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Generative machine learning produces 
kinetic models that accurately characterize 
intracellular metabolic states

Subham Choudhury1, Bharath Narayanan1,2, Michael Moret    1,3, 
Vassily Hatzimanikatis    1   & Ljubisa Miskovic    1 

Generating large omics datasets has become routine for gaining insights 
into cellular processes, yet deciphering these datasets to determine 
metabolic states remains challenging. Kinetic models can help integrate 
omics data by explicitly linking metabolite concentrations, metabolic fluxes 
and enzyme levels. Nevertheless, determining the kinetic parameters that 
underlie cellular physiology poses notable obstacles to the widespread use 
of these mathematical representations of metabolism. Here we present 
RENAISSANCE, a generative machine learning framework for efficiently 
parameterizing large-scale kinetic models with dynamic properties 
matching experimental observations. Through seamless integration of 
diverse omics data and other relevant information, including extracellular 
medium composition, physicochemical data and expertise of domain 
specialists, RENAISSANCE accurately characterizes intracellular metabolic 
states in Escherichia coli. It also estimates missing kinetic parameters and 
reconciles them with sparse experimental data, substantially reducing 
parameter uncertainty and improving accuracy. This framework will be 
valuable for researchers studying metabolic variations involving changes 
in metabolite and enzyme levels and enzyme activity in health and 
biotechnology.

Advancement in biotechnology and health sciences hinges heavily 
on our capability to integrate different varieties of data produced 
by high-throughput techniques and obtain coherent insights into 
cellular processes1–3. Considerable effort has been invested in using 
genome-scale models, mathematical representations of metabolic 
information about living organisms, to reconcile and make sense of 
such constantly growing disparate datasets4,5. Genome-scale models 
integrate omics data by considering constraints imposed by genetics 
and physicochemical laws6–10. For instance, researchers use inequality 
constraints stemming from the second law of thermodynamics to relate 
metabolic fluxes (fluxome) to metabolite profiles (metabolome)11–14. 

However, data integration using these inequality constraints results in 
considerable uncertainty about intracellular metabolic states15. Conse-
quently, despite the availability of large omics datasets, determining the 
exact intracellular levels of metabolite profiles and metabolic reaction 
rates with these constraint-based models remains elusive.

Kinetic models of metabolism can address these issues by con-
solidating several types of omics data, such as metabolomics, fluxom-
ics, transcriptomics and proteomics, within a common and coherent 
mathematical framework16. Indeed, these models contain information 
about enzyme kinetics and metabolic regulation, allowing them to 
explicitly couple metabolite concentrations, metabolic reaction rates 
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multivariate Gaussian noise as input and produces a batch of kinetic 
parameters consistent with the network structure and integrated data. 
These parameter sets are then used to parameterize the kinetic model 
(step II). Next, we evaluate the dynamics of each parameterized model 
by computing the eigenvalues of its Jacobian and the correspond-
ing dominant time constants (Methods). These quantities allow us 
to assess if the generated kinetic models have dynamic responses 
corresponding to experimental observations (valid models) or not 
(invalid models). Based on this evaluation, we assign a reward to the 
generator (step III). NES repeats steps II and III for every generator in 
the population, followed by normalizing all rewards. The weights of the 
parent generator for the next generation are then obtained by using 
the weights of all the members of the previous generation, weighted 
by their normalized rewards. Although high-performing generators 
have a greater impact on the weight of the parent generator in the 
next generation, lower-performing individuals also contribute. NES 
subsequently mutates this parent generator by injecting a pre-defined 
noise level into its weights, thus recreating a population of generators 
(step I). We iterate steps I–IV until we obtain a generator that meets the 
user-defined design objective, such as maximizing the incidence of 
biologically relevant kinetic models (Methods).

The generated kinetic models are versatile and applicable to a 
broad range of metabolism studies (Fig. 1e).

Generating large-scale kinetic models of E. coli metabolism
We studied the anthranilate-producing E. coli strain W3110 trpD9923 
to test and validate RENAISSANCE. The kinetic model structure for this 
strain, adopted from Narayanan et al.38, consisted of 113 nonlinear ordi-
nary differential equations parameterized by 502 kinetic parameters, 
including 384 Michaelis constants, KMs (Methods and Supplementary 
Fig. 4). It encompasses 123 reactions and describes core metabolic 
pathways, including glycolysis, the pentose phosphate pathway (PPP), 
the tricarboxylic cycle (TCA), anaplerotic reactions, the shikimate path-
way, glutamine synthesis and a lumped reaction for growth (Methods 
and Supplementary Fig. 5). The objective was to find kinetic param-
eters resulting in dynamic models consistent with an experimentally 
observed doubling time of 134 min for the studied E. coli strain39. A valid 
kinetic model satisfying this requirement should produce metabolic 
responses with the dominant time constant of 24 min, corresponding 
to having the largest eigenvalue λmax < −2.5 (Methods).

