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Background
The expression of genes is regulated by transcription factors (TFs) that bind to the regu-
latory elements of the genome. As the accessible chromatin covers more than 90% TF 
binding regions, many techniques, such as Assay for Transposase-Accessible Chroma-
tin using sequencing (ATAC-seq), have been developed to detect accessible chromatin 
[1–3]. Technical advancements have made it possible to profile the chromatin states 
of single cells at a high-throughput manner and along with other molecular modalities 
(e.g. transcriptomes) in the same cells [4–6]. In recent years, several studies have put 
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efforts to profile chromatin landscapes of organisms at single-cell resolution and gener-
ated atlas of datasets across diverse species, tissues and conditions [7, 8]. Joint analysis 
on these data will help us better learn the roles of chromatin states under healthy and 
disease conditions.

Similar to RNA-seq, ATAC-seq data from multiple sources routinely shows strong 
technical variations and suffers from batch effects [9], which limits large-scale analysis 
across datasets. Batch correction on scATAC-seq data is more challenging as it is dif-
ficult to capture and correct batch derived variations on nearly binary chromatin pro-
files. Most clustering algorithms for scATAC-seq data capture biological information by 
learning a series of latent features from binary chromatin profiles. As most benchmark-
ing studies up to now are performed on datasets with little batch effects [10, 11], whether 
these clustering algorithms are confounded by batch effects is unknown. In scRNA-seq 
analysis, batch effects can be removed by linear correction on a set of gene expression-
derived meta features (e.g. Principal Components) [12–14]. However, it remains unclear 
whether batch effects of scATAC-seq can be corrected similarly on latent features by 
existing tools.

Here, we develop a novel algorithm named epiConv (https://​github.​com/​LiLin-​bioso​
ft/​epiCo​nv) to remove batch effects between scATAC-seq datasets with better perfor-
mance than existing tools. We find that latent feature learning algorithms benchmarked 
in existing studies (cisTopic [11], Latent Sematic Indexing (LSI) [4], SCALE [15] and 
SnapATAC [16]) all suffered from batch effects and in some cases, they could not be 
removed by linear correction using existing tools for scRNA-seq (Harmony [12], Mutual 
Nearest Neighbors (MNN) [14] and Seurat [17]). Unlike existing methods, epiConv 
directly calculates the similarities between cells without embedding them into the latent 
feature space. Although this strategy performs similarly compared to other methods 
in single cell clustering, subsequent batch correction on the similarity matrix better 
removes batch effects and, in the meantime, retains biological signals. Besides batch cor-
rection, we also demonstrate that epiConv can be used to analyze co-assay data through 
data integration. Aligning co-assay data to high quality scATAC-seq reference signifi-
cantly increased the resolution of chromatin profiles and revealed thousands of putative 
connections between cis-regulatory elements and their target genes. Finally, we showed 
that integration of single cells in different biological conditions (T cells from germ-free 
and normal mouse, normal vs. malignant hematopoiesis) reveals the hidden heteroge-
neities between cells that cannot be detected from single dataset.

Results
Batch correction algorithms of epiConv

EpiConv first calculates the similarity matrix S between single cells from a binarized 
matrix M, where rows represent peaks and columns represent cells. The similarity 
between two cells is calculated by the dot product of two cell vectors, which means 
that the similarity matrix is calculated by matrix product MTM . After normaliza-
tion by library size, the similarity matrix can be used for other downstream analy-
ses (Fig. 1a). A detailed description of this step can be found in Supplementary Note. 
In datasets with no batch effects, epiConv performs similarly or slightly better com-
pared to existing algorithms (Additional file 1: Fig. S1). The result suggested that the 

https://github.com/LiLin-biosoft/epiConv
https://github.com/LiLin-biosoft/epiConv


Page 3 of 20Lin and Zhang ﻿BMC Bioinformatics          (2022) 23:309 	

relationships between single cells can be directly learned from the binary accessibility 
profiles using simple approach.

Up to now, most batch correction tools can only be applied to cells embedded in 
Euclidean space, which is not available in our algorithm. To overcome this problem, 
we develop an approach to remove batch effects on pairwise cell-cell similarity matrix 
(Fig.  1b). In the first step of batch correction, we apply Eigenvalue Decomposition 
to the normalized similarity matrix S and keep r Eigen values (diagonal elements of 
Λ) with the largest absolute values and their corresponding Eigen vectors X (Fig. 1b, 
Step 1). X capture the major variations of the data (including biological and techni-
cal variations) and their contributions to the similarity matrix are weighted by Λ. The 
number of Eigen vectors r depends on the complexity of data and an appropriate r can 
be easily obtained by manually examining the batch effects on Eigen vectors. In this 
study, we set r = 30 unless otherwise mentioned.

If the dataset is large (e.g. ~ 100k cells), we first sample m1 cells and calculate the 
Eigen vectors of sampled cells Xsample and Λ. The Eigen vectors of m2 unsampled cells 
Xunsample is calculated by the least square solution of the equation 
S′ = Xsample�XT

unsample , where S’ ϵ m1 x m2 is the similarity matrix between m1 sam-
pled and m2 unsampled cells. Such approximation has little effects on the Eigenvalue 
Decomposition if m1 is large enough to cover all cell types but reduces the memory 
requirement and running time for large datasets.

