 2

shows that running NeuroGPU-EA trials with multiple seeds
resulted in a slight speedup for the 500 and 1,000 populations,
but also resulted in more deviation between recorded times for
these population sizes. For all experiments, the first generation of
every optimization was discarded so the time spent loading the
morphology of model neurons was not included. Morphology
loading time was not included for GPU-EA because NeuroGPU
begins with a mapping of the model in the GPU, while
CoreNeuron had an initial cost of 0.35 s per model to load
the morphology13. Further benchmarking of how different
topologies, models, and morphologies affect simulation run time
can be found in Figures 3, 4 of previous work (Ben-Shalom et al.,
2013). The GPU-EAmodel transfer to CPU was not intentionally
benchmarked either, as the NeuroGPU model only exists on the
GPU. However, logs from CoreNeuron trials indicate an average
cost of 3 ms for moving a single model to the GPU. Furthermore,
CoreNeuron outputs indicated that a single model used 560 kB
of memory. CPU experiments that were not ran for enough trials
are not represented. We report the mean and standard deviation
of the run time. We provide run time lower bounds as ideal
scaling measures, in accordance with Hoefler and Belli (2015).
To confirm these benchmarks are practicable, we include the
optimized model responses and statistics at key generations for
EA with population size 1,000 in Supplementary Materials.

3.2. Benchmark 1
The “Compute Fixed Problem Scales” benchmark measures
the computational capacity of the algorithm with a fixed

13https://github.com/BlueBrain/CoreNeuron/issues/642

resource allocation. The problem scales with increases in the
population size, N, at increments of 500 until the population
size reaches 5,000. “Compute Fixed” means using 64 CPUs
on one node for the CPU-EA algorithm and using 80 CPUs
together with 8 GPUs for the GPU-EA algorithm. The results
from this benchmark experiment are shown in Figure 3A

and Table 1. Across all population sizes, CPU-EA took 10x
the amount of time it took NeuroGPU-EA to complete a
simulation-evaluation step and 7x the amount of time it took
CoreNeuron-EA to complete a simulation-evaluation step. The
comparative performance of CoreNeuron-EA and CPU-EA aligns
with previous benchmarking studies showing CoreNeuron’s 2-
7x decrease of NEURON execution time (Kumbhar et al.,
2019). Between GPU-EA experiments in Figure 3A, NeuroGPU-
EA had approximately 20% speed-up when compared against
CoreNeuron-EA. Supplementary Figure 3A shows that both
feature extraction libraries had similar scaling performance,
with Allen IPFX extractor running slightly faster in general,
exhibiting a speed up of about 10%. Supplementary Figure 4A

shows this experimental design applied to NeuroGPU-EA using
Oak Ridge National Lab’s (ORNL) Summit14 computing cluster.
Experiments ran on Cori showed a speed-up of around 20%
when compared to those ran on Summit. These experiments
characterize the rate in which run time of simulation-evaluation
loop grows as the population size scales up. There are several
possible scaling bounds such as logarithmic O(log(N)), linear
O(N), polynomial O(Nk), and exponential O(kN) where k is
a constant and N is the population size. Our expectation is
that the run time of the algorithm should increase directly
proportional to the increase of the population size. This
would be a linear relationship or O(N). Figure 3A and
Supplementary Figures 3A, 4A all confirm a close alignment
between expected scaling performance and actualized scaling
performance. To further investigate the factors that drive an
increase in run time in the application, additional experiments
analyzing single node performance were required.

Further motivation for scaling population size on a single
node is that this analysis can identify bottlenecks that occur
at different problem sizes. Figure 4 shows a set of experiments
ranging from 187 to 3,000 neurons models per node using GPU-
EA and CoreNeuron-EA. These experiments measured the run
time for simulating (GPU) and evaluating (CPU). In this figure,
both GPU computations and CPU computations are potential
bottlenecks. Starting at around 375 individuals per node, up
to twice as much time is spent running simulations on the
GPU than evaluating them on the CPU. The proportion of run
time on the CPU to run time on the GPU increases with the
amount of population per node. At 3,000 individuals per node,
the CPU evaluation takes twice as long as the GPU evaluation
time. For both CoreNeuron-EA and NeuroGPU-EA, when the
population size is larger than 1,000, the CPU is the bottleneck.
Thus, predicting the simulate-evaluate run time as population
per node increases becomes increasingly dependent on CPU
run time.

14https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2022 | Volume 16 | Article 882552

https://github.com/BlueBrain/CoreNeuron/issues/642
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 3 | Simulation-evaluation scaling CPU vs. GPU: Experiments measuring the time it takes to run one simulation-evaluation step using NeuroGPU-EA,

CoreNeuron-EA, and CPU-EA. (A) One compute node and population size increases, as in Table 1. (B) Increases compute nodes and population size is constant, as

in Table 2. (C) Increasing compute nodes and population size, as in Table 3.

FIGURE 4 | GPU bottleneck shifts to CPU as population per node increases: at large population sizes the CPU operation for score functions is the

bottleneck—denoted by relatively taller bars for CPU Eval. At smaller population sizes in (B) the GPU simulation is the bottleneck for CoreNeuron-EA—denoted by

relatively taller bars for simulation. CPU and GPU time are balanced at small population sizes for NeuroGPU-EA in (A).

3.3. Benchmark 2
The second benchmark, “Compute Scales Problem Fixed”,
determines the strong scaling of the application. Keeping the
problem size constant and increasing the number of allocated
CPU/GPU resources quantifies the potential for parallelism to
accelerate the simulation-evaluation step. In this experimental
design, specified by Table 2, the population size, N, is fixed
at 3,000, while the number of allocated nodes scales up by
a factor of 2. The outcomes for scaling N exponentially are
represented in Figure 3B. The expectation is that run time
decreases exponentially by a factor of 2, corresponding to the
compute scaling rate. For all GPU-based algorithms, after 4
nodes, or 2 nodes in the case of CoreNeuron-EA, run time
acceleration per node starts to decrease and no longer match
expected scaling. This demonstrates a limit to which parallelism

in GPU-EA can efficiently leverage available resources. As shown
in Figures 4A,B andTable 2, at 187 individuals per node the time
to complete evaluation is around 14 and 16 s for 375 individuals.
This demonstrates Amdahl’s law (Amdahl, 1967) which states
that the overall improvement gained by parallelized code is
limited to the fraction of time that code is in use. The benefit
of parallelizing across the population and electrophysiological
score functions is limited by the time the slowest score
function takes to complete. Similarly, for simulation, both
GPU-EA and CPU-EA show marginal decrease in run time after
population size begins decreasing below 750 individuals per
node. These results support the analysis shown in Figure 3B,
as the benefit of using more than 4 nodes to simulate and
evaluate 3,000 neurons is limited by the speed of the software
modules deployed in the respective tasks. The equivalent

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2022 | Volume 16 | Article 882552

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

TABLE 2 | Compute scales and problem fixed: Stimuli and electrophysiological score functions are fixed to 8 and 20, respectively.

