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Abstract
Motivation: Chronic kidney disease (CKD) and acute kidney injury (AKI) are prominent public health concerns affecting more than 15% of the global 
population. The ongoing development of spatially resolved transcriptomics (SRT) technologies presents a promising approach for discovering the spa
tial distribution patterns of gene expression within diseased tissues. However, existing computational tools are predominantly calibrated and designed 
on the ribbon-like structure of the brain cortex, presenting considerable computational obstacles in discerning highly heterogeneous mosaic-like tissue 
architectures in the kidney. Consequently, timely and cost-effective acquisition of annotation and interpretation in the kidney remains a challenge in 
exploring the cellular and morphological changes within renal tubules and their interstitial niches.
Results: We present an empowered graph deep learning framework, REGNN (Relation Equivariant Graph Neural Networks), designed for SRT data 
analyses on heterogeneous tissue structures. To increase expressive power in the SRT lattice using graph modeling, REGNN integrates equivariance 
to handle n-dimensional symmetries of the spatial area, while additionally leveraging Positional Encoding to strengthen relative spatial relations of the 
nodes uniformly distributed in the lattice. Given the limited availability of well-labeled spatial data, this framework implements both graph autoencoder 
and graph self-supervised learning strategies. On heterogeneous samples from different kidney conditions, REGNN outperforms existing computa
tional tools in identifying tissue architectures within the 10× Visium platform. This framework offers a powerful graph deep learning tool for investigat
ing tissues within highly heterogeneous expression patterns and paves the way to pinpoint underlying pathological mechanisms that contribute to 
the progression of complex diseases.
Availability and implementation: REGNN is publicly available at https://github.com/Mraina99/REGNN.

1 Introduction
The kidneys play several vital roles in maintaining bodily 
equilibrium, including filtrating bodily fluids and waste, reg
ulating blood acid-base balance, maintaining electrolyte bal
ance, and supporting the production of red blood cells 
(Murray and Paolini 2024). Chronic kidney disease (CKD) 
and acute kidney injury (AKI) are two of the most common 
diseases worldwide. CKD has a prevalence of approximately 
13.4%, with 5–7 million patients experiencing kidney failure 
in late-stage CKD (Johansen et al. 2021), and AKI was found 
to have a prevalence of up to 3000 cases in 1 million hospital
ized patients (Safari et al. 2018). Even acute and chronic cel
lular and morphological changes occur in renal tubules 
surrounding the interstitial niche (Ferreira et al. 2021), there 

are still many unknowns in understanding the biological and 
pathological mechanisms of CKD and AKI, especially how 
various cells play different roles in key injury-related pro
cesses such as fibrosis (Kuppe et al. 2021), immune infiltra
tion (Allison 2019), and epithelial repair (Ferreira et al. 
2021) in different kidney tissues.

The emergence of spatially resolved transcriptomics (SRT) 
has brought novel advancements and opportunities in uncov
ering the fundamental pathogenesis behind a wide range of 
human diseases (Moses and Pachter 2022). The increasing 
availability of SRT data (Xiaowei 2021) is enabling novel 
analysis to reshape our understanding of cell spatial organiza
tion and their functional generation (Rao et al. 2021), includ
ing cell–cell communications (Jin et al. 2021), spatially 
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variable genes relating to spatial development (Svensson et al. 
2018, Wang et al. 2023), and analysis of tissue architecture 
(Elosua-Bayes et al. 2021). These insights would be vital in 
interpreting the underlying biological and pathological pro
cesses in kidney tissues involved in CKD and AKI (Gisch 
et al. 2024).

Analyzing SRT data on kidney diseases presents three key 
challenges: First, modeling the kidney’s heterogeneous, 
sparse, and mosaic-like cell types differs from organs with 
ribbon-distributed regions, as kidney cells exist in close prox
imity with varied distribution across pathologic sections 
(Lake et al. 2023). In a pathologic section, kidney tubules are 
cut from different directions during the sample preparation, 
which causes more cell-type distribution variation across 
samples. This complexity poses a huge challenge in methods 
development that are often trained and benchmarked on 
brain tissue structures. Figure 1 illustrates these tissue type 
distinctions on 10× Visium SRT (Ferreira et al. 2021, Zhao 
et al. 2021). The second challenge is the limited expressive 
power of graph neural networks. Classical message passing 
GNN(Kipf and Welling 2016) is theoretically limited by the 
1-order Weisfeiler-Lehman (1-WL) test (Xu et al. 2018) to 
distinguish if two given graphs are isomorphic or not 
(Balcilar et al. 2021). Moreover, the nature of the regular to
pology in the lattice structures of the SRT makes it difficult 
to differentiate between nodes for they have similar topology 

in the modeled lattice graphs. This graph symmetry, such as 
the hexagonal lattice in 10× Visium spots, can obscure rela
tionships between neighboring nodes, especially with sparse 
kidney cell-type distributions. Third, efficiently annotating 
vast omics datasets remains challenging, as even with AI- 
based tools, linking histology to SRT spots can require weeks 
of pathologist time (Elmarakeby et al. 2021, Quan et al. 
2023, Shaban et al. 2024), making the process expensive and 
sometimes unfeasible.