We used thermodynamics-based flux balance analysis13,40 to inte-
grate experimental data39 and compute 5,000 steady-state profiles 
of metabolite concentrations and fluxes (Methods). We selected one 
of these profiles as input for RENAISSANCE (Methods) and identi-
fied a set of hyperparameters yielding the best framework perfor-
mance with a three-layer generator neural network (Methods and 
Supplementary Notes 2–4). RENAISSANCE was then executed for 50 
evolution generations using the optimized settings. We repeated the 
optimization process ten times with a randomly initialized genera-
tor population to obtain statistical replicates. For each generation, 
we generated 100 kinetic parameter sets for every generator in the 
population and computed the maximum eigenvalue, λmax, for each 
parameter set. To evaluate and rank the generators, we used the 
incidence of valid models, defined as the proportion of the generated 
models that are valid (with λmax < −2.5; Methods). We observed that 
the incidence of valid models steadily increases with the number of 
generations, with the mean incidence converging around 92% after 
50 generations (Fig. 2a, thick black line and Supplementary Figs. 14 
and 16). For some repeats, we could achieve incidence up to 100% 
(Fig. 2a, green-shaded region).

For further analysis of the generated models, we selected a statis-
tical repeat with fast convergence (Fig. 2a, dashed line) and chose ten 
generators from that repeat with monotonically increasing incidence 
over generations (Fig. 2a, black diamonds). For each of the ten chosen 
generators, we generated 500 kinetic parameter sets and examined the 

and enzyme levels through mechanistic relations. Additionally, unlike 
constraint-based models, kinetic models capture time-dependent 
responses of cellular metabolism. Taken altogether, these models 
show great promise for addressing complex phenomena in biomedi-
cal sciences and biotechnology, such as metabolic reprogramming in 
the tumour microenvironment and disease17–19, relationships between 
cancer, metabolism and circadian rhythms20, dynamics of drug absorp-
tion and drug metabolism21, and engineering and modulating cell 
phenotypes22–24.

Despite the capacity of kinetic models to reconcile data and iden-
tify metabolic features associated with phenotype, the application 
of these models is somewhat limited16,25–30. The major challenge in 
developing kinetic models is the lack of knowledge about the charac-
teristic kinetic parameter values that govern the cellular physiology 
of the studied organism in vivo. Overcoming this requires employ-
ing intricate computational procedures and the extensive expertise 
of researchers. It is often impractical to build and use these models 
for studying multiple physiological conditions and large cohorts31. 
Therefore, there is a need for accelerated approaches for parameter-
izing kinetic models that would allow the broader research community 
access to these models.

Recent efforts employing new tailor-made parameterization28 
and machine learning32–34 improved the efficiency of constructing 
near-genome-scale kinetic models. Nevertheless, challenges remain 
regarding extensive computational time28 and the need for training 
data from traditional kinetic modelling approaches32–34. Here, we pre-
sent RENAISSANCE (REconstruction of dyNAmIc models through 
Stratified Sampling using Artificial Neural networks and Concepts of 
Evolution strategies), a machine learning framework that efficiently 
parameterizes biologically relevant kinetic models of metabolism 
without requiring training data. The behaviour of parameterized 
kinetic models is highly nonlinear yet deterministic and depends on 
the intracellular state, defined by network topology and integrated 
data. To capture this nonlinear behaviour, we use feed-forward neural 
networks of comparable complexity and optimize them with natural 
evolution strategies (NES)35,36 to obtain kinetic models with desired 
properties (Fig. 1a). This dramatically reduces the extensive compu-
tation time required by traditional kinetic modelling methods, thus 
allowing its broad utilization for high-throughput dynamical studies 
of metabolism. We showcase RENAISSANCE through three studies: 
generating a population of large-scale dynamic models of Escherichia 
coli metabolism, characterizing intracellular metabolic states in the 
E. coli metabolic network accurately, and integrating and reconciling 
available experimental kinetic data.

Results
Parameterizing biologically relevant kinetic models
We developed RENAISSANCE, a machine-learning framework for 
parameterizing biologically relevant kinetic models. These models 
are consistent with experimentally observed steady states and produce 
dynamic metabolic responses with timescales37 that match experimen-
tal observations in cellular organisms. The input to RENAISSANCE is a 
steady-state profile of metabolite concentrations and metabolic fluxes 
computed by integrating structural properties of the metabolic net-
work (stoichiometry, regulatory structure and rate laws) and available 
data (metabolomics, fluxomics, thermodynamics, proteomics and 
transcriptomics) into the model (Fig. 1b,c and Methods).

RENAISSANCE uses feed-forward neural networks (generators) 
to parameterize kinetic models, with the size of generator networks 
dictated by the complexity of the kinetic model. Using NES, it optimizes 
the weights of generators in four iterative steps until they produce bio-
logically relevant models (Fig. 1d and Methods). The iterative process 
starts by initializing a population of generators with random weights 
(step I). The use of multiple generators facilitates a more thorough and 
more efficient exploration of parametric space. Each generator takes 
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distribution of the resulting maximum eigenvalues (Fig. 2b). Remark-
ably, the generated models gradually shifted over the optimization pro-
cess from having slow dynamics (λmax > −2.5) to having fast dynamics, 

with the metabolic processes settling before the subsequent cell divi-
sion, indicating that RENAISSANCE-generated models could capture 
the experimentally observed dynamics.
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Fig. 1 | Overview and applications of the RENAISSANCE framework. a, A NES 
algorithm iteratively generates candidate solutions for an optimization problem 
based on their assigned fitness scores until satisfactory solutions are obtained.  
b, Context-specific structural properties of the metabolic networks are 
established and incorporated into the model. c, Once the model structure is 
fixed, available omics data are integrated into the model. d, Generators for 
parameterizing biologically relevant (valid) kinetic models are optimized 
iteratively in four steps to meet the design objective: a population of generators 