CPU node GPU node Run time (s)

Nodes Total CPUs Total CPUs Total GPUs CPU-EA NeuroGPU-EA CoreNeuronGPU-EA

1 64 80 8 1930 ± 490 182 ± 3.98 210 ± 3.58

2 128 160 16 1100 ± 212 93.6 ± 1.52 128 ± 24.9

4 256 320 32 573 ± 141 45.9 ± 0.586 80.6 ± 2.64

8 512 640 64 302 ± 149 28.9 ± 0.526 67.4 ± 5.96

16 1,024 1280 128 257 ± 123 22.4 ± 1.05 70.4 ± 10.5

Population size is fixed to 3,000. each.

TABLE 3 | Compute scales and problem scales: see Table 2 for other details.

CPU node GPU node Run time (s)

Nodes Total CPUs Total CPUs Total GPUs Population CPU-EA NeuroGPU-EA CoreNeuronGPU-EA

1 64 80 8 250 279 ± 44.9 25.0 ± 3.49 42.9 ± 1.53

2 128 160 16 500 267 ± 58 24.8 ± 3.13 44.3 ± 3.08

4 256 320 32 1,000 285 ± 151 24.4 ± 2.85 46.8 ± 3.24

8 512 640 64 2,000 305 ± 88.4 26.0 ± 4.75 55.3 ± 5.29

16 1,024 1,280 128 4,000 374 ± 137 27.7 ± 2.24 76.5 ± 21.4

experiments, shown in Supplementary Figures 3B, 4B, using
IPFX electrophysiological score functions and different
computing architecture demonstrate the same limitations
in using more than 4 nodes to simulate 3,000 neuron models.
The next benchmark illustrates how scaling the problem size
enables efficient utilization of larger resource allocations.

3.4. Benchmark 3
The third benchmark, “Compute Scales Problem Scales”,
determines the weak scaling of the application. In this
experimental design, specified by Table 3, the initial trial sets a
scaling factor 250 population (N = 250) per node. The subsequent
trials increase the number of CPU/GPU nodes and population
size proportionally. The expectation is that run time remains
constant. These experiments demonstrate how multi-node
parallelism can accommodate the scaling of population size in the
evolutionary algorithm. As demonstrated in Figure 3C, scaling
at 250 individuals per node allows the run time of algorithm to
remain approximately constant for up to 10 nodes. We chose
to scale at 250 individuals per node because in this allocation
the time spent on the GPU and CPU are nearly balanced for
GPU-EA. Furthermore, this choice of scaling factor resulted in a
higher average GPU utilization, at around 70%, as demonstrated
in Supplementary Figure 6. This figure demonstrates the
proportion of time spent running computations on the GPU
and CPU compared to the total run time. With a scaling
constant of 250 individuals, at more than 10 nodes the run
time starts to marginally increase with each trial. In CPU-EA,
the increase in run time is marginal. Supplementary Figure 3C

demonstrates that eFEL score functions and Allen IPFX
provide both match the expected constant scaling and the
performance is nearly identical. The IPFX library is a few

seconds faster than eFEL. Further experiments, shown in
Supplementary Figures 3C, 4C, demonstrate that overhead is
incurred when NeuroGPU-EA is run on larger allocations of
GPUnodes (64–128Nodes) using the Summit computing cluster.
In the Section 4, further consideration is taken toward the
explaining implications of successful large-scale optimization
runs and the software/hardware that powers such runs.

3.5. Scaling Stimuli and
Electrophysiological Score Functions
The set of experiments above only changes the problem size
using population size, N. To further explore the axes of scaling
GPU-EA problem space, we ran scaling experiments on GPU-EA
with NeuroGPU-EA where electrophysiological score functions
are set to 20, population size is set to 500 but the number of
stimuli used in EA increases from 1 to 18. This experiment is
shown in Figure 5A. In this figure, we use big O notation to

denote worst case scaling of running time. The O(
log(n)
2) and

O(
log(n)
4) lines show the starting run time scaled by the log

transform of the expected increase in run time. This figure shows
that GPU-EA scales logarithmically with the number of stimuli
used. Furthermore, we ran an experiment on GPU-EA where
the number of stimuli is fixed to 8, population size is fixed to
500 but the number of electrophysiological score functions used
in EA increases from 1 to 180. This experiment is shown in
Figure 5B. In this figure, there is constant scaling for up to 80
score functions. Once the number of electrophysiological score
functions exceeds 80 they can no longer run entirely in parallel
and the algorithm begins to scale at a constant linear rate—O(n3).
These results in scaling different dimensions of the EA problem
size further demonstrates how computational resources can be

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2022 | Volume 16 | Article 882552

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 5 | Scaling stimuli and electrophysiological scoring functions: Panel (A) represents the observed run time as the number of stimuli used in the algorithm

increases. We provide two lines for scaling reference O(log(n)2) and O(log(n)4). Panel (B) represents the observed run time as the number of score functions used in the

algorithm increases. We provide two lines for reference, O(n3) and O(log(n)4).

leveraged using parallelism and concurrency to achieve efficient
scaling in our GPU-EA algorithmic design.