Currently, numerous computational methods are being de
veloped to identify tissue architecture from SRT data. 
BayesSpace (Zhao et al. 2021) uses Bayes inference to dis
solve tissue architecture, and Giotto (Dries et al. 2021) uti
lizes graph-based clustering methods for spatial clustering. 
For cell-type clustering, FICT (Teng et al. 2022) combines ex
pression and neighborhood for assignment, while 
smFISHhmrf (Zhu et al. 2018) uses a Hidden–Markov ran
dom field approach to find neighborhood patterns among 
cells. Graph neural networks (GNNs) (Juexin Wang et al. 
2021) model cell relations as a graph on SRT and learn low 
dimensional representations through deep learning architec
tures. Both SpaGCN (Hu et al. 2021) and CCST (Li et al. 
2022) use deep learning to categorize the spatial domain 
based on graph neural networks (Ferreira et al. 2021). 
Methodologies such as SEDR (H. Xu et al. 2024) and 
STAGATE (Dong and Zhang 2022) build on graph 

Figure 1. Comparison of the tissue architecture and cell type distribution of the brain cortex vs kidney nephron. (A) Brain cortex diagram and ribbon-like 
cell types distribution of a brain cortex sample (Maynard et al. 2021) on 10× Visium platform. (B) Kidney nephron diagram and mosaic-like cell type 
distribution of a kidney sample from KPMP (de Boer et al. 2021) on 10× Visium platform. Each color represents a different cell type present in the tissue. 
For Fig 1A-B, the Brain and Kidney drawing was sourced from BioRender.
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autoencoder strategies for learning their low-dimensional la
tent embeddings. RESEPT (Chang et al. 2022) combines 
GNNs with the RestNet50 model to process image segmenta
tion as cell types (He et al. 2016). SpaGCN (Hu et al. 2021), 
SiGra (Tang et al. 2023), and GraphST (Long et al. 2023) ad
ditionally adopt H&E image data to improve the model per
formances. Despite these advances, significant gaps remain in 
robustly analyzing heterogeneous tissue structures, particu
larly in kidney studies.

To address these challenges, we introduce an empowered 
graph deep learning framework, REGNN (Relation Equivariant 
Graph Neural Networks), for SRT data analyses on heteroge
neous tissue structures. To increase the expressive power in the 
SRT lattice using graph modeling, the proposed REGNN inte
grates three strategies to address current challenges:

1) Equivariance to handle the rotational and translational 
symmetries of the spatial space. 

2) Positional encoding (PE) to identify and strengthen the 
relative spatial relations of the nodes uniformly distrib
uted in the lattice. 

3) A graph self-supervised learning (SSL) strategy (Yang 
et al. 2020) to generate robust data representations. 

The key advantage of including equivariance and posi
tional encoding lies in the ability to capture and leverage the 
inherent spatial relationships and symmetries present in SRT 
data. Equivariance allows the model to handle rotational and 
translational symmetries in the given spatial domain, and this 
ensures that the analysis remains consistent regardless of the 
orientation or position of the tissue sample (H. Chen et al. 
2024). This is particularly important in biological contexts 
such as the kidney, where the relative arrangement of cells 
and their interactions are crucial, but the absolute orientation 
may vary between samples. Implementing positional encod
ing components further strengthens the model’s capability by 
allowing it to identify and leverage the relative spatial rela
tionships between nodes distributed across the SRT tissue 
sample (Wang et al. 2022). These features, combined with a 
graph self-supervised learning strategy, empower the model 
to generate robust data representations that accurately reflect 
the underlying biological structures and processes (Liu et al. 
2024). This empowered GNN design would ideally lead to 
more accurate and biologically meaningful insights from spa
tial transcriptomics data, potentially revealing new patterns 
of gene expression and cellular organization that are critical 
for understanding tissue function and disease processes.