Second, we create a k-nearest-neighbor (KNN) graph between datasets (Fig.  1b, 
Step 2). For simplicity, assume that we have one query dataset A and one reference 
dataset B. For one cell a in A, we find its k1 nearest neighbors in B (b1, b2,…,bk1). The 
initial k1 nearest neighbors may contain cells that don’t share the same cell type as a 
(dash lines in Fig. 1b Step 2) when the corresponding cell type is not available in B or 

Fig. 1  An overview of epiConv algorithm. a Workflow of calculating similarity matrix between single cells. 
The similarity matrix is calculated by matrix product of feature by cell matrix M and is normalized by library 
size. Downstream analyses are applied on normalized similarity matrix. b Workflow of batch correction. 
EpiConv removes the batch effects through linear correction on the r Eigen vectors of the similarity matrix.
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simply due to noise. We introduce a filtering step to remove them. For each cell b in 
B, we find its k2 nearest neighbors in A and calculated the mean and standard devia-
tion (ub and σb) of them for each Eigen vector and Principal Component of RNA-seq 
(if A is multi-omics data). If a in A finds a neighbor b1 in B but a is out of the range 
ub1 ± 2σb1 in any Eigen vector or PC of RNA-seq (In dataset A, there are some cells 
more similar to b1 but differing from a), we remove b1 from a’s neighbors.

After filtering, some cells in A may still keep several neighbors in B while others may 
lose most of its initial neighbors. Cells in A that have enough neighbors in B (≥ 5 in this 
study) are used as anchors to calculate correction vectors (Fig. 1b). For each anchor in A, 
we calculate the correction vectors between itself and its neighbors in B (Fig. 1b, Step 3). 
The correction vectors of other non-anchor cells are calculated by the weighted mean of 
its most similar anchors (10 anchors in this study) on a shared-nearest-neighbor graph 
(SNN graph) of A, where the weight is equal to the edge of SNN graph. The SNN graph 
can be calculated from ATAC-seq or combined with RNA-seq profiles (if available).

Finally, the Eigen vectors of all cells in A are corrected accordingly and the similarity 
matrix is re-calculated from Xcorrected (Fig. 1b, Step 4). Notably, retaining the residuals of 
Eigenvalue decomposition is an important step in batch correction. Although residuals 
in dimension reduction procedure are generally considered as noise and are removed 
in most methods, we find that directly inferring the relationships between cells in the 
reduced dimension of Eigenvectors like existing methods results in partial correction 
and lower accuracy (see Additional file 1: Fig. S9c, d in hematopoiesis dataset below), 
implying that the residuals contain biological signals.

EpiConv can also perform integration of multiple reference datasets and multiple 
query datasets. When multiple references and query datasets are available, we first inte-
grate all references together (project Ref B to Ref A, then project Ref C to combined 
dataset containing A and B, …) and then align each query dataset to the combined data-
set containing all references.

We used Uniform Manifold Approximation and Projection [18] (UMAP) in R pack-
age umap to learn 2D embeddings of single cells and Louvain algorithm implemented 
in R package Seurat [17] to cluster cells. In order to reduce noise, the similarity matrix 
between cells is first transformed to SNN graph (Ssnn) described above, with number of 
nearest neighbors set to 1% of total cells. Then, the distance matrix (Max (Ssnn) − Ssnn) is 
used as UMAP input. The Louvain clustering is performed on the transformed UMAP 
graph G from the distance matrix (Max (Ssnn)  − Ssnn) to generate consistent results 
between dimension reduction and clustering. All unmentioned settings are set to default 
values and the resolution setting in Louvain clustering is manually adjusted between 0.2 
and 2.0.

EpiConv is less prone to over‑fitting

We first applied epiConv to two peripheral blood mononuclear cells (PBMCs) data-
sets sequenced by two protocols (10x Genomics and dscATAC-seq) to compare its 
performance with other methods [5, 19]. The batch effects between two datasets were 
largely removed by epiConv (Fig.  2a). We used the LISI metric (equal to the effec-
tive number of batches in each cell’s local neighborhood) to quantitatively evaluate 
the mixing of cells from two batches and epiConv showed clear advantage over other 
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methods (Fig.  2b). The UMP visualization also suggested that Harmony and MNN 
based methods failed to correct the batch effects while Seurat based methods per-
formed better than them (Fig.  2c; Additional file  1: Fig. S2). Besides the batch cor-
rection, there were many small clusters with mixed cell identities in all SnapATAC 
results, suggesting technical biases derived from the step of latent feature learning but 
not batch correction (Fig. 2c; Additional file 1: Fig. S2; highlighted by dashed circle).

To perform further benchmarking between epiConv and Seurat (the one per-
formed better among existing tools) based methods, we generated a new reference 
batch with only T cells and removed NK cells, B cells and monocytes from the refer-
ence (dscATAC-seq) and performed batch correction with the new reference again 
(Fig. 2d). EpiConv corrected the batch effects between T cells and grouped other cells 

Fig. 2  Benchmarking of epiConv on integrating two PBMC datasets. a Low dimensional embedding of 
PBMCs before and after batch correction. b local inverse Simpson’s Index (LISI) of different methods. The LISI 
is equal to the effective number of batches in each cell’s neighborhood. c Low dimensional embeddings 
of PBMCs after batch correction by Seurat based methods. d Comparison of epiConv and Seurat based 
methods after removing B cells, monocytes and NK cells from the reference (dsc).
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as distinct clusters, suggesting that it was almost unaffected by the removal of NK 
cells, B cells and monocytes from reference. However, we found that some NK cells, 
B cells and monocytes in the query dataset were mixed with T cells in the reference 
dataset (the proportion of over-fitted cells in Fig.  2d; see Methods section for the 
definition of over-fitted cells) after Seurat batch correction, which resulted in lower 
clustering accuracy (ARI in Fig. 2d). The results of SCALE/SnapATAC + Seurat were 
severely affected as B cell and monocyte clusters were merged with T cells. The results 
of CisTopic/LSI + Seurat were less affected but there was still higher fraction of over-
fitted cells than epiConv. These incorrectly placed cells were unlikely to be contami-
nations from experiments as they could not be found in Fig.  2c. We found that in 
the Canonical Correlation Analysis (CCA) space of Seurat when NK cells, B cells 
and monocytes were removed from reference dataset, T cells in the reference data-
set became closer to other cell types in the query dataset (Additional file 1: Fig. S3a), 
which caused a large number of mis-identified anchors and subsequent over-fitting 
problem in batch correction (Additional file 1: Fig. S3b). These results suggested that 
Seurat based methods might be vulnerable to over-fitting in scATAC-seq data when 
certain cell types were uniquely present in query, but not in the reference dataset.