3.6. Benchmark Model Fit
Figure 6 shows the model neuron, specified in Section 2,
that was fit using GPU-GA. Congruent with benchmarks 1,
2, and 3, the EA used to fit this model was constrained to
use 5,000 population size 20 score functions and 8 stimuli.
Models are fitted against publicly available experimental data
and stimuli from the Allen Cell Types Database (Gouwens et al.,
2019) specimen 488683425. The experimentally recorded cell,
plotted in black in Figure 6, is a layer 5 thick tufted pyramidal
visual cortex cell. The best model, obtained according to the
procedure in Section 2, is plotted in red. Figure 6 shows that
the fitted model neuron demonstrates a similar firing rate and
spike onsets that are well-aligned with those of experimental
data. While the simulated model waveforms closely align with
experimental data, the voltage base and after hyperpolarization
depth (AHP) vary from those produced by the experimental
neuron. As shown in Supplementary Figures 5A,E, the voltage
base is indicative of a limitation of the passive dynamics of
the optimized model, such as g_pas and e_pas. These dynamics
could be alleviated through the use of more appropriate passive
score functions. The generalized response of the model to stimuli
that were not used in the optimization is also demonstrated in
Supplementary Figures 5F–H. These results show the quality of
model that can be achieved with the simple EA design and stimuli
used in the benchmarks, however there are many aspects of EA
optimization that can be tuned to achieve an improved neuron
model. This is why a general understanding of optimization
quality from different EA configurations is important. For
instance, the beneficial impact of scaling EA population size is
exemplified in the next section.

3.7. Effect of Scaling Up EA Population
To demonstrate the practical impact of scaling the evolutionary
algorithm, we set up an experiment on the layer 5 thick tufted

FIGURE 6 | Best fitted model after 50 generations of EA using 8 stimuli and

20 score functions (red) plotted against experimental data (black). (A) Long

square stimulus. (B) Short square stimulus. (C) Noisy stimulus. The remaining

stimuli and scores are shown in Supplementary Figure 5 and

Supplementary Table 1, respectively.

pyramidal neuron from the Blue Brain Project (Ramaswamy
et al., 2015) described in Section 2. The purpose of this
experiment is to demonstrate the benefit of increasing population
size on the resulting optimized model. In this experiment, we ran
150 generations of the evolutionary algorithm for three different
trials with population sizes 1,000, 5,000, 10,000, respectively.
Unlike the EA in Section 3.6 which utilized the 8 stimuli
from benchmarks 1–3, this version of EA utilized 8 different

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2022 | Volume 16 | Article 882552

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 7 | EA score and model fit both improve with larger population size: (A) Objective function optimization trajectory in EA with varying population sizes. Scores

start around 2,500 but the y-axis is constrained to clearly show results. Lower scores indicate a closer fit to experimental data. The minima of the objective function

are denoted by large circles and the lower the minima the more the best simulated response resembles the experimentally recorded waveform. Confidence intervals

are computed using 10 random initializations. Panel (B) illustrates the neuron model responses corresponding to varying population sizes.

long square currents, as shown in Figure 1A, and 8 score
functions per stimulus. Six of the score functions are represented
in Figure 1C and the other two are minor variations of the
rendered score functions. For each population size, we ran 10
trials using 10 different random seeds for EA. As a Monte
Carlo method, the trajectory of EA is stochastic, thus using
random seeds ensures the score trajectories follow a reproducible
trend. Notably, the run time per generation increased as EA
progressed toward more optimal parameter sets. By breaking
down the cumulative run time associated with running multiple
generations of EA, Supplementary Figure 8 shows that as EA
progresses, the electrophysiological features take more time to
compute on average. Regarding the optimization procedure,
Figure 7A demonstrates the mean and 95% confidence interval
of the score of the objective function for the evolutionary
algorithm at each generation. The 10,000 individual EA achieves
a better fit to experimental data, resulting in the lowest
achieved value for the objective function. The value for objective
function represents a penalty against simulated neurons where
the electrophysiological features of voltage traces differ from
those of an experimentally recorded target waveform. The
lower scores achieved by the 10,000 individual EA indicate
this configuration finds comparatively more optimal models
for generations 70–150. Compared to 1,000 individual EA, the
5,000 individual EA achieved a lower mean score over 10
random seeds, but this difference was not statistically significant.
Furthermore, alignment of the experimentally recorded neuron
membrane potential and that of the best simulated neuron
model substantiates the impact of improved optimization of
the objective function due to larger population size in the
EA. In Figure 7B, as the population sizes increase, models
show improvement in the depth and timing of the after
hyperpolarization (AHP). The AHP depth is the maximum
level of depolarization after the action potential has peaked
and re-polarized to resting potential. In the 10,000 individual
optimization, the AHP depth is not greater than that of the

experimentally recorded target waveform. The duration of the
hyperpolarization is also more similar to the target waveform for
the 10,000 individual optimization than the smaller population
size EAs. Figure 7B qualitatively demonstrates that population
sizes that allow EA to explore more potential parameter sets
construct a model that better characterizes the experimental data
(Ben-Shalom et al., 2012). Figure 7A quantitatively supports this
claim by showing that EA with 10,000 individuals finds the most
optimal solution when compared with smaller population EAs.

4. DISCUSSION

The most central comparison drawn in this paper is between
CPU and GPU based simulation-evaluation loops. GPU based
simulation is markedly faster and scales better than CPU
based simulation. These results suggest that CPU-EA may
be a reasonable choice for fitting simple electrophysiological
neuron models, but that researchers should use caution in more
computationally complex optimization problems that require
scaling. For these complex problems, leveraging parallel code
design and GPU neuron simulation can reduce EA optimization
time fromweeks or days to hours. Based off the CPU experiments
in the Compute Fixed Problem Scales section, using a single
desktop computer without a GPU would limit researchers to
a population size of 1,000 or smaller. Based off the single
node GPU example, the addition of a single GPU allows for
a researcher to complete 50 iterations of a population size of
3,000 in several days. A conservative estimate is that using
GPU-EA with a workstation that has 8 GPUs and over 40
cores enables a researcher to complete 50 iterations of an EA
with 3,000 individuals in a day. Using the maximum amount
of resources available, 128 nodes on Summit, we show in
Supplementary Figure 4C that we can simulate and evaluate a
population size of 32,000 in 35 s. This allocation makes it feasible
to reach 50 generations of 32,000 individuals within the course
of a few hours. While these estimates demonstrate the potential

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2022 | Volume 16 | Article 882552

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

scale and advantages of GPU-EA, there are instances where
CPU-EA may be more optimal. In Ben-Shalom et al. (2022),
we show that simulating models with less compartments and
channels are not substantially accelerated by GPUs. Furthermore,
for EA optimizations with only one stimulus and a nominal
number of score functions will not benefit from the score
function level parallelism and stimuli level parallelism discussed
in the Section 2. Finally, for researchers attempting to simulate
many different models, NEURON provides the highest level of
compatibility with most available models in ModelDB (Hines
et al., 2004), though CoreNeuron is expanding its compatibility
with NEURON.

