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Abstract: MOFs exhibit inherent extraordinary features for diverse applications ranging from cataly-
sis, storage, and optics to chemosensory and biomedical science and technology. Several procedures
including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound tech-
niques have been used to synthesize MOFs with tailored features. A continued attempt has also been
directed towards functionalizing MOFs via “post-synthetic modification” mainly by changing linkers
(by altering the type, length, functionality, and charge of the linkers) or node components within the
MOF framework. Additionally, efforts are aimed towards manipulating the size and morphology of
crystallite domains in the MOFs, which are aimed at enlarging their applications window. Today’s
knowledge of artificial intelligence and machine learning has opened new pathways to elaborate
multiple nanoporous complex MOFs and nano-MOFs (NMOFs) for advanced theranostic, clinical,
imaging, and diagnostic purposes. Successful accumulation of a photosensitizer in cancerous cells
was a significant step in cancer therapy. The application of MOFs as advanced materials and sys-
tems for cancer therapy is the main scope beyond this perspective. Some challenging aspects and
promising features in MOF-based cancer diagnosis and cancer therapy have also been discussed.

Keywords: metal-organic frameworks (MOFs); cancer therapy; biotechnology; nanomedicine

1. MOFs for Cancer Therapy: So Far, So Close!

Scientists are continuously seeking new types of treatments, early diagnosis, and
early detection in order to combat diseases such as cancer [1–3]. The potential of MOFs
as advanced materials and systems for cancer therapy is the main scope beyond this
perspective [4–6]. Some challenging aspects and promising features in MOF-based cancer
diagnosis and cancer therapy are also discussed (Figure 1). This is an interesting field of
science with progressive advancements that need much focused attention in order to make
a full transition from bench to bedside; however, till now, there are limited successful case
studies able to provide a phase change to clinics. This is an important aspect to diagnose
the limitations and inhibiting factors regarding the use of advanced materials including
MOFs for therapy for cancer progressing to clinical stages.
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Figure 1. Main scope of this perspective regarding the use of MOFs-based nanomaterials for advanced
cancer therapy.

2. MOFs in Detecting Cancer Biomarkers

Imaging and photofunctional technologies are rapidly developing to provide scien-
tists with a visual tool for cancer diagnosis. Biological markers, or briefly biomarkers,
function as an index to quantitatively express the state of the biological microenvironments
for the sake of detection and diagnostic purposes [7,8]. Medical therapeutic approaches
benefiting from biomarkers work on the basis of blood, urine, or soft tissues. The use
of biomarkers makes possible the examination of biological processes working properly
such as pharmacologic response of soft tissue to a therapeutic protocol [9,10]. In other
words, biomarkers enable medical researchers and doctors to find and deepen the un-
derstanding of an interrelationship between the risk of human disease and a therapeutic
protocol [11–15]. Indeed, high surface area and tunable micro- and nanoporous structure
are key enabling features in the use of MOFs as biomarkers (Table 1; classification of MOF
applications in bioimaging). In this regard, efficient recognition of elements is prioritized
in MOFs optimization. Additional features including high thermal stability would be nec-
essary, e.g., applying hyperthermia in cancer immunotherapy. MOFs are widely employed
for luminescence sensing or photofunctionality as well as chemical detection of species in
cancer therapy. MOFs’ inherently induced optical and photonic properties are fueled by
both organic ligands and metal ions and dyes or markers encapsulated in MOFs. Corre-
spondingly, mechanisms including metal-to-ligand or ligand-to-metal charge transfer as
well as ligand-ligand and metal-metal charge transfer are liable for luminescence emission.

A variety of nanoparticles hybridized with MOFs have been developed for chemical
sensing. For example, lanthanide-functionalized MOFs are exceptional structures, each rep-
resenting a specific luminescence color, all detectable in the visible region. Each lanthanide
has its distinctive signatures to be taken into account for a targeted detection mission.
Manipulation of porosity gives rise to the development of complex biomarkers for early
detection of the tumor as well as visual monitoring of anticancer drug loading and release.
Detection of nucleic acids and proteins and small physiological molecules is known as
a route for MOF-based cancer diagnosis. For example, ovarian and some gynecological
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cancers can be diagnosed at early stages by exploring a correlation between fluorescence
intensity and dosage of lysophosphatidic acid as a biomarker [15].

Table 1. MOF classification for bioimaging and related applications.

Type of MOF Imaging Method and Biomedical Application Ref.