is randomly initialized (step I); generators produce parameters needed to 
parameterize kinetic models (step II); the fitness of the kinetic models (circles 
and bars in shades of red) is assessed on the basis of the dominant time constants 
of the model responses (Methods), and the generator is assigned a score based 
on this performance (step III); the rewards for each generator are fed back to NES 
to find the best-performing generator (step IV); the best-performing generator 
is then perturbed to obtain the next generation of generators (step I). e, A few 
applications of RENAISSANCE-generated models presented in this paper.
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Since cellular organisms maintain phenotypic stability when faced 
with perturbations41, the generated models that describe cellular 
metabolism should possess the same property. To test the robustness 
of the models, we perturbed the steady-state metabolite concentra-
tions up to ±50% and verified if the perturbed system returned to the 

steady state. For this purpose, we generated 1,000 relevant kinetic 
models using the final of 10 selected generators (Fig. 2a, generation 45), 
chosen for yielding the highest incidence of valid models. Inspection 
of the time evolution of the normalized biomass showed that the bio-
mass returned to the reference steady state (v(t)/vref = 1) within 24 min 
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Fig. 2 | Generation, validation and application of RENAISSANCE-
parameterized kinetic models. a, The incidence of models exhibiting the 
desired dynamic properties increases with the number of generations, as 
indicated by the mean incidence (black line) and the maximum and minimum 
incidence (green-shaded region) observed over ten statistical repeats for every 
generation. The dashed line indicates the incidence of a repeat with fast 
convergence. The black diamonds indicate the generators selected for 
subsequent analysis from that repeat. b, The distribution of the maximum 
eigenvalues (λmax) for the generated models over generations. The vertical 
dashed lines indicate λmax = −2.5 (left) and λmax = 0 (right). c, Robustness analysis. 
The time evolution of the normalized perturbed biomass, v(t)/vref, and 

concentrations, (X (t) − Xref) /Xref , of nicotinamide adenine dinucleotide reduced 
(NADH), adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide 
phosphate reduced (NADPH). Shown are the mean response (dashed black line), 
the 25th–75th percentile (dark-orange region) and the 5th–95th percentile 
(light-orange region) of the ensemble of responses. The vertical dashed line 
corresponds to t = 24 min. d, Bioreactor simulations. The time evolution of 
biomass, glucose concentration and anthranilate concentration in the bioreactor 
runs of the 13 models closely fitting the experimental data39. The black dots and 
error bars represent the mean and standard deviation from triplicate 
experiments, respectively.
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for 100% of the perturbed models (Fig. 2c). Similarly, the perturbed 
time responses of a few critical metabolites, namely NADH, ATP and 
NADPH, returned to their steady-state values within 24 min for 99.9%, 
99.9% and 100% of the 1,000 generated kinetic models, respectively 
(Fig. 2c). Examining every cytosolic metabolite collectively revealed 
that 75.4% of the models returned to the steady state within 24 min 
and 93.1% returned within 34 min, demonstrating that the generated 
kinetic models are robust and obey imposed context-specific observ-
able biophysical timescale constraints.

Next, we tested the generated models in nonlinear dynamic bio-
reactor simulations closely mimicking real-world experimental con-
ditions38,39. The temporal evolution of biomass production showed 
similar trends as typical experimental observations with clear expo-
nential and stationary phases of E. coli growth (Fig. 2d, Supplementary 
Note 6 and Supplementary Fig. 6). Similarly, glucose uptake and anthra-
nilate production also reproduce trends observed in experiments with 
glucose consumption halted and anthranilate production saturating 
at around 20 h. This study indicates that the RENAISSANCE models can 
accurately reproduce the physiologically observable and emergent 
properties of cellular metabolism, even without implicit training to 
reproduce fermentation experiments.

Characterizing the intracellular metabolic states of E. coli
Accurately determining the intracellular levels of metabolite profiles 
and metabolic reaction rates is crucial for associating metabolic signa-
tures with phenotype. Yet, our capabilities to establish the intracellular 
metabolic state are limited. Even with the ever-increasing availability 
of physiological and omics data, a considerable amount of uncertainty 
in the intracellular states remains. We propose using kinetic models to 
reduce this uncertainty because of their explicit coupling of enzyme 
levels, metabolite concentrations and metabolic fluxes. Moreover, 
kinetic models allow us to consider dynamic constraints in addition 
to steady-state data, thus allowing us further uncertainty reduction.

After integrating available physiology and omics data39,42–44 using 
the constraint-based thermodynamics-based flux balance analysis40, 
substantial uncertainty was present in the intracellular metabolic 
state as indicated by the wide ranges of metabolite concentrations and 
metabolic fluxes. We sampled 5,000 steady-state profiles of metabo-
lite concentrations and metabolic fluxes from this uncertain space 
and deployed RENAISSANCE to find the fastest possible dynamics 
(maximum negative eigenvalues, λmax) for each steady state (Methods 
and Supplementary Fig. 7). We visualized the steady-state profiles by 
performing dimension reduction with principal component analysis 
(PCA)45 and t-distributed stochastic neighbour embedding (t-SNE)46 
(Methods) and coloured each steady-state profile according to the 
obtained λmax (Fig. 3a). We observed a high variation in the dynamics 
(λmax) of the studied steady-state profiles (Fig. 3c, blue distribution). 
Of 5,000 steady-state profiles, 918 (18.4%) had λmax larger than −2.5, 
meaning these intracellular metabolic states could not correspond 
to the experimental observations. Indeed, the dynamic responses 
corresponding to these states have a time constant superior to 24 min, 
that is, slower than the experimental observations.