Our choice of an appropriate scaling factor was critical in
achieving large scale simulation and evaluation. We used the
experiment shown in Figure 4A in the Compute Fixed Problem
Scales section to determine a reasonable scaling constant of
250 neuron models per node. We chose this constant as the
simulation and evaluation time were approximately balanced
so neither simulation or evaluation would dominate run time.
Relative to other configurations, 250 models per node led to
the most efficient GPU utilization, at around 60%. 60% is the
highest achieved GPU utilization using GPU-EA because the
GPU must be idle while the evaluation step is finishing. Once all
the models are scored and a new population evolves, the GPU
resumes activity at 100% utilization. This is shown in the plot
of GPU utilization over time in Supplementary Figure 7. Future
work could involve implementations that achieve higher GPU
utilization through different implementations, such as parallel
EAs (PEAs) that evolve multiple sub-populations simultaneously
(Cantú-Paz, 2001; Du et al., 2013). It may be necessary to
modify GPU simulation modules in order to adapt GPU-EA to
enable PEAs, or simultaneous EAs with different seeds. Based
on Figure 4A, 250 neuron models per node was a conservative
choice of a scaling constant, as the CPU did not start to become a
bottleneck until 750 population per node and 1,500 population
per node in Figure 4B. This conservative choice ensured we
would be able to efficiently scale the problem size with number of
computing nodes, which we aim to demonstrate for the purpose
of benchmarking. In practice, researchers might choose larger
scaling constants.

While GPU-EA’s ability to leverage parallelized kernel
computation for fast simulation is one advantage. Another
advantage is that GPU-EA, using NeuroGPU, also adds
concurrency to the algorithm described in Section 2.
Concurrency, defined as the capacity to run separate tasks
at the same time (Roscoe, 1998), is different than the achieved
levels of multi-node and single node parallelism. This algorithm
is concurrent when simulation of the remaining batches of
stimuli begin as soon as the first set of stimuli finish. The GPU
does not remain idle as the CPU finishes evaluating the first
batch of simulations. Thus, while the CPU is evaluating the
quality of the simulations, the GPU begins the next batch of
simulations. This is shown in Figure 2C as the CPU and GPU
are running at the same time. The result of concurrency in
GPU-EA is shown in Figure 5A where the algorithm scales
logarithmically with the number of stimuli used in the algorithm.
Logarithmic scaling is enabled by NeuroGPU’s capacity to run

stimuli in parallel across GPUs as well the algorithmic design to
simulate a second set of neuronal models while the previous set
of stimuli is being evaluated. This logarithmic scaling enables
the objective function of evolutionary algorithm to incorporate
multiple stimuli. Consequently, models that are fit using multiple
stimuli will generalize better to new unseen stimuli. While state
of the art fitting procedures like (Gouwens et al., 2018) are
currently designed to use a single stimulus in the optimization
algorithm, the addition of simulate-evaluate concurrency can
enhance these methods using more stimuli with minimal cost
in run time. A challenge with incorporating more stimuli in the
objective function is that simulators that don’t permit concurrent
execution will need to simulate and evaluate sequentially.

In the section Compute Fixed Problem Scales and Figure 4,
we showed that at too large of a population size, the score
functions will bottleneck simulation-evaluation run time. We
also found that this bottleneck in the evaluation step can be
mitigated or worsened by the number of electrophysiological
scoring functions used. Figure 5B showed constant scaling for
up to 80 score functions. This happened because there were
80 cores available on a single Cori node. Once the number
of score functions exceeds the number of cores available to a
node they can no longer be run entirely in parallel and the
algorithm begins to scale at a constant linear rate—O(n/3).
Thus, if researchers intend to use multiple score functions for
multi-objective optimization, as in Druckmann et al. (2007),
we recommend they consider using fewer score functions than
cores available in GPU-EA. Even in the case where there are
fewer score functions than cores, Supplementary Figure 8 shows
that as EA progresses, the evaluation step takes more time to
complete. A potential cause for increased evaluation time is that
in later generations there are more spiking neuron models to
be evaluated and eFEL score functions take longer on traces
with more spikes. These results demonstrate a distinct advantage
in simulating larger populations of neurons on GPU nodes
as there are many opportunities to implement parallelism and
concurrency. However, CPU processing capacity for scoring
electrophysiological features hinders the efficient scaling of
the GPU-EA algorithm. A potential strategy to alleviate this
bottleneck could involve loading simulated traces into the score
function library before mapping the score functions to be
evaluated in parallel. Currently, traces are loaded separately
for each score function. Another potential mitigation could
be using GPU feature extraction. To the best of the author’s
knowledge, there are no available GPU based software toolkits
for scoring features of simulated spike trains based on a
target train. There are several GPU-based applications that
are used for real time analysis of Electroencephalography
(EEG) waveform data, Magnetoencephalography (MEG) data,
and Multi-electrode Arrays (MEA) signals (Tadel et al., 2011;
Guzman et al., 2014; Sahoo et al., 2016), but none that exist for
evaluating simulated neuron firing traces. Software capable of
scoring electrophysiological traces on a GPU would considerably
enhance the performance of GPU-EA configurations where score
functions are the bottleneck. The prospective advantage of GPU
accelerated electrophysiological feature extraction presents an
opportunity for researchers. Because the Blue Brain Project’s

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2022 | Volume 16 | Article 882552

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

eFEL (Van Geit et al., 2016) score function library is developed
in C++, it has the potential to be adapted to the GPU through
tools like OpenACC’s GPU directives.