The combination of these techniques empowers REGNN 
over classical graph neural networks (GNN) and makes it ca
pable of tackling challenging heterogeneous mosaic-like kid
ney samples. REGNN achieves state-of-the-art performance 
on 23 mosaic-like kidney samples of 10× Visium SRT data 
from the KPMP (Kidney Precision Medicine Project) atlas (de 
Boer et al. 2021). We also demonstrate the performance of 
REGNN correlates with tissue heterogeneity, which shows its 
potential in other highly heterogeneous tissues such as 
the kidney.

2 Materials and methods
REGNN is an empowered graph neural network identifying 
heterogeneous tissue structures in SRT data, which is 
designed to capture the comprehensive relations between the 

spots in SRT by keeping their spatial relations equivariant 
and unique in the learnt representation. Building on the clas
sical message passing GNN, REGNN incorporates two criti
cal components to increase expressive power, namely, 
equivariance and PE. REGNN can be trained either in an 
unsupervised learning style graph autoencoder (GAE) as 
REGNN_GAE or a self-supervised learning strategy 
REGNN_SSL. This framework learns low dimensional pre
sentations of each spot in the SRT and infers tissue architec
tures through clustering the embeddings. The schema of the 
proposed framework is shown in Fig. 2A.

2.1 Graph modeling SRT and graph 
neural networks
Based on our previous works RESEPT (Chang et al. 2022) 
and scGNN (Juexin Wang et al. 2021), SRT data are repre
sented as a spatial spot-spot graph G¼ A;Xf g by defining 
adjacency matrix A, A 2 RjVj× jVj with node attributes X, 
X 2 RjVj× D, where V is the node set with D dimensions from 
gene expression. Each spot within a tissue sample containing 
several single cells is modeled as a node v. In graph G, mea
sured gene expression values of the spot are treated as the 
node attributes X, and the neighboring spots directly adjacent 
in the Euclidean space on the tissue slice are linked with an 
undirected edge e. As a result, this modeled undirected graph 
represents both the spatial context and the expression simi
larities between SRT nodes. This graph modeling method is 
applicable for both 10× Visium and FISH platforms.

Generally, a classical L-layer graph convolution network 
(GCN) includes two steps of operations for each node vi at 
each layer: (i) AGG operation: aggregating messages ml

i from 
the neighborhood Ni at lth layer as Equation (1); (ii) 
UPDATE operation: updating node representation with hl

i as 
Equation (2). The representation of each node hlþ1

i at layer 
lþ1 can be learned from the AGG and UPDATE operations. 

ml
i ¼ AGG hl

j : vj2 Ni

n o� �
(1) 

hlþ 1
i ¼ UPDATE hl

i;m
l
i

� �

(2) 

2.2 REGNN incorporates equivariance in 
AGG operation
For SRT in ST and 10×X Visium technologies, directly 
modeling its lattice structure as a spot graph brings rotational 
and translational symmetries with the spatial gene expression 
pattern, which confuses and diminishes the expressive power 
of classical GNNs. Where E(3) GNNs only maintain trans
formations within the 3D space, E(n)-equivariant approaches 
remain consistent under rigid transformations—such as 
translation, rotation, reflection, and permutation—in any n- 
dimensional space. Inspired by the superior scalability of E(n) 
equivariant GNN (Satorras et al. 2021), REGNN integrates 
translation, rotation, reflection, and permutation equivar
iance with respect to an input set of spots in the modelled 
spatial spot–spot graph in the AGG operation. Targeting lat
tice symmetries, we define coordinates embedding x for each 
spot, where x 2 RjVj× 2 in 2D SRT data. The initial x0 is the 
actual X–Y coordinates in the SRT lattice. Equivariance is in
tegrated by modifying the classic GCN layer’s definition to 
include the learning of coordinates embeddings associated 
with each graph node(Sato 2020). For connected node i and j 
in the spot-spot graph at the lth layer, REGNN defines 
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message embedding mij in Equation (3) to incorporate the rel

ative square distance between coordinates xl
i � xl

j

�
�
�

�
�
�

�
�
�

�
�
�
2
, this in

formation together with node embeddings hl
i; hl

j; and edge 
attributes eij are summarized by learnable Multilayer 
Perceptrons (MLPs) φe. Then coordinate embedding xlþ1

i is 
updated by a weighted sum of all relative differences between 
coordinates with mij in Equation (4), where φx is another 
MLPs, C is a tunable hyperparameter to control the speed 
and strength. Compared with the classical AGG operation in 
Equation (1), REGNN updates the AGG operation by aggre
gating messages from all edges in Equation (5). 