EpiConv better retains the biological variations

We also evaluated the performance of epiConv and other methods on another mouse 
lung data [7, 20, 21]. EpiConv removed the batch effects between three datasets (Fig. 3a). 
To assess the accuracy of clustering, we annotated clusters according to original arti-
cle [21] and performed differential analysis on three datasets. The majority of cell-type 
specific markers were consistent across datasets (Additional file 1: Fig. S4a). For Baso-
phils and Neutrophils whose markers could not be detected due to low abundance in 
some datasets, we performed differential analysis on cells of GSE145194 and calculated 
cell-type specific signatures for single cells. The results suggested that Basophils and 
Neutrophils were also correctly aligned (Additional file 1: Fig. S4b). Other methods also 
removed the batch effects between datasets but always mixed Ciliated/Club cells and 
AT2 cells together (Additional file  1: Fig. S5). Moreover, epiConv suggested that Cili-
ated/Club cells could be further segregated into two groups. To validate our findings, we 
performed differential analysis on three groups of cells (Ciliated/Club 1, Ciliated/Club 
2 and AT2 cells) from GSE145194 to obtain their marker regions (Fig.  3b) and calcu-
lated the cluster-specific signatures across three datasets (Fig. 3c). The results suggested 
that such biological heterogeneities indeed existed as we could obtain a large number 
of markers for each cluster. Three types of cells were correctly grouped together by epi-
Conv according to cell-type specific signatures. Although some methods could also seg-
regate ciliated/club and AT2 cells, they could not segregate two ciliated/club subtypes 
(Additional file 1: Fig. S5).

We found that mixing of Ciliated/Club cells and AT2 cells was not caused by batch 
correction but by the upstream clustering algorithms. We used cisTopic as an example to 
show this phenomenon. We applied cisTopic to a single dataset (GSE145194) and found 
that cisTopic could also segregate AT2 cells from Ciliated/Club cells and detect two sub-
clusters of Ciliated/Club cells (Fig.  3d). However, when applied to combined datasets, 
cisTopic failed to detect the difference between AT2 cells and Ciliated/Club cells even 
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before batch correction. This result suggested that batch effect did not only introduce 
a systematic difference between cells of different batches but also blurred the biological 
signal in latent features. In such case, no batch correction method could segregate differ-
ent types of cells when directly applied to latent features, as the information was already 
lost.

Aligning co‑assay data to scATAC‑seq references

EpiConv can also increase the resolution of chromatin profiles through joint analysis. 
Next, we demonstrated that aligning the ATAC-seq profiles of co-assay data (perform 
scRNA-seq and scATAC-seq simultaneously on the same cells) onto scATAC-seq ref-
erences overcame the shortcomings of shallow sequencing depth in co-assay data and 
improved the performance of clustering and differentially accessible peaks calling. We 

Fig. 3  Benchmarking of epiConv on integrating three mouse lung datasets. a Low dimensional embedding 
of mouse lung data before and after batch correction. AT1, alveolar type 1 cell; AT2, alveolar type 2 cell. b 
EpiConv clusters AT2 cells and Ciliated/Club cells into three clusters, each with its unique accessible peaks. c 
Cell-type specific signatures of AT2, Ciliated/Club 1 and Ciliated/Club 2 cells. d CisTopic detects the difference 
between AT2 and Ciliated/Club cells on single dataset but failed on integrated datasets.
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integrated three datasets together (Fig. 4a), one co-assay dataset of adult mouse cerebral 
cortex [6] (SNARE-seq) as query dataset, two scATAC-seq datasets of adult mouse brain 
[5, 7] (sci-ATAC-seq and dscATAC-seq) that served as references, whose sequencing 
depth were ~5 times deeper than the scATAC-seq of co-assay data. Single cells from 
three datasets were mixed together without obvious batch effects by epiConv and the 
embedding were consistent with RNA-seq derived clusters (Fig. 4b). Rare cell types (C03 
and C11) were also clearly segregated by epiConv (Fig. 4b).

The low dimensional embeddings of other methods suggested that they could not fully 
remove the batch effects or were inconsistent with RNA-seq derived clusters (Additional 
file  1: Fig. S6). To quantitatively evaluate their performance, we used LISI metric to 
assess batch mixing and ARI to assess the consistency between clustering of ATAC-seq 
and RNA-seq. EpiConv outperformed most methods in both batch mixing and accu-
racy (Fig. 4c). The overall performance of LSI + Seurat is similar compared to epiConv. 
However, the clustering of ATAC-seq data by LSI + Seurat did not agree with RNA-seq 
profiles (Fig. 4d). RNA-seq defined rare excitatory neuron C11 were mixed with other 
excitatory neurons (C01, C02 and C05) and a small fraction of cells from various RNA-
seq derived clusters formed single cluster in ATAC-seq data (the ambiguous cluster in 
Fig.  4d). SnapATAC + Harmony and SnapATAC + Seurat performed better in batch 
mixing than epiConv but with lower accuracy. The UMAP visualization showed that 
SnapATAC + Harmony grouped cells of C01, C02 and C05 into many small clusters and 
SnapATAC + Seurat grouped a large proportion of cells from C01, C02 and C05 into a 
single cluster, both of which showed strong contradictions with scRNA-seq data (Addi-
tional file 1: Fig. S6b).