As t-SNE optimizes the preservation of local distances between 
points when projecting them from a high-dimensional space to a 
lower-dimensional one46,47, we hypothesized that sampling from a region 
containing closely positioned steady-state profiles associated with fast 
dynamics (Fig. 3a, blue dots) would yield steady-state profiles that sat-
isfy dynamic requirements. Conversely, sampling from a region around 
adjacent profiles corresponding to slow dynamics (Fig. 3a, yellow dots) 
would probably result in profiles not meeting dynamic requirements.

To test this hypothesis, we selected one of these local regions 
(Fig. 3b), which contained 22 steady states with fast dynamics with 
−3.8 ≤ λmax ≤ −8.5 (Fig. 3c, green distribution), and analysed its neigh-
bourhood (Fig. 3d). We sampled 90 additional steady states within 
this neighbourhood from the Gaussian distribution with a mean and 

standard deviation estimated on the initial 22 steady states. The sam-
pled steady states allowed us to improve the resolution of the initial 
dynamic landscape (Fig. 3e, circles). Crucially, the sampled steady 
states had linearized dynamics in the same range as the initial 22 states 
(Fig. 3d–f), confirming our hypothesis. Therefore, RENAISSANCE 
allows us to select subsets of intracellular states consistent with experi-
mentally observed dynamics and generate additional ones with the 
same characteristics. Moreover, it allows us to discard subregions with 
experimentally inconsistent states, thus reducing uncertainty. Indeed, 
sampling from a region containing closely positioned steady-state 
profiles associated with slow dynamics yielded steady states corre-
sponding to similarly slow dynamics (Supplementary Fig. 13).

We next examined individual metabolite concentrations of the 
5,000 steady-state profiles to identify patterns corresponding to the 
experimentally observed phenotype. We observed a clear bias in the 
dynamics depending on the concentrations for some of the metabo-
lites (Fig. 3g and Supplementary Fig. 7). For example, in the case of 
3-phosphoglyceric acid, we obtain models with relevant dynamics only 
when the concentration of this metabolite is less than ∼0.002 mM. In 
contrast, steady-state profiles with 3-phosphoglyceric acid concen-
trations between 0.002 and 0.003 mM do not have relevant dynam-
ics (Fig. 3g). To investigate this further, we identified 30 cytosolic 
metabolites that showed such concentration biases by visual inspec-
tion (Supplementary Fig. 8) and sampled 40 new steady states from 
the same Gaussian distribution as before (Fig. 3d) but constrained the 
selected 30 metabolites to concentration ranges that do not support 
relevant dynamics (for example, the peach-shaded region in Fig. 3g). 
As expected, almost all of these new intracellular states did not yield 
models with relevant dynamics (Fig. 3h,i). This result demonstrates 
that information stemming from the dynamic responses can be used 
to constrain values of intracellular metabolites to specific ranges.

Overall, the dynamic characterization of a broad range of intracel-
lular states allows us to reduce uncertainty at the level of steady-state 
profiles, as well as individual metabolite concentrations and metabolic 
fluxes.

Integration and reconciliation of experimental information
Experimentally measured Michaelis constants, KMs, are curated in com-
prehensive databases containing functional and molecular informa-
tion of enzymes such as BRENDA48. However, as we transition to large 
genome-scale kinetic models, a vast majority of the associated kinetic 
parameters remain unknown. Integrating experimental results from 
in vivo and in vitro studies, despite the disparities in their parameter val-
ues, can help further constrain uncertainty and lead to a more accurate 
description of intracellular metabolic states. To this end, we retrieved 
experimentally measured values for 108 out of 384 KMs in our model 
from BRENDA (Methods).

To investigate how the integrated kinetic data constrain unknown 
kinetic parameters, we started by integrating four KM values of acon-
itase (ACONTa,b) from TCA (Fig. 4a and Methods), obtained generators 
with a high incidence of valid models (>99%) and generated 500 valid 
kinetic models (Supplementary Fig. 9). To quantify the effect of inte-
grating one experimental KM value on the generated values of the other 
kinetic parameters, we compared the estimates of the other KMs and 
maximum velocities, vmax, with ones obtained when no kinetic param-
eters were integrated. Integration of KM values of aconitase at a reaction 
level restricted the estimates of vACONTamax  (Fig. 4b). Due to the correlation 
in the vmax values throughout the network, restricting vACONTamax  estimates 
through KM integration constrained the estimated ranges of other 
maximal velocities, such as vICDHyrmax  (Fig. 4b). This restriction further 
affected downstream KM values in the network, such as K ICDHyrM,akg  and 
KAKGDHM,succoa (Fig. 4b). These results suggest that integrating only a small 
amount of experimental data, localized to one enzyme (ACONTa,b), 
propagates throughout the metabolic network and alters the rest of 
the kinetic parameters.
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e, The landscape in d is enhanced by sampling 90 additional steady states in the 