mij ¼ φe ðh
l
i; hl

j; xl
i � xl

j

�
�
�

�
�
�

�
�
�

�
�
�
2
; eijÞ (3) 

xlþ 1
i ¼ xl

iþC
X

j6¼i
xl

i � xl
j

� �
φxðmijÞ (4) 

ml
i ¼ AGG mijji 6¼ j

� �� �
¼
X

j6¼i
mij (5) 

2.3 REGNN incorporates positional encoding in 
UPDATE operation
Besides integrating equivariance in handling symmetries in 
AGG operation, REGNN also incorporates PE in the 
following-up UPDATE operation. Widely used in linear data 
structures such as Transformers (Vaswani 2017) and large 
language models (Touvron et al. 2023), PE is often treated as 
a unique feature to mark the entity’s relative position. In the 
SRT modeling, PE shows and strengthens the spatial relations 
between the nodes in the graph. Moreover, PE can be applied 
to the model to increase its discerning power to distinguish 
on an isomorphic graph. We use one widely accepted strategy 
in PE, utilizing sinusoids in the 2D space (Vaswani 2017: 
5998–6008, Zhong et al. 2021). Thus, each coordinate is fea
tured with a fixed PE consisting of E sinusoids with wave
lengths that follow a geometric progression from 1 to the 
Nyquist limit, where E 2 ½1; jVj� is the size of the SRT and k 
represents the coordinates of the SRT: 

Figure 2. Schema of REGNN model. Take 10× Visium platform as an example, REGNN models the SRT data as a spot-spot graph and learns the 
embeddings of the data, then infers tissue architecture through clustering. (A) The empowered REGNN contains: (1) Equivariance in AGG operation. 
(2) Positional Encoding in UPDATE operation. (B) REGNN_GAE as a graph autoencoder architecture built on REGNN, and (C) REGNN_SSL as a graph 
contrastive learning strategy built on REGNN.
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PE 2ið Þ kj
� �
¼ sin kjEπ 2

E

� � i
2
E� 1

� �

; i ¼ 0; . . . ;
2
E
� 1; kj 2 k

PE 2iþ1ð Þ kj
� �
¼ cos kjEπ 2

E

� � i
2
E� 1

� �

; i ¼ 0; . . . ;
2
E
� 1; kj 2 k

(6) 

In REGNN, UPDATE operation as Equation (2) in classi
cal GNN is adjusted by explicitly adding the PE embedding 
to message embedding ml

i as operation � in Equation (7), 
where α is the intensity of PE. 

hlþ 1
i ¼ UPDATE hl

i;m
l
i � α �PEi

� �

(7) 

Compared to classical L-layer GCN, REGNN uses the idea 
of equivariance in AGG operation as Equation (5) and inte
grates PE in UPDATE operation as Equation (7), the final 
formulation of REGNN is shown as Equation (8). 

hlþ 1
i ¼ UPDATE hl

i;AGG mijji 6¼ j
� �� �

� α �PEi

� �

(8) 

2.4 REGNN_GAE learns node embeddings using a 
graph autoencoder in an unsupervised 
learning strategy
REGNN can be trained in an unsupervised learning strategy 
where it is adopted as the backbone architecture in 
REGNN_GAE framework as Fig. 2B. The proposed REGNN 
is utilized as the encoder of the graph autoencoder, and graph 
embedding Z is learnt by stacking two layers of REGNN in 
Equation (9). The decoder calculates the inner product of Z, 
and then activated by sigmoid activation function to recon
struct adjacency matrix bA in Equation (10). 

Z ¼ REGNNðREGNN X;A;x; eð Þ; A;x; eÞ (9) 
bA ¼ sigmoid Z; ZT

� �
(10) 

The loss function of the graph autoencoder is minimizing 
cross-entropy L between reconstructed matrix bA and input 
adjacency matrix A as shown in Equation (11). With N nodes 
being the number of spots on the slide sample, N × N is the 
dimension of the adjacency matrix, and aij and baij are the 
elements of A and bA respectively. 