Based on joint ATAC-seq clustering of integrated dataset (Fig. 4e, clusters were manu-
ally annotated by canonical makers), we found that RNA-seq derived cluster C09 could 
be further grouped into 3 cell types (Fig. 4e, clusters highlighted by red circles), which 
referred to one major cell type (oligodendrocyte) and two rare cell types (oligodendro-
cyte progenitor cell and microglia) based on their highly expressed genes, suggesting 
that joint analysis increased the resolution of clustering for rare cell types or subtypes.

Next, we examined whether single cells of co-assay data were correctly assigned to 
the references. In each dataset, we performed differential analysis to get a set of marker 
peaks for each joint cluster to see whether these markers were conserved across differ-
ent datasets. Although markers detected from two scATAC-seq references were con-
sistent with each other, a significant portion of these markers were not clearly more 

(See figure on next page.)
Fig. 4  Aligning co-assay (SNARE-seq) data of mouse cerebral cortex to scATAC-seq (sci-ATAC-seq and 
dscATAC-seq) references increases the resolution of chromatin profiles. a Low dimensional embedding and 
clustering of co-assay data based on scRNA-seq profiles. b Joint embedding of scATAC-seq from co-assay 
data and scATAC-seq references. c The Adjusted Rank Index (ARI) and LISI of different methods. d Result 
of LSI + Seurat in details. LSI + Seurat groups cells with mixed identities together. e Joint embedding 
of scATAC-seq from co-assay data and scATAC-seq references, cells are colored by manually annotated 
joint clusters. Ex, excitatory neuron; In, inhibitory neuron; Oligo, oligodendrocyte; OPC, oligodendrocyte 
progenitor cell; Ast, astrocyte; Mic, microglia. f Heatmap of chromatin markers and their nearest genes. Left: 
chromatin profiles of sci-ATAC-seq. Middle: chromatin profiles of SNARE-seq. Right: gene expression profiles 
of SNARE-seq. Selected marker genes with highest fold changes are shown in the right panel. g Aggregated 
ATAC-seq signals near the TSS of OPC maker gene Vcan. h Left (scATAC-seq) and middle (co-assay): The fold 
changes of enrichment between ATAC-seq defined marker regions and RNA-seq defined associated regions. 
Right: the number of detected markers from scATAC-seq references and co-assay data for each cluster.
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accessible in the corresponding cell types of co-assay data (Additional file 1: Fig. S7a). 
Only markers of clusters with a large number of cells were conserved across three data-
sets (e.g. Ex 1–4) and many cluster-specific markers could only be detected from deep 

Fig. 4  (See legend on previous page.)
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sequencing references. We argued that this might be due to shallow sequencing of co-
assay data and further incorporated RNA-seq profiles to demonstrate that these peaks 
inferred from matched high depth references could be supported by transcriptome data. 
First, we linked each peak to its closest promoter in the genome. Then for each clus-
ter, we got a series of associated peaks with its cluster-specific marker genes. We found 
8534 chromatin markers from scATAC-seq references that showed consistent pattern 
with its associated genes (Fig.  4f, left and right), revealing the potential relationships 
between cis-regulatory elements and their target genes. However, only a small fraction 
of these peaks (3031 peaks) was differentially accessible in SNARE-seq (Fig. 4f, middle). 
Other peaks were not statistically significant or completely undetectable due to shal-
low sequencing. For instance, the ATAC-seq peaks near the promoter of Vcan, an OPC 
marker suggested by RNA-seq data, didn’t pass statistical threshold before integrating 
references (Fig. 4g).

To quantitatively measure the consistency between ATAC-seq and RNA-seq profiles, 
we calculated the fold change of enrichment between chromatin markers and marker 
gene associated peaks for each cluster (Ncommon/(NATAC​ * NRNA) * Ntotal; Ncommon: num-
ber of shared peaks, NATAC​: number of chromatin markers, NRNA: number of marker 
gene associated peaks, Ntotal: number of total ATAC-seq peaks). We expected that 
peaks residing near the promoter of one gene were more likely to be its cis-regulatory 
elements and cluster-specific chromatin markers would enrich in the nearby regions 
of marker genes if joint analysis correctly clustered recurrent cell types from co-assay 
and scATAC-seq datasets together. Indeed, we observed the enrichment and for most 
clusters, we detected much more chromatin markers from scATAC-seq references and 
they were with similar or even higher extent of enrichment with marker gene associated 
peaks than chromatin profiles of SNARE-seq (Fig. 4h), proving that epiConv correctly 
assigned co-assay single cells to the references and increased sensitivity of differentially 
accessible peaks calling. We noted that there were few chromatin markers of Ex 6 and Ex 
7 due to their small cluster size. In order to overcome this problem, we performed the 
analyses on 7 excitatory neuron clusters only and the results also supported the correct-
ness of epiConv (Additional file 1: Fig. S7b).