A critical consideration in attempting to generalize
benchmarks, whether between simulation software, HPC
platforms, or algorithms, is that factors from the hardware
and software environment to the number of spiking neurons
in a population can have a substantial impact on the run time
of the application. In Supplementary Figure 8, the time to
evaluate score functions increased as the EA algorithm produced
more spiking neurons. The stochasticity in the optimization in
EA is not a desirable property for benchmarking as it can be
difficult to tell if scoring is taking longer to complete because it is
slower or because an instantiation of EA is producing offspring
that spike more. We mitigate this issue by benchmarking
one initial population in 3.2, 3.3, and 3.4. Another example
of variability in performance occurred in our comparison
between Cori and Summit. Initial experiments demonstrated
a much more dramatic speedup, but after upgrading to use
GCC 8.3.0 (version used on CORI), the performance on
Summit improved considerably. Kumbhar et al. (2019) shows
a notable increase in performance of CoreNeuron using the
Intel C/C++ compiler instead of GCC/G++. Moving from
benchmarking stand-alone software modules to applications
means there are more dependencies that can be affected by
the installation environment. With this consideration we
provide a simplified code example15 to run one simulation
evaluation loop without HPC or EA. We also provide the
entire code suite16, which we hope to further extend to
be a platform capable of benchmarking of more tools in
computational neuroscience.

In future work, we aim to apply this benchmarking framework
across several other software modules of interest. A simple
extension of this work would be to run experiments comparing
Allen IPFX and BluePyopt’s eFEL to the widely adopted python
electrophysiological toolkit Elephant (Denker et al., 2018). While
Elephant has fewer statistic-based features, it offers correlative
measures between spike trains. Also, Elephant has a parallel
extension which can further advantage HPC resources. Another
simple extension of this work could involve benchmarking the
biophysical neuron simulator LFPy (Lindén et al., 2014) or Arbor
(Abi Akar et al., 2019). A more complex extension of this work
would involve benchmarking the same simulate-evaluate loop,
but as it applies to spiking neural networks (SNN) instead of
the evolutionary algorithm. There are several well-documented
and widely adopted SNN packages such as Brian (Goodman
and Brette, 2009), NEST (Gewaltig and Diesmann, 2007), and
SpiNNaker (Furber et al., 2014) that would be appropriate
to benchmark using this experimental design. Finally, we are
interested in generalizing this benchmarking experimental design
to a wider range of single neuron and network optimization
tasks. Any algorithm that involves simulation or feed-forward
stage and then an evaluation/feedback/learning stage is amenable
to the analysis conducted in this paper. This generalizability

15https://github.com/xanderladd/benchmarking_examples
16https://github.com/xanderladd/EA_benchmarking

extends to many methods commonly used in machine learning
and optimization.

5. CONCLUSION

This work demonstrates the potential of efficiently parallelized
simulation and evaluation software for electrophysiological
modeling. Specifically, applications that leverage GPU utilization
demonstrate the capacity to run larger fitting optimizations. In
turn, these optimizations can result in a larger search of the
parameter space, and consequently, a more accurate model. As
the processor count continues to increase on hyper-threaded
and multi-core chips, computational methods that leverage
parallelism can continue to leverage new innovations in high
performance computing to generate more detailed and accurate
neuronal models. While this progression is beneficial, it is ever
relevant to apply established benchmarks such as weak scaling
and strong scaling for neuroscientists to get the most value out of
new computing resources.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://portal.nersc.
gov/cfs/m2043/benchmarking_ea.tar.gz.

AUTHOR CONTRIBUTIONS

JB, KB, and RB-S helped the conceptualize experiments. AL
and KK designed the software to run, process, and visualize
experiments. AL wrote the original draft. RB-S helped with
visualization. RB-S and KB funded the project and provided
supercomputing hours. All authors have read and agreed to the
published version of the manuscript.

FUNDING

This research was supported by the MIND Institute and
Neurology Department at the University of California Davis and
the Action Potential grant fromThe FamiliesSCN2A Foundation.

ACKNOWLEDGMENTS

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility located at Lawrence
Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231 using NERSC award M2043. Thank you
to Albert Vasquez for helping me test out reproducible examples
locally on his 3090 GPU.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.882552/full#supplementary-material

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 882552

https://github.com/xanderladd/benchmarking_examples
https://github.com/xanderladd/EA_benchmarking
https://portal.nersc.gov/cfs/m2043/benchmarking_ea.tar.gz
https://portal.nersc.gov/cfs/m2043/benchmarking_ea.tar.gz
https://www.frontiersin.org/articles/10.3389/fninf.2022.882552/full#supplementary-material
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

REFERENCES

Abi Akar, N., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.

(2019). “Arbor–a morphologically-detailed neural network simulation library

for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia: IEEE), 274–282. doi: 10.1109/EMPDP.2019.8671560

Almog, M., and Korngreen, A. (2016). Is realistic neuronal modeling realistic? J.

Neurophysiol. 116, 2180–2209. doi: 10.1152/jn.00360.2016

Amdahl, G. M. (1967). “Validity of the single processor approach to achieving

large scale computing capabilities,” in Proceedings of Spring Joint Computer

Conference (New Jersey), 483–485. doi: 10.1145/1465482.1465560

Bailey, D. H., Lucas, R. F., andWilliams, S. (2010). Performance Tuning of Scientific

Applications. Florida: CRC Press. doi: 10.1201/b10509

Balasubramanian, M., Ruiz, T. D., Cook, B., Prabhat, M., Bhattacharyya, S.,

Shrivastava, A., et al. (2020). “Scaling of union of intersections for inference of

granger causal networks from observational data,” in 2020 IEEE International

Parallel and Distributed Processing Symposium (IPDPS) (Louisiana: IEEE),

264–273. doi: 10.1109/IPDPS47924.2020.00036

Ben-Shalom, R., Athreya, N. S., Cross, C., Sanghevi, H., Kim, K. G., Ladd, A., et al.

(2020). NeuroGPU, software for NEURON modeling in GPU-based hardware.

bioRxiv 366, 727560. doi: 10.1101/727560

Ben-Shalom, R., Aviv, A., Razon, B., and Korngreen, A. (2012). Optimizing ion

channel models using a parallel genetic algorithm on graphical processors. J.

Neurosci. Methods 206, 183–194. doi: 10.1016/j.jneumeth.2012.02.024

Ben-Shalom, R., Keeshen, C. M., Berrios, K. N., An, J. Y., Sanders, S.