LðA; bAÞ ¼ �
1

N × N

XN

i¼1

XN

j¼1
ðaij � log baij

� �

þð1 � aijÞ � logð1 � baijÞÞ

(11) 

2.5 REGNN_SSL implements self-supervised 
learning through graph contrastive learning
Inspired by GraphCL (You et al. 2020), we adopted a graph 
based contrastive learning strategy to learn the intrinsic node- 
wise low-dimensional representation in REGNN_SSL 
(Fig. 2B). The primary objective of REGNN_SSL is to en
hance mutual information between representations of two 
types of augmented graphs derived from the input spot graph. 
Firstly, the input SRT spot graph G is augmented with data 
augmentation strategies at the graph level. These graph aug
mentation strategies generate many new augmented graphs G
by randomly perturbate the original topology of the input 
graph at different levels of node, edge, attribute, and 

subgraph with specific ratio r, 0< r<1. During GNN pre- 
training, SSL is optimized to contrastive loss of N pairs of 
randomly sampled augmented graphs. For kth pair of aug
mented graphs Gi and Gj, REGNN learnt the corresponding 
graph level embedding zk;i and zk;j. Negative pairs are gener
ated from the other N −1 augmented graphs using the same 
strategy as simCLR (T. Chen et al. 2020). The contrastive 
loss function is defined to maximize the consistency between 
positive pairs compared with the negative pairs with normal
ized temperature-scaled cross entropy loss (Sohn 2016), 
which summarizes all positive pairs as Equation (12). 

Loss ¼
XN

k¼1
� log

exp
sim zk;i ;zk;jð Þ

τ

� �

PN
k0¼1;k0 6¼k exp

sim zk;i;zk0 ;jð Þ

τ

� � (12) 

where sim zk;i; zk;jð Þ ¼ zT
k;izk;j=kzk;ikkzk;jk, which is defined as the 

cosine similarity function, τ denotes the temperature parameter.
We assume the learnt graph embedding Z from both 

REGNN_GAE and REGNN_SSL represent the topological 
relations within the graph. Subsequently, we apply the k- 
means clustering algorithm on Z, and then annotate the clus
tering results as the known distinct cell types within the tissue 
architecture.

2.6 Data processing
All SRT sample data was extracted using a similar prepro
cessing procedure. For both 10x Visium and ST data, gene 
expression counts, spatial coordinates, and cell type labels 
were extracted using R and then stored in separate input files. 
These counts, coordinates, and label files were the inputs 
used to test each method. Any further preprocessing would 
follow the recommended steps of the tested method, as de
scribed in their official documentation (Supplementary Notes 
2). The following subsections cover the samples used to 
test REGNN.

2.6.1 Kidney data
Twenty-three kidney samples with 10× genomics Visium 
platform are processed and provided by the KPMP at https:// 
atlas.kpmp.org/repository/. The counts matrix, spatial data, 
and metadata annotation labels are extracted using Seurat.

2.6.2 SpatialLIBD
The spatialLIBD (Pardo et al. 2022) dataset consists of por
tions of the human dorsolateral prefrontal cortex (DLPFC) 
within 12 samples with 10× genomics Visium platform. This 
processed data included the LogCPM and SCTransform 
processed counts along with the spot annotations of each 
sample can be found at https://research.libd.org/spatialLIBD/.

2.6.3 Human breast cancer
One human breast cancer sample is available through 10x geno
mics website at https://www.10xgenomics.com/datasets/human- 
breast-cancer-block-a-section-1-1-standard-1-0-0. The prepro
cessed counts and annotated spot data is publicly available 
through SEDR’s (H. Xu et al. 2024) GitHub repository.

2.6.4 HER2-positive breast tumor
There are eight samples on the ST platform in the collection 
of HER2-positive breast tumor with manual annotation at 
https://github.com/almaan/her2st. This data included the 
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preprocessed counts along with the spatial spot coordinates 
and pixel coordinates.

2.7 Functional tissue unit domain annotation
Within kidney samples, glomeruli and the tubulointerstitium 
are annotated visually using the hematoxylin and eosin stain 
in Loupe Browser 6.0. A spot is denoted glomerular if its cen
troid falls within the bounds of Bowman’s capsule. Spots 
found on the edge of tissue are eliminated from the analysis 
to prevent edge artifacts. All other spots are considered tubu
lointerstitial. All the cell types are manually validated by ex
perienced nephrology physicians from KPMP.