Aligning cells in different biological conditions

In addition to batch correction, integration algorithms could also be used to align 
cells in different biological conditions. Here, we benchmarked the performance of 
epiConv by integrating CD4+ T cells from normal and germ-free mouse colon [22]. 
In the original article, cells in normal and germ-free conditions were analyzed sepa-
rately. Peripherally induced Treg cells (pTreg) were not found in germ-free condition 
but thymus-derived Treg cells (tTreg) still existed. Consistent with original article, 
we also found two distinct clusters referring to pTreg and tTreg in normal mouse but 
could only find one Treg cluster from germ-free mouse that matched the markers 
of tTreg (Additional file  1: Fig. S8a) when analyzing two datasets separately. How-
ever, when CD4+ T cells from the two conditions were integrated by epiConv, there 
were two groups of cells from germ-free mouse that were clustered with pTreg and 
tTreg of normal mouse, separately (Fig. 5a,b). To validate our findings, we performed 
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differential analysis (tTreg vs. pTreg) on normal and germ-free mouse and found that 
there were a large proportion of conserved tTreg and pTreg markers in normal and 
germ-free conditions (Additional file  1: Fig. S8b), suggesting that Treg in germ-free 

Fig. 5  Integrative analysis based on EpiConv better detects tTreg signature in germ-free mouse. a Low 
dimensional embedding of epiConv before and after integration. b The accessibility of Rorc promoter in 
normal mouse shows the identities of thymic Tregs (tTregs, Rorcclose) and peripheral Tregs (pTregs, Rorcopen). 
c The number of differentially accessible peaks between tTregs and pTregs in germ-free condition. d 
The Z-score normalized values with corresponding mean and variance of hypergeometric distribution in 
differentially accessible peaks. EpiConv derived clusters show more significant enrichment of accessible 
peaks in tTreg and pTreg markers. e Enriched motifs in up-regulated peaks of tTregs defined by epiConv and 
SnapATAC + Harmony.
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condition could also be classified to two groups similarly but they could not be easily 
distinguished from each other without proper reference.

We also applied other methods for comparison. Six method combinations removed 
the difference between T cells in two conditions (cisTopic + Harmony, cisTopic + Seu-
rat, LSI + MNN, LSI + Seurat, SCALE + Seurat, SnapATAC + Harmony) and showed 
similar results that Tregs in both conditions could be classified into two groups (Addi-
tional file 1: Fig. S8c). The differentially accessible peaks detected by epiConv and other 
six methods were highly consistent in both normal and germ-free conditions, suggest-
ing that they all captured the variations between pTreg and tTreg. However, the number 
of differentially accessible peaks in germ-free condition detected by epiConv was much 
more than other methods (all methods detected close number of differentially accessible 
peaks in normal condition) and about half of them could also be detected in normal con-
dition (Fig. 5c). As our differential analysis was based on hypergeometric test, clusters of 
higher purity would result in more differentially accessible peaks to be detected due to 
the enrichment of accessible peaks in one cluster. To assess the cluster purity of differ-
ent methods, we normalized the differentially accessible peaks detected by epiConv and 
other six methods using the corresponding mean and variance of hypergeometric distri-
bution. The clusters inferred by epiConv clearly better segregated accessible vs. inacces-
sible peaks and consequently resulted in more significant enrichment of accessible peaks 
in one cluster than other methods (Fig. 5d).

We performed motif calling on differentially accessible peaks inferred by epiConv and 
SnapATAC + Harmony (the method that detected the second most differentially acces-
sible peaks) to see whether they were associated with some TFs or simply due to tech-
nical noise (Fig. 5e). In up-regulated peaks in tTreg, we found four enriched motifs in 
germ-free condition. From the result of SnapATAC + Harmony, we also found the same 
set of enriched motifs but there were always fewer peaks containing the motif, which 
resulted in lower significance level. Given that these four motifs could also be detected in 
normal condition (data not shown), these results suggested that epiConv better detected 
the unique biological features of tTreg in germ-free condition. The motif of Rorc could 
be detected from pTreg in normal condition as expected (data not shown) but not in 
germ-free condition. No other motifs could be detected for pTreg in both conditions. 
Thus, the lack of Rorc mediated open chromatin might weaken the difference between 
two types of Tregs in germ-free condition and make it hard to segregate them.

Aligning leukemic cells to normal hematopoiesis

We further benchmarked the performance of epiConv on a leukemia dataset by align-
ing malignant cells from mixed-phenotype acute leukemia (MPAL), which was known 
to present with features of multiple hematopoietic lineages, to normal hematopoiesis 
[23]. The normal hematopoiesis reference contains bone marrow mononuclear cells 
(BMMCs) and CD34+ enriched BMMCs and the Leukemia data contains single cells 
from MPAL patients [23]. After epiConv integration, all malignant cells were projected 
to the hierarchy of normal hematopoiesis (Fig. 6a). Most method combinations failed to 
project the malignant cells to normal hematopoiesis (Additional file 1: Fig. S9a,b). Seurat 
based methods performed better than others but still worse than epiConv (LISI metric, 
Fig. 6b; embeddings, Fig. 6c). We annotated clusters by comparing chromatin markers 
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of normal cells with FACS-sorted bulk samples [24] (Fig.  6a right; Additional file  1: 
Fig. S10a). In addition to known cell types, we also found two novel clusters (C08 and 
C09). The C08 cluster (T biased progenitor) was similar to stem cell cluster (C01) but 
was more accessible in the marker regions of T cells (~ 50% up-regulated peaks in C08 
against C01 are T cell markers) and the C09 cluster (unknown progenitor) was moder-
ately accessible in myeloid, lymphoid and erythroid lineage-specific regions. All malig-
nant samples contained a large proportion of stem-like cells in C01 (from 27.5 to 63.7%, 
Additional file 1: Fig. S10b, bottom line). Except for some clusters with few cells, malig-
nant cluster-specific markers always showed the highest fold change of enrichment with 
corresponding markers of normal cells, suggesting that leukemic cells were assigned to 
the most similar normal cells (Additional file 1: Fig. S10b).