UCNP@Fe-MIL-101-NH2
Optical Imaging (OI)/magnetic resonance imaging (MRI)- Cancer therapy-

Tumor imaging [16]

DOX@NPMOFs OI- Tumor imaging- Cancer diagnosis- Cancer therapy [17]

DOX@Gd-MOFs-Glu Computed tomography (CT)/MRI- Cancer therapy- Tumor imaging- Targeted
delivery of cancer drug [18]

TPZ/Hf/TCPP/PEG CT—Cancer therapy- Tumor imaging- Targeted delivery of cancer drug [19]
Eu, Gd-NMOF@SiO2 MRI- Cancer therapy- Tumor imaging [20]
Fe3O4@IFMOF-3/FA MRI- Cancer therapy- Tumor imaging [21]
UiO-66@DOPA-LB OI- Tumor imaging- Cancer diagnosis- Cancer therapy [22]

Fe3O4-ZIF-8 MRI- Cancer therapy- Tumor imaging- Early detection of tumor sites [23]
MOF@HA@ICG NPs MRI- Cancer therapy- Tumor imaging- Early detection of tumor sites [24]

Au@MIL-88 (Fe) CT/MRI- Cancer therapy- Tumor imaging- Targeted delivery of cancer drug [25]
89Zr-UiO-66/Py-PGA-PEG-F3

Positron emission tomography (PET) imaging- Cancer therapy- Tumor
imaging- Targeted delivery of cancer drug [26]

3. MOFs for Enhanced Cancer Therapy

Cancer is a complex phenomenon arising from RNA damage. Effective and rational
cancer therapy is pertinent to the degree of success in understanding the mechanisms
controlling the regeneration and proliferation of cancerous cells [27–29]. Targeted cancer
therapy seeks to address the causation and visualize the generation and distribution of
the cancerous cells [30–32]. The focus in targeted therapeutics is placed on exploring
highly efficient noninvasive pathways to make it possible to precisely attack the region
from which cancer cells are generated and proliferated [33]. Nanomedicine, the use of
nanoparticles in medicine, makes good use of nanochemotherapeutics for cancer treatment.
This field has been experiencing a progressive growth period since the early 21st century.
Attention has been paid to treating cancer by changing attitudes in a worldwide shift
from disparate to clinical investigations. Because of the aforementioned beneficial features,
MOFs are widely used as tailorable theranostic platforms for both cancer diagnosis and
cancer treatment, including monomodal therapeutics such as photodynamic therapy (PDT),
photothermal therapy (PTT), chemotherapy, radiography, and immunotherapy, as well as
multimodal/combined imaging, thermal, and chemotropic treatments [34]. An overview
of the literature on the use of MOF in individual cancer therapy is summarized in Table 2.

Table 2. A literature survey on NMOFs in individual cancer therapy.

Method NMOFs In Vitro Cell Lines In Vivo Models Ref.

Chemotherapy

Cisplatin@NMOF-
1/DOX@NMOF-1 HeLa - [35]

DOX@NMOF-VEGF responsive MDA-MB-231 - [36]
ZIF-8/FA@UCNP HeLa - [37]
UiO-67/UiO-66 U-87 MG/HSC-3 - [38]

Fe-MIL-53-NH2-FA-5-FAM@5-FU MGC-803 - [39]
UiO-68-FA@DOX HepG2 Mice with HepG2 tumors [40]

Gd-MOF-Glu@DOX HeLa Mice with HeLa tumors [18]
IRMOF-3@Fe3O4/FA Hea - [21]

ZIF-8@P MDA-MB-231 - [41]
ZIF-8@Fe3O4 MCF-7 - [42]

89Zr-UiO-66@Py-PGA-PEG@F3 MDA-MB-231 Mice with MDA-MB-231 tumors [26]
Fe3O4@IFMOF-3@OCMP@FA HeLa - [43]

DPB-UiO-based NMOFs HeLa, MCF-7 and etc. Mice with HeLa and MCF-7
tumors [44,45]
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Table 2. Cont.

Method NMOFs In Vitro Cell Lines In Vivo Models Ref.

RT-RDT
W18@Hf12-DBB-Ir MC38/CT26 Mice with MC38/CT26 tumors [46]

DBB-Ru-Hf MC38/CT26 Mice with MC38/CT26 tumors [47]

PTT
UiO-66@PAN CT26/HCT116 Mice with CT26 tumors [48]

Mn-IR822@PEG-PDA 4T1 Mice with 4T1 tumors [49]
MOF@ICG@HA MCF-7 Mice with MCF-7 tumors [24]

PDT

Ti-TBP CT26 Mice with CT26 tumors [50]
PCN-FA-224 A549/HeLa - [51]

UiO-DBC HT29/CT26 Mice with HT29/CT26 tumors [52]
MB@THA-MOF-76@cRGD A549 - [53]