neighbourhood of the initial 22 steady states. The circles represent the location 
of the newly sampled steady states in the same landscape as in d. f, Distributions 
of the fastest linearized dynamic (λmax) for all steady states (blue) and 90 steady 
states sampled in e (pink). g, The concentration of 3-phosphoglyceric acid (3pg) 
(mM) versus the fastest linearized dynamic in every steady state. The colour 
scheme is the same as that in a. The horizontal black line indicates the cut-off 
for valid models (λmax = −2.5). The peach-shaded region shows the range of 
3-phosphoglyceric acid concentration that does not allow fast dynamics. h, The 
dynamic landscape of 40 steady states sampled by constraining the metabolite 
concentrations of 30 metabolites to ranges that do not support fast dynamics. 
The diamonds represent the location of the steady states. i, Distributions of the 
fastest linearized dynamic (λmax) for the 40 steady states sampled in g (peach), 
compared with all steady states (blue) and those sampled in d and e (pink).
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We next enquired if RENAISSANCE improves its KM estimates as 
the number of integrated experimental KM values increases. We also 
examined how the localization of integrated KM values, such as the 
integration of KM values from TCA, affects the estimation of KM values in 
other subsystems of the metabolic network. Specifically, we integrated 
10 random combinations of half (9) of the 17 available experimentally 
measured KM values associated with the TCA of E. coli, one combina-
tion at a time. For each of the 10 combinations, we obtained generators 
with a high incidence of valid models (>90%) and generated 2,000 
of these models. In total, we generated 20,000 models containing  
10 distinct combinations of the remaining 8 Michaelis constants to be 
estimated. This process ensured that each of the 17 Michaelis constants 
was integrated at least once and estimated at least once within the  
10 combinations.

The comparison between the experimentally observed and the 
RENAISSANCE estimated range of TCA KM values, quantified through 
the overlap score (OS) between these two ranges (Fig. 5g), showed that 

integrating KMs improves the estimates of the non-integrated individual 
KMs within the same subsystem (Fig. 5a, red bars and Supplementary 
Fig. 9), compared with when no KM values are integrated (Supplemen-
tary Fig. 15, black diamonds). Indeed, noteworthy improvement was 
observed in the predictions of 16 out of the 17 KM values in TCA when 
experimental values of KM were integrated. The average prediction 
accuracy for the entire subsystem also increased (Fig. 5b, red bars) com-
pared with the case with no integration of experimental KMs (blue bars). 
A similar analysis was conducted for other subsystems, PPP, glycolysis, 
anaplerotic reactions, shikimate pathway and pyruvate metabolism, 
and consistently, estimates of KM values within the same subsystem 
improved upon the integration of experimental information for all the 
cases (Fig. 5c,d and Supplementary Fig. 10). These findings indicate 
that integrating experimental information may improve prediction 
accuracy beyond the subsystem level.

Inspecting the distributions of the generated KMs that were not 
part of the TCA subsystem revealed that the predictions for a vast 
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majority of these KMs (85 out 91) improved upon the integration of 
TCA KMs (Fig. 5c, coloured bars) compared with the case where no KMs 
were integrated (black diamonds). Similarly, the mean OS of the entire 
set increased (Fig. 5d). We then examined the top 15 KMs that exhibited 
the most marked improvement in their estimates and determined the 

metabolic subsystem in which they are located. The integration of 
experimental KM values from TCA yielded the most notable improve-
ment in the estimates of the shikimate pathway (6 in the top 15), fol-
lowed by glycolysis (3 out of 15) and anaplerotic reactions (2 out of 15) 
(Fig. 5e, leftmost donut plot). Interestingly, a similar analysis conducted 
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the standard error in the OS over ten combinations of integrated parameters. 
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by integrating KMs from other subsystems showed that the estimates 
from these three subsystems (shikimate pathway, glycolysis and ana-
plerotic reactions) consistently yielded the most notable improvement 
(Fig. 5e and Supplementary Fig. 11). These results provide evidence that 
RENAISSANCE effectively incorporates experimental kinetic data from 
a specific subsystem of the metabolic network, resulting in improved 
parameter estimates across the entire network.

We further examined the impact of integrating experimental 
kinetic data on parameters that lack verifiable experimental measure-
ments, which accounted for 276 out of 384 KMs. To obtain a qualitative 
assessment of the effects of integration, we employed PCA45 to visualize 
the RENAISSANCE predictions for these unknown KMs (Fig. 5f). The 
analysis revealed notable shifts in the estimates of these KMs when 
experimental data were integrated compared with the case where no 
data were integrated (Fig. 5f, blue cluster). Additionally, the estimates 
for the cases with integrated experimental data exhibited greater simi-
larity than those without integration. We provide the generator, trained 
to incorporate all 108 KMs available from BRENDA (Supplementary 
Fig. 12), in Supplementary Information.

These results suggest that integrating experimental kinetic infor-
mation reduces quantitative uncertainties in the intracellular meta-
bolic state of the cell, allowing RENAISSANCE to make more informed 
predictions on the dynamic properties of the entire metabolic network. 
We anticipate that the inclusion of new experimental data and their 
subsequent integration will enhance the predictive capabilities of 
RENAISSANCE even further.

Discussion
Metabolism plays a defining role in shaping the overall health of liv-
ing organisms. A reprogrammed or altered metabolism is not only 
associated with the most common causes of death in humans—can-
cer, stroke, diabetes, heart disease and others—but is also related to 
many congenital diseases49. Thus, a better understanding of metabolic 
processes is crucial to accelerate the development of new drugs, per-
sonalized therapies and nutrition. Biotechnological advances such as 
the bioproduction of industrially essential compounds and environ-
mental bioremediation also hinge on our ability to describe cellular 
metabolism accurately.