Fig. 6  EpiConv better aligns leukemic cells to normal hematopoiesis a Low dimensional embedding 
of epiConv before and after integration. HSC, hematopoietic stem cell; MPP, multipotent progenitors; 
LMPP lymphoid-primed multipotent progenitor; GMP, granulocyte-macrophage progenitor; MEP, 
megakaryocyte-erythroid progenitor; CLP, common lymphoid progenitor; Ery biased MPP, erythroid biased 
MPP; pDC, plasmacytoid dendritic cell; CMP, common myeloid progenitor, T biased prog, T cell biased 
progenitor; Unk prog, unknown progenitor. b The LISI metric of different methods. c Low dimensional 
embeddings of cisTopic, LSI, SCALE and SnapATAC after Seurat batch correction. d Sub-clusters of C01 with 
increased accessibility in PU.1 or GATA1 motifs and two lymphoid primed clusters (CLP and T biased prog). 
Malignant cells of MPAL4 projected to these four clusters were shown. e Cluster-specific markers shared 
by normal cells and malignant cells of MPAL4. f MPPGATA1 signatures of normal cells and MPAL4 on the 
embedding of epiConv and LSI + Seurat.
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As the hematopoiesis dataset was the most strongly affected dataset by residuals 
of Eigenvalue decomposition, we also used it as an example to show how the residu-
als helped correct batch effects. Through UMAP embedding and LISI metric, we 
found that the batch effects in the corrected Eigenvector space without residuals were 
reduced but not fully corrected (Additional file 1: Fig. S9c,d). Thus, the results proved 
that the residuals of Eigenvalue decomposition contained biological signals that were 
essential to recover shared identities of cells from different conditions.

Given that hematopoietic stem and progenitors cells (C01) contained multipotent pro-
genitors with different lineage priming, we were interested in whether similar lineage 
bias could also be observed in malignant cells. To better reveal the lineage priming of 
cells in C01, we grouped C01 to two sub-clusters, one cluster with increased accessibil-
ity in PU.1 motifs (MPPPU.1) and the other with increased accessibility in GATA1 motifs 
(MPPGATA1) in normal cells, reflecting bias of MPPs to myeloid and erythroid lineages 
(Fig. 6d). We performed differential analysis on normal and malignant cells in MPPPU.1, 
MPPGATA1 and two lymphoid priming clusters (CLP/C07 and T biased prog/C08) to 
find conserved markers between normal and malignant cells, which could directly sup-
port our assignments of malignant cells. As expected, the corresponding cluster-specific 
markers between normal and malignant samples always showed higher fold change of 
enrichment (Additional file 1: Fig. S11a). Malignant cells of MPAL1, MPAL4 were pro-
jected to all of the four clusters and shared a common set of 3,892 conserved markers 
with normal cells (MPAL4, Fig. 6e; MPAL1, Additional file 1: Fig. S11b). Most cells of 
MPAL3 were projected to MPPGATA1 and T biased prog (C08) and also agreed with 
MPAL1 and MPAL4 and shared the same set of conserved markers (Additional file 1: 
Fig. S11b, clusters < 250 cells were not included in differential analysis). Malignant cells 
of MPAL5 were mainly projected to MPPPU.1 and T biased prog (C08). A large number 
of conserved markers between MPAL5 and normal cells could still be found but they 
differed from the conserved markers of other malignant samples (Additional file 1: Fig. 
S11c).

As cluster-level analysis may miss intra-cluster heterogeneities, we calculated the 
cluster-specific signatures of cells based on the conserved markers detected above to 
investigate their lineage bias in single cell level (MPPGATA1 signature of normal cells and 
MPAL4 shown in Fig.  6f; other signatures shown in Additional file  1: Fig. S11d). The 
results also agreed with cluster-level analysis that normal and malignant cells grouped 
together according to their lineage bias, but the signal sometimes was much weaker in 
malignant cells (e.g. CLP signature in MPAL4, Additional file 1: Fig. S11d). Additionally, 
a synchronized decrease of MPPPU.1 signature and increase of MPPGATA1 signature from 
MPPPU.1 to MPPGATA1 could be observed in both normal and malignant cells (MPAL1 
and MPAL4, Additional file 1: Fig. S11d), suggesting that epiConv corrected aligned the 
continuum of lineage bias transition between MPPPU.1 and MPPGATA1.

Using the signatures calculated above, we next examined whether leukemic cells were 
also correctly projected to their normal counterparts by LSI + Seurat. Although some 
malignant cells in MPAL1, MPAL3 and MPAL4 were indeed with higher erythroid 
potential, LSI + Seurat did not project them to the corresponding normal cells (Fig. 6f; 
cells with higher MPPGATA1 signature were grouped together in epiConv but no in LSI 
+ Seurat). In fact, no malignant cells were projected to MPPGATA1 normal cells. These 



Page 15 of 20Lin and Zhang ﻿BMC Bioinformatics          (2022) 23:309 	

results suggested that epiConv better integrated normal and malignant cells according 
to their lineage bias than LSI + Seurat. We also examine the lineage priming of SCALE/
SnapATAC + Seurat, which showed higher LISI metric than other methods and they 
also could not integrate normal and malignant cells together according to their lineage 
bias (Additional file 1: Fig. S12).

Computational efficiency of epiConv

We finally benchmarked the computational efficiency of epiConv on a human bone mar-
row and blood mononuclear cells dataset of 100k cells. We down-sampled the dataset to 
10k, 20k, 50k and 100k cells and applied epiConv on them. EpiConv could run in paral-
lel, achieved desirable results and was computationally efficient on large datasets (~4 h 
running time with 5 threads for dataset of 100 k cells, Additional file 1: Fig. S13). LSI and 
SnapATAC showed similar computational efficiency with epiConv. However, SnapATAC 
run out of memory on dataset of 100k cells (require more than 78 GiB memory). Cis-
Topic and SCALE were less efficiency and required more than 24 hours for large dataset 
(cisTopic, ≥ 20 k cells; SCALE, ≥ 100 k cells).