MOF-FA@PS HeLa - [54]
UiO-DBP SQ20B Mice with SQ20B tumors [55]

PCN-224 (Pt) 4T1/HeLa Mice with H22 tumors [56]
NP-1 HCT116/HepG2 Mice with HCT116 tumors [57]

ZnDTPP-I2@UiO-66 HepG2 - [58]
TPP-SH@UiO-66 HeLa - [59]

Ru(bpy)3
2+@(UiO-67) A549 - [60]

PDT-based treatment works on the bedrock of administration of a photosensitizer sup-
ported via irradiation of cancerous cells at a wavelength in the vicinity of the absorbance
band of the sensitizing agent. It is a clinically approved therapeutic with a very low
possibility of invasion. PTT in the oxygen atmosphere enables one to directly attack the
tumor cells and induces a local inflammatory reaction, which appears promising at the
early stages of cancer [61]. MOFs are successfully applied in PDT in vivo. The strategy
is based on modification and/or functionalization of MOFs to make them photosensitiz-
ers working efficiently under a specified laser irradiation wavelength. For example, in
situ polymerization of dopamine with Mn, Co, or UiO-66 frameworks resulted in hybrid
photosensitizing agents inducing cancer cell apoptosis [62,63]. A wide variety of MOFs, in-
cluding Pt-MOF, Co(Hmim)2 (ZIF-67), Coordination Polymer of Oslo (CPO-27)–M (M = Zn,
Ni, and Mg), Hong Kong University of Science and Technology (HKUST)-1, Fe– Materials
Institute Lavoisier (MIL)-101–NH2, Universitetet i Oslo (UiO)-66–NH2, and Isoreticular
Metal-organic Framework (IRMOF)-3 possessing absorption bands in the range of light
emission have been applied as photosensitizing agents in cancer therapy [64]. For instance,
UiO-66@PAN, possessing uniform size and dispersibility in aqueous solution, is localized
via endocytosis and revealed excellent PTT effect in vitro, significantly inhibiting colon
cancers’ growth in vivo [48].

Chemotherapeutic techniques, with and without radiography as their complements,
have been reported in literature. Nevertheless, clinical data seems necessary to assess
their efficiency compared to PTT and PDT techniques. For instance, in bowel cancer,
chemotherapy could very limitedly be supported by radiotherapy, to reduce locoregional
relapse [65]. A core/shell, namely persistent luminescence-sensitive UiO-66 NMOFs
hybridized with mesoporous carbon, is applied in imaging-guided chemotherapy. Particle
size is as small as ca 70 nm with a tunable pore size (∼4.8–16.2 nm) in the shell and NIR
luminescence from the core. Three model drugs used revealed enhanced delivery and
tumor therapy [66]. The encapsulation of Adriamycin as a model anticancer drug in Zn-
MOF hybridized with folic acid resulted in the development of a promising drug delivery
system (DDS) as well as tumor-targeted chemotherapy of cervical cancer, as evidenced
both in vitro and in vivo [67].

Application of MOFs for bone cancer therapy is based on radiotherapy-accelerated
tumor ablation and prevention of lung metastasis, which is featured by the reduction in
hypoxia-inducible factor [68]. A combined radiotherapy/radiodynamic therapy with the
aid of NMOFs ended in a successful clinical treatment by eliminating lung metastases,
which resulted from reactivating antitumor immunity and inhibiting myeloid-derived
suppressor cells [69]. MOFs are also used in immunotherapy of cancer, individually or
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in combination with other therapeutics. Site-specific ZIF-8 modified with hyaluronic
acid resulted in enhanced immunotherapy, particularly when aided by photothermal
agents, but still, the activation of immune response was inadequate [70]. To overcome
such a low efficiency in immunotherapy, lysosome-targeting Zn-NMOFs coupled with a
lysosome-targeting aptamer (CD63-aptamer) with pH-sensitive character and high capacity
for protein encapsulation are examined with improved antitumor effect of T cells [71].
Some RNA interference (RNAi) techniques benefit from sequence-specific and/or post-
transcriptional gene silencing to regulate the expression of proteins.

When used individually, cancer therapeutics can kill cancer cells limitedly. The
combination of two or more therapeutics reduces side effects and synergistically enhances
anticancer efficacy. MOF-based combined therapeutic methods such as chemophototherapy
or PTT/PDT have also been carried out in order to increase the effectiveness of treatments.
For example, highly tailorable core/shell nanoplatforms based on porphyrinic MOF-coated
gold nanorods used in PTT/PDT/chemotherapy enhanced drug-loading capacity as well
as showed near-infrared (NIR) light sensitivity for imaging; moreover, they generated
reactive oxygen and provided the tumor with photothermal activity in cancer treatment [72].
There have been some more complex cases such as dual-mode and photoacoustic imaging
as well as gas therapy combined with PTT and chemotherapy based on Fe (III)-based
NMOF (MIL-100) nanocarriers used by the NIR-based drug/gene delivery to kill cancer
cells [73,74]. Stimuli-responsive hybrid NMOFs with precisely tailored structure and
modulated release are also used successfully in treating breast cancer cells by applying
combined PDT/chemotherapy [75].