Kinetic models provide the most thorough mathematical repre-
sentation of metabolism. The efficient construction of these models 
will open new possibilities for various biomedical and biotechnologi-
cal applications. However, acquiring the parameters of these models 
with traditional kinetic modelling approaches is computationally 
expensive and arduous15,34. Several machine learning methods were 
recently proposed for more efficient kinetic model generation, includ-
ing iSCHRUNK32,33,50 and REKINDLE34. REKINDLE, in particular, has 
demonstrated remarkable gains in model generation efficiency by 
using generative adversarial networks (GANs)51. Nevertheless, exist-
ing kinetic modelling approaches were required to create the data 
needed for the GAN training. The proposed RENAISSANCE framework 
retains the model generation efficiency of REKINDLE without the need 
for training data because it employs the NES, requiring only a scoring 
function to train generators.

In its conception, RENAISSANCE can parameterize kinetic models 
to satisfy a broad range of biochemical properties or physiological 
conditions. For example, it can parameterize models reproducing 
experimentally observed fermentation curves or drug adsorption 
patterns. Herein, we use RENAISSANCE to parameterize kinetic models 
to be consistent with an experimentally observed steady state. This 
approach to model construction was introduced within the ORACLE 
conceptual framework50,52–55, which parameterizes kinetic models by 
unbiased sampling. In contrast, in RENAISSANCE, we leverage machine 
learning to perform stratified sampling biased towards kinetic models 
producing metabolic responses over time with timescales37 matching 
experimental observations in studied organisms. Due to its capability 

to bias parameter sampling towards desired model properties, the pro-
posed framework substantially improves model construction efficiency, 
enabling comprehensive studies of multiple physiological conditions.

RENAISSANCE can train model generators on a standard worksta-
tion in 3–20 min (Supplementary Note 5). Once trained, the generators 
generate ~1 million models in 15–20 s, making this framework several 
orders of magnitude more efficient than traditional sampling-based 
kinetic approaches. RENAISSANCE also does not require specialized 
hardware to execute. The proof-of-concept applications shown here 
demonstrate RENAISSANCE’s applicability to a broad range of studies. 
In this work, we deployed RENAISSANCE to parameterize valid models 
of metabolism consistent with an experimentally observed steady 
state, with validity being characterized by the biological relevance of 
their timescales. However, conceptually, any other requirement can 
be imposed or data used, such as consistency with knockout studies 
or time series from drug absorption trials.

As RENAISSANCE is agnostic to the nature, range and number 
of the parameters it needs to generate, it is straightforward to adjust 
the framework to meet the specific demands the models need to sat-
isfy. The parameters this framework can handle are not restricted to 
Michaelis constants only and can include other kinetic parameters, 
such as enzyme saturations52 and enzyme states56, and other unknown 
quantities in the studied system, such as metabolite concentrations.

Crucially, given proteomic data, RENAISSANCE can predict 
unknown enzyme turnover number, kcat, values and consolidate them 
with experimentally measured kcat values from databases such as 
BRENDA and SABIO-RK57. As such, it represents a valuable comple-
ment to current machine learning methods that estimate kcat values 
directly58–60.

In summary, we provide a fast and efficient framework that lever-
ages machine learning to generate biologically relevant kinetic models. 
The open-access code of RENAISSANCE will facilitate experimentalists 
and modellers to apply this framework to their metabolic system of 
choice and integrate a broad range of available data.

Methods
E. coli model structure and data integration
The kinetic model structure is based on a previous study by Narayanan 
et al.38. The reduced stoichiometry was obtained using redGEM61 and 
lumpGEM62, and it includes core carbon pathways such as glycolysis, 
PPP, TCA, anaplerotic reactions, the shikimate pathway, glutamine 
synthesis and a lumped reaction for growth. The anthranilate phos-
phoribosyltransferase was removed to tailor the general E. coli model 
to strain W3110 trpD9923. The resulting model structure had 113 mass 
balances, including one for biomass accumulation, involving 123 reac-
tions parametrized with 507 kinetic parameters including 384 KMs and 
123 vmaxs (Supplementary Fig. 4). Further details on the kinetic model 
structure can be found in Supplementary Data 1 of Narayanan et al.38.

A context-specific model of W3110 trpD9923 was created by inte-
grating metabolomics and fluxomics data from previous experimental 
studies. The lower bounds of the growth rate (0.26 h−1) and anthranilate 
secretion rate (0.14 mmol gDW−1 h−1 (gram per weight per hour)) were 
set to the reported values from Balderas-Hernandez et al.39, and the 
glucose uptake rate was adjusted to be consistent with the secretion 
and growth rates. Extracellular metabolites neither found in the media 
nor listed as secreted were assigned upper bounds on their secretion 
rates of 0.01 µM gDW−1 h−1 and concentrations of 1 μM, whenever pos-
sible. Intracellular metabolite concentrations reported in Park et al.44 
were constrained to be within twofold of the reported values. Next, 
constraints were imposed on thermodynamic variables, calculated 
using the group contribution method42,43, to ensure that the sampled 
flux directionalities and metabolite concentrations were consistent 
with the second law of thermodynamics.