Discussion
In this paper, we introduced a novel method named epiConv for joint analysis of 
scATAC-seq data and compared it with several clustering tools of scATAC-seq combined 
with batch correction tools designed for scRNA-seq. When applied to scATAC-seq data, 
these batch correction tools generally did not match their performance in scRNA-seq 
data. We found that batch effects and biological space were not always orthogonal to 
each other in scATAC-seq data (Additional file  1: Fig. S3a), which broke the assump-
tion of existing batch correction tools [14, 17] and caused over-fitting problem (Fig. 2d). 
Moreover, technical bias might be introduced by clustering tools of scATAC-seq data 
during the step of latent feature learning and was inherited by batch correction tools 
(Fig. 3d). To solve this problem, the potential batch effects between datasets should be 
considered in latent feature learning, but unfortunately such functionality is not avail-
able in state-of-art scATAC-Seq tools. Therefore, a one-stop working pipeline, such as 
epiConv, that performs clustering and batch correction simultaneously should handle 
the problem better in joint analysis of scATAC-seq data.

The other unique feature of epiConv is the inclusion of residuals after dimension 
reduction. We found that most of existing integration algorithms failed to align cells 
from the different conditions (tumor vs normal) together (Fig. 6f ). We hypothesized that 
the discarded residuals might contain biological information. Therefore, we compared 
the results of epiConv under two strategies (with or without adding back residuals), we 
found that including the residuals of Eigenvalue decomposition significantly improved 
the results of batch correction (Additional file  1: Fig. S9c,d). With this additional fea-
ture, we demonstrated that epiConv could also perform integration for datasets under 
different biological conditions (Fig.  6f ). These results suggested that the residuals of 
dimension reduction might contain useful information in recovering the biological rela-
tionships between cells and should not be ignored.

Although epiConv cannot integrate scRNA-seq and scATAC-seq data directly, it is a 
useful tool to recover the promoter-enhancer relationships by improving the resolution 
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of low-depth scATAC-seq of co-assay data. The low-depth of scATAC-seq limited 
the detection sensitivity of cell type specific chromatin profiles, especially for the rare 
cell population. We demonstrated that integration of scATAC-seq data with co-assay 
data linked a large number of enhancers to their putative target genes that could not 
be inferred from the co-assay data alone, while most of other methods failed to do so 
(Fig. 4b,d). Another alternative to infer promoter-enhancer relationships is to perform 
scATAC-Seq and scRNA-Seq separately from the same population and to integrate 
these two types of data by integration algorithm, such as Seurat [17]. Most algorithms 
that directly integrate scRNA-seq and scATAC-seq data first transform the epigenomic 
data into a gene activity matrix by summing the ATAC-seq counts around genes’ TSS 
or across the gene body. However, recent study suggested that gene activity matrix per-
formed poorly on clustering of scATAC-seq data [10], while distal enhancers better char-
acterized the cell identities [25]. Thus, it remains unclear whether these methods can 
provide high-resolution integration, especially for closely-related cell types. On the con-
trary, integration of high-depth independent scATAC-seq data with scATAC-seq from 
co-assay data circumvents the difficulty in matching cells from two separate assays and 
significantly improves the resolution of cell-type specific chromatin marks (Fig. 4f ). We 
believe that such strategy will help resolve the landscape of enhancer-promoter interac-
tions for rare or closely-related cell types when co-assay data is available.

Conclusion
In this paper, we developed an algorithm named epiConv to integrate multiple scATAC-
seq datasets. We have demonstrated that epiConv can better remove batch effects and 
retain biological variations than existing methods under various situations. Moreover, 
joint analysis provides deeper insights into the epigenetic regulation of single cells of dif-
ferent developmental stages as well as disease conditions. We believe that the computa-
tional framework in this study along with technical improvements could facilitate better 
interpretation of the roles of chromatin accessibility in epigenetic regulation of cells in 
the future.

Methods
Peak calling and matrix counting

We used peaks defined in original article or called peaks from two ends of fragments 
by MACS2 [26] (--nomodel --nolambda --keep-dup all --shift -95 --extsize 200) if 
processed peak file was unavailable. We counted the ends of fragments against peaks 
to obtain the count matrix. The count matrix was binarized. Cells with less than 1,000 
accessible peaks were filtered out.

Application and evaluation of other methods

We applied cisTopic [11], Latent Sematic Indexing [4] (LSI), SCALE [15] and SnapATAC 
[16] to scATAC-seq data and used Harmony [12], MNN [14] and Seurat [17] to remove 
batch effects. In cisTopic, the number of meta features (topics) was set to 20, 30, 40 and 
50 and automatically determined. In other methods, the number of meta features was 
set to 50. In LSI and SCALE, we filtered peaks that were accessible in less than 1% cells 
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following the tutorial or default settings. SnapATAC was performed on ATAC-seq frag-
ments following the tutorials.

We applied Harmony, MNN and Seurat on meta features calculated above to correct 
batch effects. We did not directly apply Harmony, MNN or Seurat on the raw matrix or 
gene activity matrix that summed the reads near each gene’s TSS as these simple meth-
ods generally did not perform well [10]. MNN and Seurat require specification of refer-
ence batches. It was the same as epiConv and was reported below. Other unmentioned 
settings were all set to defaults.

We used local inverse Simpson’s Index (LISI) to quantitatively evaluate the mixing of 
cells from different batches by R package lisi [12].