3 Results
3.1 REGNN accurately identifies the tissue 
architecture of mosaic-like heterogeneous 
kidney samples
Twenty-three kidney samples from healthy, CKD, and AKI 
patients sequenced on 10× Visium platform are downloaded 
from the KPMP atlas (de Boer et al. 2021). The sample infor
mation is detailed in Supplementary Table 1. Cell types iden
tified in the spots of the samples are annotated as epithelial, 
endothelial, immune, and stromal by experienced nephrology 
physicians from KPMP. These annotations are utilized as the 
gold standard benchmarks to test the performance of 
REGNN and other existing methods including BayesSpace 
(Zhao et al. 2021), Giotto (Dries et al. 2021), SpaGCN (Hu 
et al. 2021), RESEPT (Chang et al. 2022), SiGra (Tang et al. 
2023), SEDR (H. Xu et al. 2024), GraphST (Long et al. 
2023), and STAGATE (Dong and Zhang 2022), CCST (Li 
et al. 2022), FICT (Teng et al. 2022), and smFISHhmrf (Dries 
et al. 2021). Both versions of REGNN are then tested sepa
rately to observe the difference in performance between the 
GAE and SSL frameworks. Four criteria were used to quan
tify the efficacy of these SRT analysis tools, including 
Adjusted Rand Index (ARI), Rand Index (RI), Normalized 
Mutual Info score (NMI), and Fowlkes Mallows Index (FMI) 
(Rodriguez et al. 2019).

For all 23 samples, we observe that both REGNN-based 
frameworks outperform the competitive methods within a 
larger median and significantly larger means within the ARI 
performance as seen in Supplementary Table S7. The box 
plot of all samples is shown in Fig. 3 and Supplementary Fig. 
S1. Additionally, it is observed that REGNN_SSL has a 
slightly smaller standard deviation when compared to 
REGNN_GAE, though REGNN_GAE is able to achieve a 
higher performance. Specifically, we can observe that both 
REGNN frameworks achieved better or comparable perfor
mance in ARI among 11 CKD samples, while the healthy ref
erence samples appear to cause some trouble for the model 
(Supplementary Figs 2–4). Besides the best performer, 
REGNN, we can see that GNN-based methods, including 
SpaGCN, SiGra, GraphST, and STARGATE, generally out
perform non-deep learning-based approaches in these sam
ples. GraphST, which integrates H&E images and adopts a 
self-supervised learning strategy, demonstrates second-best 
performance in all samples, illustrating the potential of both 
self-supervised learning and image integration. Considering 
the performance of the other two methods integrating image 
information, SpaGCN and SiGra, the image integration strat
egy needs more careful design and implementation. Similarly, 

the Bayesian method BayesSpace achieves good results in 
some cases, but there is high variance in all the samples.

A sample V10S14-085_XY04_21–0057 with a known 
presence of CKD is taken as a representative example in 
Supplementary Table S2. In this sample, both REGNN-based 
frameworks lead the performance in nearly all four criteria 
with a clear margin, while SSL is even better than the GAE 
framework. Then we scrutinize the computational methods 
by comparing their results to the gold standard annotations 
and mapping them to their original locations in Fig. 4. As a 
representative CKD sample, the epithelial cell and stroma cell 
populations are evenly spread, immune and endothelial cells 
are sparse and spread across the sample. Some competitive 
methods such as RESEPT (Chang et al. 2022), BayesSpace 
(Zhao et al. 2021), SEDR (H. Xu et al. 2024), FICT (Teng 
et al. 2022) and CCST (Li et al. 2022) only captured large ho
mogeneous cell groups, while missing sparse cell groupings. 
Other methods like Giotto (Dries et al. 2021), and SpaGCN 
(Hu et al. 2021) successfully identify sparse spot clusters but 
are confused with their cell-type annotations. Both unsuper
vised and self-supervised versions of REGNN correctly iden
tify the larger sections of epithelial and stroma cells while 
also identifying some of the sparse spots as endothelial and 
immune cells. Specifically, REGNN_GAE correctly identifies 
endothelial cells on the left side of the sample, but it also 
misses the epithelial cell group on the right side of the sample. 
REGNN_SSL does better in correctly identifying the epithe
lial cells on the right portion of the sample, but both frame
works also overrepresent immune and endothelial cells where 
there were none.

Additionally, we show ARI comparisons on healthy, CKD, 
and AKI example samples in Supplementary Table S3. 
Supplementary Fig. S5 displays an AKI sample V10S14- 
087_XY04_21-0065. We observe similar trends as the CKD 
sample in Fig. 4, where the competitive methods perform sim
ilarly in capturing large cell groupings on this AKI sample, 
overrepresenting stroma and immune cell populations. 
REGNN_SSL can identify some of these sparse groupings but 
misses many of the cell types found on the right side of the 
sample. Meanwhile, we observe that REGNN_GAE performs 
well on this AKI sample’s sparse cell groupings, being able to 
precisely identify areas where immune and stroma popula
tions are located but lack its overall cell population accuracy.