Then, 5,000 sets of steady-state profiles consistent with the inte-
grated data were sampled from this context-specific model using 
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thermodynamics-based flux balance analysis implemented in the 
pyTFA tool40. Each steady-state profile comprises metabolite con-
centrations, metabolic fluxes and thermodynamic variables. Once 
these profiles are available, we can generate kinetic models around 
each of these steady states27,53,55 using the RENAISSANCE framework.  
We used the profile with index 1712 as input for RENAISSANCE in all 
studies, except for the study detailed in ‘Characterizing the intracel-
lular metabolic states of E. coli’ section where all 5,000 steady states 
were employed (Fig. 3).

At present, RENAISSANCE allows for integrating transcriptomics 
and proteomics data at the steady-state level. When computing the 
steady-state profiles around which the kinetic models are built, REMI63 
and TEX-FBA64 tools allow simultaneous integration of transcriptomics, 
metabolomics and fluxomics data. Other tools for integrating tran-
scriptomics are provided elsewhere65. As discussed in Sanchez and 
Zhang et al.9, proteomics data can be integrated by imposing the upper 
bounds on the fluxes through the expression vj ≤ ki, jcatEi, where kcat is the 
turnover number and E denotes enzyme concentration. The transcrip-
tomics and proteomics data were not available for the present study.

Determining the validity of kinetic models
The Jacobian matrix and its eigenvalues are used in the control66 and 
nonlinear dynamics theory67 to analyse the stability and behaviour of 
a nonlinear dynamical system in the vicinity of an equilibrium point 
by performing linearization. The Jacobian matrix is derived by taking 
the partial derivatives of a set of differential equations with respect 
to the state variables. The sign of the Jacobian eigenvalues provides 
information on the local stability of the generated models, where a 
model is locally stable if the real parts of all eigenvalues are negative52. 
The inverse of the real part of the largest eigenvalue of the Jacobian 
defines the dominant time constant of the linearized system.

The time constant defines the time required for the system 
response to decay to 1

e
≈ 36.8% of its initial value. The dominant time 

constants allow us to characterize the model dynamics; small time 
constants characterize fast metabolic processes such as glycolysis and 
electron transport chain. In contrast, polymerization processes involv-
ing the synthesis of DNA, RNA and proteins typically occur at slower 
timescales.

In this context, we consider a kinetic model valid (biologically 
relevant) if all time constants of the model response are consistent with 
the experimental observations of the studied organism.

To ensure that a perturbation of the metabolic processes settles 
within 1% of the steady state before cell division, the dominant time 
constants of the model response should be five times faster than the 
cell’s doubling time38. The biochemical response should also have 
a characteristic time slower than the timescale of proton diffusion 
within the cell34. With these properties, models can reliably describe 
the experimentally measured metabolic responses.

The doubling time of the E. coli strain used in this study is tdoubling =  
134 min, which corresponds to a growth rate of ln2 × 60

tdoubling
= 0.31h−1. 

Therefore, the dominant time constant of the model’s responses should 
be smaller than one-fifth of the doubling time (26.8 min). Here, we 
imposed a stricter dominant time constant of 24 min, corresponding 
to an upper limit of Re(λi) <−2.5 (or −60/24), on the real parts of the 
eigenvalues, λi, of the Jacobian. All kinetic parameter sets resulting in 
the model obeying this constraint are labelled valid and the rest 
invalid.

Assigning rewards to determine fitness in RENAISSANCE
In RENAISSANCE, we employ deep neural networks known as genera-
tors to produce kinetic parameter sets for a given metabolic mode l 
structure. Technically and structurally, these neural networks are 
similar to those in GANs51 or other deep generative algorithms such as 
variational autoencoders68. The key distinction lies in the training meth-
odology for this neural network. GANs or variational autoencoders 

rely on explicit training data. For instance, in a prior study34, we used 
kinetic parameter sets derived from traditional kinetic modelling 
methods for training. Unlike traditional gradient-based deep learn-
ing methods, which rely on training data to train a neural network, 
RENAISSANCE employs the NES (Supplementary Note 1), which only 
requires a scoring function.

To optimize the weights of the generator network, the NES algo-
rithm produces a population of candidate solutions to an optimization 
problem and assigns a fitness score to each candidate solution (Fig. 1a). 
The algorithm uses the fitness scores of the current solutions to gen-
erate the next generation of candidate solutions, which are likely to 
have better fitness scores than the current generation. The iterative 
procedure stops as soon as the obtained solutions are satisfactory. 
This method is particularly advantageous in scenarios where the fitness 
landscape is complex, non-differentiable or unknown, and it avoids the 
need for backpropagation or direct gradient computation.

The NES algorithm includes several steps:
Step I: NES collects the rewards of all the generators (neural net-

works) in a generation. In our case, the reward is the percentage of 
relevant generated models (thus, the reward for each neural network 
or generator in a generation is between 0 and 1).

Step II: The rewards for each generation member are normalized by 
subtracting the mean and dividing by the standard deviation of all the 
rewards in the generation. The normalization ensures that the update 
direction depends on how each member’s performance compares with 
the average rather than on absolute reward values.

Step III: For each weight in the generator neural network, the algo-
rithm computes an update proportional to the dot product between 
the population’s perturbations (the added noise for generating new 
individuals) and the normalized rewards. If a perturbation consistently 
results in higher rewards, it will exert a more important influence on 
the direction of the weight update. Thus, the reward determines the 
selection of the ‘best’ generator.

Step IV: The update to each weight is scaled by the learning rate and 
inversely scaled by the population size and the noise level (σ). Scaling 
prevents drastic changes that might destabilize the learning process 
(Supplementary Note 2).