Infer differentially accessible peaks and cluster‑specific signatures

We used hypergeometric test to detect cluster-specific accessible peaks. Population size 
was defined as total number of cells. Sample size was defined as the total library size of 
cluster divided by the mean library size of all cells. No. of success in the population for 
each peak was defined as total number of cells with coverage. No. of success in the sam-
ple was defined as number of cells with coverage in this cluster. Only peaks that were 
accessible in at least 1% cells were tested. Peaks with one-tailed p value smaller than 
0.01 were considered as differentially accessible peaks. If peaks were considered as dif-
ferentially accessible peak in more than one cluster based on the statistical significance 
threshold, we assigned the peak to the cluster with the highest normalized counts. Clus-
ter-specific signatures of single cells were calculated by the total number of accessible 
cluster-specific markers divided by the total number of accessible peaks.

scATAC‑seq data of PBMCs

Basic data processing was described as above. Cells from GSE123581 were used as refer-
ence. As the exact identities of T cells were unknown, we used a supervised approach 
to annotate T cells. We first grouped T cells into 4 clusters (Naïve CD4+ T cells, Naïve 
CD8+ T cells, memory CD4+ T cells and effector CD8+ T cells) by epiConv and per-
formed differential analysis to obtain the cluster-specific markers. We aggregated the 
cluster-specific markers to calculate cluster-specific signatures for each single cell. 
Finally, we normalized signatures by xnorm =

x−x0.01
x0.99−x0.01

 , where x0.01 and x0.99 is the 1% 
and 99% percentiles of the signature values across all cells, and annotated single cells by 
the highest normalized signature. Although epiConv was not guaranteed to be with the 
highest accuracy, the cluster-specific signatures should be weekly affected as far as it was 
with reasonable accuracy. We did not find strong contradictions between the annota-
tions and the results of other methods. The identities of other cells (NK, monocytes and 
B cells) were obtained from original articles.

In over-fitting test, we used Adjusted Rand Index (ARI) to evaluate the consistency 
between clusters and annotated cell identities. As the resolution of Louvain cluster-
ing affected ARI, we performed Louvain clustering with resolution from 0.2 to 2.0 and 
reported the highest ARI for each method. To count the number of over-fitted cells, 
we classified single cells into T cells and non-T cells and calculated the LISI by this 
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definition. Cells with LISI > 1.1 (which meant that T cells were mixed with non-T cells) 
were counted as over-fitted.

scATAC‑seq data of mouse lung data

Basic data processing, differential analysis and calculation of cell-type specific signatures 
were performed as described above. Cells from Mouse Cell Atlas were used as refer-
ence. SHARE-seq (GSE140203) is a multi-omics protocol that generates RNA-seq and 
ATAC-seq profiles simultaneously. But only a small proportion of cells (~ 10%) from 
GSE140203 have RNA-seq profiles and the sequencing depth is shallow. We did not use 
the data from RNA-seq profiles.

scATAC‑seq data of adult mouse brain

We integrated co-assay data of mouse adult cerebral cortex from GSE126074 [6] 
(SNARE-seq), scATAC-seq of adult mouse brain from Mouse Cell Atlas [7] (sci-ATAC-
seq) and GSE123581 [5] (dscATAC-seq) together. For RNA-seq profiles of co-assay data, 
we used the pipeline of Seurat with default settings (find 2000 most variable genes and 
obtain 50 PCs from them) to perform dimension reduction, clustering and finding clus-
ter-specific marker genes. In ATAC-seq analyses, we first aligned dscATAC-seq data 
to sci-ATAC-seq data and then aligned co-assay data to them. Given that the quality of 
RNA-seq is much better than ATAC-seq, we calculated the correction vector of non-
anchor cells from anchor cells using the SNN graph from RNA-seq data instead. Dimen-
sion reduction and joint ATAC-seq clustering were performed on integrated dataset as 
described above. Joint ATAC-seq clusters that contained fewer than 10 co-assays cells 
were not included in downstream analysis.

We used Adjusted Rand Index (ARI) to evaluate the consistency between clusters from 
RNA-seq and ATAC-seq for epiConv and other methods. We performed Louvain clus-
tering on other methods with resolution from 0.2 to 2.0 and reported the highest ARI for 
each method.

The cluster-specific markers shared by sci-ATAC-seq and dscATAC-seq were shown 
and used to infer the relationships between ATAC-seq and RNA-seq. We also performed 
differential analysis on excitatory neuron cells instead of all cells to better detect the 
cluster-specific markers of rare cell types (Ex 6 and Ex 7).

scATAC‑seq data of mouse CD4+ T cells

Basic data processing was described as above. Cells from normal condition were used 
as reference. We performed Louvain clustering on integrated datasets and manually 
annotated pTreg and tTreg clusters by the accessibility of four marker gene promoters 
(Foxp3, Klrg1, Rorc, Ikzf2) used in original article. Differentially accessible peaks calling 
between pTreg and tTreg of normal and germ-free mouse was performed as described 
above. Motif calling was performed by Homer [27] on the ± 200 bp regions from peak 
centers. The length of motif was set to 8, 10 and 12. All ATAC-seq peaks were used as 
background.
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scATAC‑seq data of leukemia

Basic data processing was described as above. Normal cells were used as reference. There 
were other two samples (MPAL2 and MPAL5 relapse) in Granja et  al. [23]. Although 
we could align them to normal hematopoiesis, they showed week correlations with nor-
mal hematopoiesis and could not be used for benchmarking. Thus, we did not show the 
results of them.

scATAC‑seq data of human bone marrow and blood mononuclear cells

We combined data from human bone marrow and blood mononuclear cells from 
GSE129785, GSE139369 and 10x Genomics demonstration data together. Data of 
GSE139369 was used as reference. We performed Louvain clustering on data after inte-
gration and manually annotated each cluster by cells with known identities from original 
article or analyses described above.
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