J., and Bender, K. J. (2017). Opposing effects on Na v1. 2 function

underlie differences between SCN2A variants observed in individuals with

autism spectrum disorder or infantile seizures. Biol. Psychiatry 82, 224–232.

doi: 10.1016/j.biopsych.2017.01.009

Ben-Shalom, R., Ladd, A., Artherya, N. S., Cross, C., Kim, K. G., Sanghevi,

H., et al. (2022). NeuroGPU: accelerating multi-compartment, biophysically

detailed neuron simulations on GPUs. J. Neurosci. Methods 366, 109400.

doi: 10.1016/j.jneumeth.2021.109400

Ben-Shalom, R., Liberman, G., and Korngreen, A. (2013). Accelerating

compartmental modeling on a graphical processing unit. Front. Neuroinform.

7, 4. doi: 10.3389/fninf.2013.00004

Beyer, H. (2007). Evolution strategies. Scholarpedia 2, 1965.

doi: 10.4249/scholarpedia.1965

Beyer, H.-G., and Schwefel, H.-P. (2002). Evolution strategies-a comprehensive

introduction. Natural Comput. 1, 3–52. doi: 10.1023/A:1015059928466

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W.,

et al. (2020). Systematic integration of structural and functional data into

multi-scale models of mouse primary visual cortex. Neuron 106, 388–403.

doi: 10.1016/j.neuron.2020.01.040

Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T., Denker, M., Diesmann,

M., et al. (2016). High-performance computing in neuroscience for data-

driven discovery, integration, and dissemination. Neuron 92, 628–631.

doi: 10.1016/j.neuron.2016.10.035

Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T., Denker, M., Diesmann, M.,

et al. (2018). International neuroscience initiatives through the lens of high-

performance computing. Computer 51, 50–59. doi: 10.1109/MC.2018.2141039

Bower, J. M., and Beeman, D. (2012). The Book of GENESIS: Exploring Realistic

Neural Models with the GEneral NEural SImulation System. California: Springer

Science & Business Media.

Cantú-Paz, E. (2001). Migration policies, selection pressure, and parallel

evolutionary algorithms. J. Heurist. 7, 311–334. doi: 10.1023/A:1011375326814

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Connecticut:

Cambridge University Press. doi: 10.1017/CBO9780511541612

Coleman, C., Kang, D., Narayanan, D., Nardi, L., Zhao, T., Zhang, J., et al. (2019).

Analysis of dawnbench, a time-to-accuracy machine learning performance

benchmark. SIGOPS Oper. Syst. Rev. 53, 14–25. doi: 10.1145/3352020.3352024

Criado, J., Garcia-Gasulla, M., Kumbhar, P., Awile, O., Magkanaris, I.,

and Mantovani, F. (2020). “CoreNEURON: performance and energy

efficiency evaluation on intel and arm CPUs,” in 2020 IEEE International

Conference on Cluster Computing (CLUSTER) (Kobe), 540–548.

doi: 10.1109/CLUSTER49012.2020.00077

Daou, A., and Margoliash, D. (2020). Intrinsic neuronal properties represent

song and error in zebra finch vocal learning. Nat. Commun. 11, 1–17.

doi: 10.1038/s41467-020-14738-7

De Schutter, E., and Bower, J. M. (1994). An active membrane model of the

cerebellar purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol.

71, 375–400. doi: 10.1152/jn.1994.71.1.375

Denker, M., Yegenoglu, A., and Grun, S. (2018). “Collaborative HPC-enabled

workflows on the HBP Collaboratory using the Elephant framework,” in

Neuroinformatics 2018 (Montreal, QC), p. 19.

Druckmann, S., Banitt, Y., Gidon, A. A., Schürmann, F., Markram, H., and Segev,

I. (2007). A novel multiple objective optimization framework for constraining

conductance-based neuron models by experimental data. Front. Neurosci. 1,

7–18. doi: 10.3389/neuro.01.1.1.001.2007

Druckmann, S., Berger, T. K., Schürmann, F., Hill, S., Markram, H., and Segev, I.

(2011). Effective stimuli for constructing reliable neuronmodels. PLoS Comput.

Biol. 7, e1002133. doi: 10.1371/journal.pcbi.1002133

Du, X., Ni, Y., Yao, Z., Xiao, R., and Xie, D. (2013). High performance parallel

evolutionary algorithm model based on mapreduce framework. Int. J. Comput.

Appl. Technol. 46, 290–295. doi: 10.1504/IJCAT.2013.052807

Eliasmith, C., and Trujillo, O. (2014). The use and abuse of large-scale brain

models. Curr. Opin. Neurobiol. 25, 1–6. doi: 10.1016/j.conb.2013.09.009

Fan, Z., Qiu, F., Kaufman, A., and Yoakum-Stover, S. (2004). “GPU cluster for

high performance computing,” in SC’04: Proceedings of the 2004 ACM/IEEE

Conference on Supercomputing (Pennsylvania), 47.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné,

C. (2012). DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res.

13, 2171–2175. Available online at: https://www.jmlr.org/papers/v13/fortin12a.

html

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The Spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (neural simulation tool).

Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Goldman, M. S., Golowasch, J., Marder, E., and Abbott, L. (2001). Global structure,

robustness, and modulation of neuronal models. J. Neurosci. 21, 5229–5238.

doi: 10.1523/JNEUROSCI.21-14-05229.2001

Golowasch, J., Goldman, M. S., Abbott, L., and Marder, E. (2002). Failure

of averaging in the construction of a conductance-based neuron model. J.

Neurophysiol. 87, 1129–1131. doi: 10.1152/jn.00412.2001

Goodman, D. F., and Brette, R. (2009). The brian simulator. Front. Neurosci. 3,

192–197. doi: 10.3389/neuro.01.026.2009

Gouwens, N. W., Berg, J., Feng, D., Sorensen, S. A., Zeng, H., Hawrylycz, M. J.,

et al. (2018). Systematic generation of biophysically detailed models for diverse

cortical neuron types.Nat. Commun. 9, 1–13. doi: 10.1038/s41467-017-02718-3

Gouwens, N. W., Sorensen, S. A., Berg, J., Lee, C., Jarsky, T., Ting,

J., et al. (2019). Classification of electrophysiological and morphological

neuron types in the mouse visual cortex. Nat. Neurosci. 22, 1182–1195.

doi: 10.1038/s41593-019-0417-0

Guzman, S., Schlogl, A., and Schmidt-Hieber, C. (2014). Stimfit: quantifying

electrophysiological data with python. Front. Neuroinform. 8, 16.

doi: 10.3389/fninf.2014.00016

Herlihy,M., and Shavit, N. (2012).The Art ofMultiprocessor Programming, 1st Edn.