4. Multifunctional MOFs for Cancer Theranostics

Over the past decade, a great deal of attention has been directed to the modification
and functionalization of NMOFs through different methods to enhance their therapeutic
efficiency. In this regard, multifunctional NMOFs are developed which rely on targeted
cancer therapy. Surface modification of MOFs occurring in the course of self-assembly and
post-synthetically occurring modifications are two major classes that trigger the outside
surface of MOFs. Polymer-coated or polymer-wrapped MOFs are a class of functionalized
MOFs by which one can enlarge the biomedical application window of NMOFs. Attach-
ment of polymers possessing reactive groups like carbohydrate polymers to MOFs leads
to enhanced stability and dispersion. For instance, UiO-66 MOFs functionalized with
biomacromolecules follow an enhanced cell endocytosed mechanism. NMOFs can also
be polymer functionalized by GraftFast methodology, e.g., PEGylated MIL-100(Fe); be-
sides, the radical polymerization mechanism is frequently applied in developing polymer-
wrapper NMOFs [76]. Molecularly imprinted polymer (MIP)-coated MOFs with on/off
luminescent behavior have been developed for the selective detection of species in bio-
logical environments. Several MIP-wrapped NMOFs have also been developed as DDS,
representing controlled release behavior and merit for oral administration [77].

Magnetic bio-MOFs are a broad class of NMOFs employed for cancer therapy. This
group of NMOFs can be distinguished based on its mechanism, which supports higher
relaxivity and enhanced sensitivity in MRI with respect to unmodified magnetic (MOF-free)
nanoparticles. There are several examples, including gold-incorporated MOFs for magnetic
resonance imaging (MRI) and PTT for breast cancer treatment [78], target-specific anticancer
ZIF-8/enzyme hybrid MOFs with minimal damage to the healthy cells [79], Fe3O4@bio-
MOF-folic-acid-chitosan conjugate (FC) hybrid structures as theranostic in breast can-
cer [80], Zr-MOF@glucose-6-phosphate applied in kidney cancer treatment [81], highly
selective and sensitive Cu-MOFs for liver cancer therapy [82], Fe3O4@nickel-cadmium
quantum dots (QDs)/MOFs as a biosensor for prostate cancer diagnosis [83], and Fe3O4@5-
aminolevulinic-acid-Zn MOF for MRI and brain tumor therapy [84]. There are also sev-
eral disparate papers on the design, synthesis, and application of complex core-shell
MOFs and flexible MOF-based theranostic nanoplatforms, mainly for multimodal imag-
ing technologies.
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5. Conclusions, Challenging Features, and Future Perspectives

MOFs are highly porous biocompatible tailorable hybrid structures with therapeutic
effects on cancerous cells and tumors as a result of their ability to encapsulate cargos (drugs,
proteins, genes, etc.). The use of MOFs in cancer therapy is experiencing an early stage
of development because their immune response activation is still inadequate for efficient
cancer treatment. Despite the potential of using a bewildering array of materials and
elements (individually or in the form of core/shell, hybrid, and functionalized multiple
structures) to be employed in MOF synthesis, optimizing such structures for targeted
therapy requires the examination of a variety of scenarios. This challenge is, in a complex
manner, compounded with the inadequate efficacy of drugs encapsulated in MOFs when
it comes to being encapsulated in large amounts within the framework, and difficulties
associated with targeting cargos under modulated release rate at the cancerous zone.

In other words, therapeutic drugs can partially attack tumor sites; moreover, distin-
guishing cancer cells from normal cells without damage to the healthy tissues and organs
is not easily achievable. The use of NOMFs to an acceptable level compensates for such
an inability. Traditional therapeutics such as radiotherapy and chemotherapy principally
suffer from an uncontrolled attack on cancer cells. In contrast, phototherapeutics, to a large
extent, are targeted at cancer sites. PTT and PDT techniques are widely used in cancer
therapy, while chemotherapy, radiotherapy, and combined methodologies have also been
implemented to treat cancer, mainly bone, breast, and colon cancers. Nevertheless, a long
road must be traveled to overcome the limited translation of NMOFs to clinical therapies
by designing target-specific tailored NMOFs for targeted actions, which we hope to witness
in the near future.
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