The design objective of the conducted studies is to maximize the 
occurrence of biologically relevant kinetic models. In case all gen-
erators of the current generation fail to generate valid models, the 
generator producing models closest to the cut-off eigenvalue (−2.5) is 
rewarded higher, thus having a more important impact on the weight 
of the parent generator in the next generation. The implementation of 
this concept is as follows.

To calculate the local gradient estimate, NES requires an objective 
function, F, to evaluate the fitness of each generator network, G. In our 
study, we use the incidence of the generator, I(G), as the objective func-
tion, which is defined as the fraction of the generated models that are 
relevant (0 ≤ I(G) ≤ 1). Thus, generator networks with a higher incidence 
of relevant models are ‘fitter’ than those with low incidence and have a 
higher weight in determining the parameters of the seed generator net-
work for the next generation. In many cases, we observed that initially 
the generator neural networks do not generate any relevant models, 
and thus the optimization does not proceed as the fitness is always 0. 
To mitigate this, we added a sigmoidal term defined as

r = 0.01
1 + e(λfastest−λpartition)

, (1)

where λfastest corresponds to the smallest maximal eigenvalue of the 
generated models and λpartition is the maximal eigenvalue partition 
that determines the relevancy of the kinetic model. In this study, 
λpartition = −2.5 (‘Determining the validity of kinetic models’). This term 
rewards generators that generate models with dynamics closer to the 
relevant range more than those that generate models with slower, 
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irrelevant or unstable dynamics. This effectively pushes the optimiza-
tion process towards finding generators that generate relevant models. 
So, the overall reward, R, for a generator, G, can be summarized as

R (G) = {
r, I(G) = 0

I(G), I(G) > 0.
(2)

For the large-scale analysis of intracellular states (Fig. 3), the fit-
ness for NES was no longer the incidence of the generators but the 
fastest possible dynamic for the models generated by a given generator. 
Thus, the reward was changed suitably as

r = 0.5e−0.1
λmean
2 , (3)

where λmean is the mean of the 10 fastest maximum eigenvalues (Sup-
plementary Fig. 6) generated by a generator (out of 100 for this case 
study). This reward function ensured that the generators that gener-
ated models with more negative maximum eigenvalues (faster lin-
earized dynamics, λmax) were rewarded more than the others.

Hyperparameter tuning of RENAISSANCE
The hyperparameters of the NES algorithm used in RENAISSANCE are 
(1) the population size, n, determining the number of generator net-
works initiated/created and evaluated in each RENAISSANCE genera-
tion; (2) search radius, σ, representing the level of noise injected into 
the weights of the parent generator in each generation; (3) learning 
rate, α, determining the step size taken by the optimizer in the gradient 
space, that is, it determines the magnitude of the updates to the genera-
tor neural network weights during each iteration of the optimization 
process; and (4) learning rate decay, d, representing the rate at which 
the learning rate decreases at each generation, helping the optimiza-
tion process to converge more effectively. In this study, we tuned the 
hyperparameters of RENAISSANCE to maximize the incidence of valid 
models (Supplementary Notes 3 and 4).

The optimal set of hyperparameters found after grid search is 
as follows: the population size of the generator networks, n = 20; the 
noise level in generating the agent population from the mean optimal 
weights in each generation, σ = 10−2; the learning rate of the gradient 
step, α = 10−3; and the decay rate of learning, d = 5%. In addition, the 
generated KMs were constrained strictly in the range [1.3 × 10−11, 20]  
to accurately represent experimentally measured KM values as curated 
in the BRENDA database48.

Generator neural networks
The generator neural networks were composed of three layers with 
1,076,352 parameters: layer 1, dense, with 256 units, dropout (0.5); 
layer 2, dense, with 512 units, dropout (0.5); and layer 3, dense, with 
1,024 units, dropout (0.5). All software programs were implemented 
in Python (v3.6). Neural networks were implemented using the  
TensorFlow library69 (v2.3.0).

Dimension reduction and visualization of steady states
For generating Fig. 3a,d,f (left), the following steps were followed: (1) 
the steady-state matrix (consisting of 1,127 features) was subjected 
to PCA45; (2) the components of PCA that contributed to over 99% of 
the total expected variance were reduced to two dimensions using 
t-SNE46; and (3) the t-SNE components {xq, xp} were then subjected to 
polar coordinate transformation as

x1 = √x2p + x2q (4)

x2 = arctan 2 (xq, xp) . (5)

{x1, x2} were then plotted to generate the figures.

Integrating known kinetic parameters from BRENDA
If there were multiple experimentally measured values for a single KM 
in BRENDA, we took the geometric mean, KM,exp, of the different values 
and added an experimental error rate of ±20% to KM,exp. The same error 
rate was applied if there was only one recorded experimental value, 
KM,exp. Then, the value of an integrated KM was sampled uniformly from 
the range KM,exp  ± 20% when integrated into RENAISSANCE for the 
training process and generation.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting this study’s findings are publicly available in 
the Zenodo repository at https://doi.org/10.5281/zenodo.7628650  
(ref. 70) and the links therein.

Code availability
A Python implementation of the RENAISSANCE workflow is publicly 
available via GitHub at https://github.com/EPFL-LCSB/renaissance and 
https://gitlab.com/EPFL-LCSB/renaissance. The ORACLE framework 
is implemented in the SKimPy (Symbolic Kinetic models in Python)62 
toolbox, available via GitHub at https://github.com/EPFL-LCSB/skimpy.
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