San Francisco, CA: Morgan Kaufmann Publishers Inc.

Hines, M. (1984). Efficient computation of branched nerve equations. Int. J.

Biomed. Comput. 15, 69–76. doi: 10.1016/0020-7101(84)90008-4

Hines,M. L., Morse, T., Migliore,M., Carnevale, N. T., and Shepherd, G.M. (2004).

ModelDB: a database to support computational neuroscience. J. Comput.

Neurosci. 17, 7–11. doi: 10.1023/B:JCNS.0000023869.22017.2e

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hoefler, T., and Belli, R. (2015). “Scientific benchmarking of parallel computing

systems: twelve ways to tell the masses when reporting performance results,” in

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (Texas), 1–12. doi: 10.1145/2807591.2807644

Keren, N., Peled, N., and Korngreen, A. (2005). Constraining compartmental

models using multiple voltage recordings and genetic algorithms. J.

Neurophysiol. 94, 3730–3742. doi: 10.1152/jn.00408.2005

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 882552

https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1152/jn.00360.2016
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1201/b10509
https://doi.org/10.1109/IPDPS47924.2020.00036
https://doi.org/10.1101/727560
https://doi.org/10.1016/j.jneumeth.2012.02.024
https://doi.org/10.1016/j.biopsych.2017.01.009
https://doi.org/10.1016/j.jneumeth.2021.109400
https://doi.org/10.3389/fninf.2013.00004
https://doi.org/10.4249/scholarpedia.1965
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1016/j.neuron.2016.10.035
https://doi.org/10.1109/MC.2018.2141039
https://doi.org/10.1023/A:1011375326814
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1109/CLUSTER49012.2020.00077
https://doi.org/10.1038/s41467-020-14738-7
https://doi.org/10.1152/jn.1994.71.1.375
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.1371/journal.pcbi.1002133
https://doi.org/10.1504/IJCAT.2013.052807
https://doi.org/10.1016/j.conb.2013.09.009
https://www.jmlr.org/papers/v13/fortin12a.html
https://www.jmlr.org/papers/v13/fortin12a.html
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1523/JNEUROSCI.21-14-05229.2001
https://doi.org/10.1152/jn.00412.2001
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1038/s41467-017-02718-3
https://doi.org/10.1038/s41593-019-0417-0
https://doi.org/10.3389/fninf.2014.00016
https://doi.org/10.1016/0020-7101(84)90008-4
https://doi.org/10.1023/B:JCNS.0000023869.22017.2e
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1152/jn.00408.2005
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

Knight, J. C., and Nowotny, T. (2018). Gpus outperform current hpc

and neuromorphic solutions in terms of speed and energy when

simulating a highly-connected cortical model. Front. Neurosci. 12, 941.

doi: 10.3389/fnins.2018.00941

Kulkarni, S. R., Parsa, M., Mitchell, J. P., and Schuman, C. D. (2021).

Benchmarking the performance of neuromorphic and spiking neural network

simulators. Neurocomputing 447, 145–160. doi: 10.1016/j.neucom.2021.03.028

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et al.

(2019). Coreneuron: an optimized compute engine for the neuron simulator.

Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Lindén, H., Hagen, E., Leski, S., Norheim, E. S., Pettersen, K. H., and

Einevoll, G. T. (2014). Lfpy: a tool for biophysical simulation of extracellular

potentials generated by detailed model neurons. Front. Neuroinform. 7, 41.

doi: 10.3389/fninf.2013.00041

Mainen, Z. F., Joerges, J., Huguenard, J. R., and Sejnowski, T. J. (1995). A model

of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439.

doi: 10.1016/0896-6273(95)90020-9

Mainen, Z. F., and Sejnowski, T. J. (1996). Influence of dendritic structure

on firing pattern in model neocortical neurons. Nature 382, 363–366.

doi: 10.1038/382363a0

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,

Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical

microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Masoli, S., Rizza, M. F., Sgritta, M., Van Geit, W., Schürmann, F., and D’Angelo,

E. (2017). Single neuron optimization as a basis for accurate biophysical

modeling: the case of cerebellar granule cells. Front. Cell. Neurosci. 11, 71.

doi: 10.3389/fncel.2017.00071

Mitchell, M. (1998). An Introduction to Genetic Algorithms. Massachusetts: MIT

Press. doi: 10.7551/mitpress/3927.001.0001

Nogaret, A., Meliza, C. D., Margoliash, D., and Abarbanel, H. D. (2016). Automatic

construction of predictive neuron models through large scale assimilation of

electrophysiological data. Sci. Rep. 6, 1–14. doi: 10.1038/srep32749

Prinz, A. A., Billimoria, C. P., and Marder, E. (2003). Alternative to hand-tuning

conductance-based models: construction and analysis of databases of model

neurons. J. Neurophysiol. 90, 3998–4015. doi: 10.1152/jn.00641.2003

Prinz, A. A., Bucher, D., and Marder, E. (2004). Similar network activity from

disparate circuit parameters. Nat. Neurosci. 7, 1345–1352. doi: 10.1038/nn1352

Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity.

Exp. Neurol. 1, 491–527. doi: 10.1016/0014-4886(59)90046-9

Rall, W. (1962). Electrophysiology of a dendritic neuron model. Biophys. J. 2(2 Pt

2), 145. doi: 10.1016/S0006-3495(62)86953-7

Rall, W. (1964). “Theoretical significance of dendritic trees for neuronal input-

output relations,” in Neural Theory and Modeling, eds I. Segev, J. Rinzel, and G.