3.2 Equivariance and PE are both essential to the 
expressive power of REGNN
We use an ablation test to investigate how the designed 
equivariance and PE contributed to the performances of 
REGNN. On REGNN_GAE, we utilize a vanilla GNN, 
which kept the majority of REGNN model but remove both 
equivariance in AGG operation and PE in UPDATE opera
tion. Then we only keep equivariance in AGG operation and 
only keep PE in UPDATE operation. The results of these sim
plified models are then compared with the REGNN model 
equipped with both components on three kidney samples, 
each representing its disease condition. From Fig. 5A, 
Supplementary Figs 7 and 8, and Supplementary Table S4, 
we can see that directly utilizing equivariance improves the 
performance of GNN. While there was slight improvement 
when only incorporating PE, the combination of both equiv
ariance and PE significantly enhanced the expressive power 
of REGNN across all three samples. Even in the low ARI ref
erence samples, we observe that the inclusion of equivariance 
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and PE outperforms the vanilla GNN. These results were 
consistent with the theoretical analysis of the expressive 
power of the graph deep learning model, where implementing 
equivariance increases expressive power through enhancing 
the GNN architecture, and PE increases expressive power by 
enhancing the topology of the GNN (Sato 2020).

3.3 REGNN captures clustering-agnostic 
representations
Furthermore, we check whether the implemented clustering 
algorithm, other than the GNN model, plays a significant 
role in the efficacy of the results. Besides utilizing k-means in 
REGNN_GAE, five other clustering algorithms including af
finity propagation, agglomerative, spectral clustering, FICT, 
and Hidden-Markov random field are tested on clustering 
graph embedding from REGNN_SSL from all 23 kidney sam
ples. We show the example of the representative CKD sample 
V10S14-085_XY04_21-0057 in Fig. 5B and Supplementary 
Table S5, where the ARI performances of different clustering 
algorithms are shown to be very close. These results demon
strate the excellence of REGNN’s expressive power, where 
the learnt embedding clearly represents relations preserved in 
the learnt presentation, which can be easily detected and cap
tured by various clustering algorithms. As the number of cell 
classes often overwhelms the ARI score, K-Means is chosen 

as the clustering algorithm to group the REGNN graph 
embeddings within the defined number of clusters.

3.4 Different graph augmentation strategies do not 
significantly influence the performance of REGNN 
representation
Graph augmentation strategies usually play a critical role in 
self-supervised learning. Each of the four basic graph augmenta
tion strategies, such as node dropping, attribute masking, edge 
perturbation, and subgraph perturbation augmentation (You 
et al. 2020) is tested with a dropout ratio of 0.1. Part of these 
results on a CKD, AKI, and reference sample are shown in 
Supplementary Fig. S7. We can see all four methods performed 
similarly in terms of resulting scores, with overall medians, 
means, and standard deviations being very close in the criteria 
of ARI. Specifically, edge perturbation and node dropping have 
slightly better results than attribute masking and subgraph per
turbation. Edge perturbation and node dropping are further in
vestigated with dropout ratios of 0.05 and 0.2. However, when 
compared to the same augmentation methods at 0.1 dropout, 
changing the ratio significantly decreases overall ARI scores. 
Following these observations, REGNN_SSL is set with edge 
perturbation with a 0.1 augmentation ratio by default for 
all testing.

Figure 3. Performance comparison on ARI in all 23 samples from KPMP. For each method, the median is shown by the solid black line and the median is 
displayed by the dotted line. The Wilcoxon signed rank test is performed to determine the significance of REGNN_GAE’s mean compared to other 
competitive methods. REGNN_GAE and REGNN_SSL have no significant difference between their result means.
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3.5 REGNN is designed for analyzing 
heterogeneous samples
To explore the capacity limitation of REGNN on heterogeneous 
samples, we further investigate the performance of REGNN on 
multiple SRT samples within different heterogeneities with man
ual annotations. Besides 23 kidney samples, these additional 
samples include: (i) SpatialLIBD(Pardo et al. 2022), a widely 
used dataset which contains 12 samples of the human dorsolat
eral prefrontal cortex using 10X Visium platform. (ii) A Human 
Breast Cancer sample (10× Genomics 2019) on 10× Visium 
platform. (iii) A HER2-positive breast tumor(Andersson 2021) 
dataset contains eight samples on ST platform. The sample’s 
heterogeneity is represented by the criteria Moran’s I, the mea
surement of spatial autocorrelation. Comparing the correlation 
between ARI and Moran’s I by fitting a linear regression line on 
all available SRT samples (Fig. 5C), we observe that generally 

REGNN_SSL shows improved performance with increasing 
spatial heterogeneity. To focus specifically on our 23 heteroge
neous kidney samples, a similar correlation analysis compares 
ARI scores with other competitive methodologies (Fig. 5D). We 
observe that both versions of REGNN outperform existing 
methodologies on samples with spatial heterogeneity of þ0.15 
and above. This trend is also observed in Supplementary Fig. 
S10 when using different regression fits.