M. Shephard (Cambridge: MIT Press), 73–97.

Rall, W. (2009). Rall model. Scholarpedia 4, 1369. doi: 10.4249/scholarpedia.1369

Ramaswamy, S., Courcol, J.-D., Abdellah, M., Adaszewski, S. R., Antille,

N., Arsever, S., et al. (2015). The neocortical microcircuit collaboration

portal: a resource for rat somatosensory cortex. Front. Neural Circ. 9, 44.

doi: 10.3389/fncir.2015.00044

Roscoe, B. (1998). The Theory and Practice of Concurrency. New Jersey: Prentice-

Hall (Pearson).

Sahoo, S. S., Wei, A., Valdez, J., Wang, L., Zonjy, B., Tatsuoka, C., et al. (2016).

NeuroPigPen: a scalable toolkit for processing electrophysiological signal data

in neuroscience applications using apache pig. Front. Neuroinform. 10, 18.

doi: 10.3389/fninf.2016.00018

Sakmann, B., and Neher, E. (1984). Patch clamp techniques for studying

ionic channels in excitable membranes. Annu. Rev. Physiol. 46, 455–472.

doi: 10.1146/annurev.ph.46.030184.002323

Sáray, S., Rössert, C. A., Appukuttan, S., Migliore, R., Vitale, P., Lupascu,

C. A., et al. (2020). Systematic comparison and automated validation

of detailed models of hippocampal neurons. bioRxiv [Preprint].

doi: 10.1101/2020.07.02.184333

Schaller, R. R. (1997). Moore’s law: past, present and future. IEEE Spectrum 34,

52–59. doi: 10.1109/6.591665

Spratt, P. W., Alexander, R. P., Ben-Shalom, R., Sahagun, A., Kyoung, H.,

Keeshen, C. M., et al. (2021). Paradoxical hyperexcitability from Na v1. 2

sodium channel loss in neocortical pyramidal cells. Cell Rep. 36, 109483.

doi: 10.1016/j.celrep.2021.109483

Strohmaier, E., Meuer, H. W., Dongarra, J., and Simon, H. D. (2015). The

top500 list and progress in high-performance computing. Computer 48, 42–49.

doi: 10.1109/MC.2015.338

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011).

Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell.

Neurosci. 2011, 879716. doi: 10.1155/2011/879716

Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau,

F. E., Roopun, A., et al. (2005). Single-column thalamocortical

network model exhibiting gamma oscillations, sleep spindles, and

epileptogenic bursts. J. Neurophysiol. 93, 2194–2232. doi: 10.1152/jn.00983.

2004

Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of

a ca3 hippocampal pyramidal neuron incorporating voltage-clamp data on

intrinsic conductances. J. Neurophysiol. 66, 635–650. doi: 10.1152/jn.1991.66.

2.635

Van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,

A. B., et al. (2018). Performance comparison of the digital neuromorphic

hardware spinnaker and the neural network simulation software nest

for a full-scale cortical microcircuit model. Front. Neurosci. 12, 291.

doi: 10.3389/fnins.2018.00291

Van Geit, W., Achard, P., and De Schutter, E. (2007). Neurofitter: a parameter

tuning package for a wide range of electrophysiological neuron models. Front.

Neuroinform. 1, 1. doi: 10.3389/neuro.11.001.2007

Van Geit, W., De Schutter, E., and Achard, P. (2008). Automated neuron

model optimization techniques: a review. Biol. Cybernet. 99, 241–251.

doi: 10.1007/s00422-008-0257-6

Van Geit, W., Gevaert, M., Chindemi, G., Rossert, C., Courcol, J.-D., Muller,

E. B., et al. (2016). BluePyOpt: leveraging open source software and

cloud infrastructure to optimise model parameters in neuroscience. Front.

Neuroinform. 10, 17. doi: 10.3389/fninf.2016.00017

Vanier, M. C., and Bower, J. M. (1999). A comparative survey of automated

parameter-search methods for compartmental neural models. J. Comput.

Neurosci. 7, 149–171. doi: 10.1023/A:1008972005316

Wu, X., Taylor, V., Wozniak, J. M., Stevens, R., Brettin, T., and Xia, F.

(2019). “Performance, energy, and scalability analysis and improvement

of parallel cancer deep learning candle benchmarks,” in Proceedings of

the 48th International Conference on Parallel Processing (Kyoto), 1–11.

doi: 10.1145/3337821.3337905

Zitzler, E., and Künzli, S. (2004). “Indicator-based selection in multiobjective

search,” in International Conference on Parallel Problem Solving from Nature

(Berlin; Heidelberg: Springer), 832–842. doi: 10.1007/978-3-540-30217-9_84

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ladd, Kim, Balewski, Bouchard and Ben-Shalom. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 882552

https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1016/j.neucom.2021.03.028
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.3389/fninf.2013.00041
https://doi.org/10.1016/0896-6273(95)90020-9
https://doi.org/10.1038/382363a0
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.3389/fncel.2017.00071
https://doi.org/10.7551/mitpress/3927.001.0001
https://doi.org/10.1038/srep32749
https://doi.org/10.1152/jn.00641.2003
https://doi.org/10.1038/nn1352
https://doi.org/10.1016/0014-4886(59)90046-9
https://doi.org/10.1016/S0006-3495(62)86953-7
https://doi.org/10.4249/scholarpedia.1369
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.3389/fninf.2016.00018
https://doi.org/10.1146/annurev.ph.46.030184.002323
https://doi.org/10.1101/2020.07.02.184333
https://doi.org/10.1109/6.591665
https://doi.org/10.1016/j.celrep.2021.109483
https://doi.org/10.1109/MC.2015.338
https://doi.org/10.1155/2011/879716
https://doi.org/10.1152/jn.00983.2004
https://doi.org/10.1152/jn.1991.66.2.635
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.3389/neuro.11.001.2007
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.1023/A:1008972005316
https://doi.org/10.1145/3337821.3337905
https://doi.org/10.1007/978-3-540-30217-9_84
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Scaling and Benchmarking an Evolutionary Algorithm for Constructing Biophysical Neuronal Models
	1. Introduction
	2. Methods
	2.1. Evolutionary Algorithm
	2.2. Implementations
	2.3. Hardware
	2.4. Software

	3. Results
	3.1. Experimental Design
	3.2. Benchmark 1
	3.3. Benchmark 2
	3.4. Benchmark 3
	3.5. Scaling Stimuli and Electrophysiological Score Functions
	3.6. Benchmark Model Fit
	3.7. Effect of Scaling Up EA Population

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