Additionally, adjusting REGNN’s hyperparameter to 8-di
mensional graph embedding improved clustering performance 
in two-thirds of brain samples (Supplementary Table S6), with 
cell type predictions more closely resembling benchmark results 
(Supplementary Figs S11 and S12). These results show that with 
more fine-tuning on different samples of various spatial auto
correlations, REGNN’s equivariance and positional encoding 
show potential for broader tissue sample applications.

Figure 4. Visualization of results from computational methods on a representative CKD sample. The gold standard annotations and calculated results of 
the computational methods are mapped to the original locations of CKD sample V10S14-085_XY04_21-0057.
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4 Discussion
Graph neural networks are powerful deep learning models on 
graph data structures, but their inherent expressive power is the
oretically limited by their capacities in modeling heterogeneous, 
symmetric lattices of SRT. We introduced REGNN, an expres
sive power-enhanced graph deep learning framework designed 
specifically to model SRT data on highly heterogeneous tissues, 
such as samples from kidney disease. Compared with several 
existing computational methods developing on ribbon-like, less 
heterogeneous brain cortex tissue, REGNN displays its ability 
to target the more challenging mosaic-like highly heterogeneous 
tissue by integrating equivariance and positional encoding. The 
unique strategy of REGNN outperformed these competitors by 
capturing some intrinsic symmetrical characteristics with better 

graph-based presentative power of complex heterogeneous pat
terns in spatial space. Both ablation tests and case studies on 
multiple kidney samples in various disease conditions further 
validate this improvement of expressive capacity over a va
nilla GNN.

Although REGNN framework achieved some success in kid
ney studies, there are still limitations in the proposed model. 
First, the current model is built on the sequencing-based SRT 
lattice, mainly from the 10× Visium platform. We will continue 
working on different image-based SRT, such as FISH technolo
gies. Second, current improvements in resolution bring more 
computational challenges in graph modeling. Compared to the 
spots in 10× Visium data with thousands of nodes in the mod
eled graph, other advanced technologies such as MERFISH, 
10× Xenium, and NanoString CosMx have hundreds of thou
sands of nodes in the modeled graph, which brings challenges in 
the scaling of the graph model. Third, due to its intrinsic, highly 
heterogeneous nature, accurately inferring the correct architec
ture on some kidney samples is still very challenging. While per
forming well on samples with Moran’s I of 0.2, more 
heterogeneous samples still prove to be a challenge that remains 
an open problem in the field. Finally, current strategies of histo
logical image integration and graph augmentation in SSL are 
still far from mature, which may lead to further investigation 
(see Supplementary Notes S1).

In the future, we will continue improving the REGNN’s ex
pressive power with more advanced positional encoding (Ke 
et al. 2020), and other high-order technologies like Mixhop 
(Abu-El-Haija et al. 2019). Though an attempt was made to in
corporate histology image data into the model, other methods 
may prove more effective and need testing. We are also inter
ested in exploring cutting-edge large language models like 
LLaMa (Touvron et al. 2023) to model the complex relations in 
the SRT data. Furthermore, we will follow the fast improve
ments in biologically informed graph SSL (Liu et al. 2022), such 
as node-level and patch-level representation other than currently 
adopted graph-based representation, and use negative sampling 
strategies as Barlow twins (Zbontar et al. 2021). We will con
tinue fine-tuning REGNN’s model on kidney tissue architecture 
and other highly heterogeneous mosaic-like tissues such as 
lymph nodes and colon.
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Figure 5. (A) Comparing ablation test results on REGNN_GAE, shown 
with CKD representative sample V10S14-085_XY04_21-0057. (B) 
Different Clustering algorithm performance on REGNN_SSL’s graph 
embeddings on representative CKD sample V10S14-085_XY04_21-0057. 
(C) REGNN_SSL performance on ARI (Y-axis) compared with the 
sample’s Moran’s I (X-axis) on samples used in the study within different 
heterogeneity. (D) All the comparative methods’ performances on ARI (Y- 
axis) compared with the sample’s Moran’s I (X-axis) on the 23 kidney 
samples used in the study. Both plots (C) and (D) are fit by linear 
regression to estimate the general trend across the increase in Moran’s I.
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