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Abstract

This study addresses the impact of spatial scale on explaining variance in benthic communi-

ties. In particular, the analysis estimated the fraction of community variation that occurred at

a spatial scale smaller than the sampling interval (i.e., the geographic distance between

samples). This estimate is important because it sets a limit on the amount of community var-

iation that can be explained based on the spatial configuration of a study area and sampling

design. Six benthic data sets were examined that consisted of faunal abundances, common

environmental variables (water depth, grain size, and surficial percent cover), and sonar

backscatter treated as a habitat proxy (categorical acoustic provinces). Redundancy analy-

sis was coupled with spatial variograms generated by multiscale ordination to quantify the

explained and residual variance at different spatial scales and within and between acoustic

provinces. The amount of community variation below the sampling interval of the surveys

(< 100 m) was estimated to be 36–59% of the total. Once adjusted for this small-scale varia-

tion, > 71% of the remaining variance was explained by the environmental and province vari-

ables. Furthermore, these variables effectively explained the spatial structure present in the

infaunal community. Overall, no scale problems remained to compromise inferences, and

unexplained infaunal community variation had no apparent spatial structure within the

observational scale of the surveys (> 100 m), although small-scale gradients (< 100 m)

below the observational scale may be present.

Introduction

Understanding the role of scale in freshwater, marine, and terrestrial communities is vital in

ecology [1–3]. Scale in processes, data collection, and analysis [4] has relevance to virtually all

ecological investigations with its ability to influence the outcome or conclusion of a study [1],

[5]. Central to the ecological significance of scale is hierarchy theory [6], which has been used to
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conceptualize the processes by which multiple, scale-dependent, and potentially interacting phe-

nomena contribute to the biological heterogeneity that is ultimately observed in nature [7], [8].

In benthic environments, geomorphology tends to be complex resulting in conceivably

abrupt changes in faunal communities, a pattern expected from hierarchy theory [9]. Careful

examination of biological structuring through the lens of hierarchy theory may help to deepen

our understanding of the ecological significance of scale. For example, a common practice for

ecologists is to simplify nature [2] using habitat classification [8,10–13] as an approach for

managing ecosystems. Most habitat classification approaches are based on hierarchy theory in

that they are designed to characterize habitat features from large (e.g., basins, boulder fields,

etc.) to small (e.g., burrows, sand waves, etc.) spatial scales [8]. Thus, hierarchy theory com-

prises a natural link between scale, habitat classification, and ultimately spatial analysis.

The observational scale of an ecological study is defined by the grain or size of the sampling

unit, the sampling interval (or lag in time series analysis) between samples, and the extent of

the study [1,4,14]. Many investigators have focused on grain and extent, and the effects of vary-

ing these factors are well known in benthic systems [15,16]. Less understood is the effect of

varying the sampling interval (i.e., the geographic distance between samples). The sampling

interval is generally limited by the cost and effort of collecting and processing community data

[17]. Sampling at small intervals may leave out important controlling environmental factors

while sampling at large intervals may make it difficult to identify patterns in the fauna [1]. A

relevant question to ask is how much does the sampling interval affect biotic-environmental

inferences, since once a sampling regime is chosen, spatial variation occurring at smaller inter-

vals cannot be investigated. Sampling and analysis scale have been historically somewhat arbi-

trary [18] and potentially biased through anthropocentric perceptions of nature–a problem

aptly referred to as “scale arbitrariness” by Wiens (1989) [1]. So, the scales being used in scien-

tific studies may not reflect the scales that are important and/or relevant to the animals and

communities that are being investigated.

Field-based sampling methods for examining benthic communities have traditionally

involved in situ sampling with grab samplers, corers, and dredges. The distance interval

between these samples defines the smallest scale over which the data set can provide informa-

tion about biotic-environmental relationships. Below that distance, small-scale variations are

present [14]. These are presumably due biotic interactions [7], especially at scales approaching

the organisms themselves [19], along with small-scale variability in measured environmental

variables, other unmeasured environmental factors that become important at small scales, and

measurement error.

Recently, uncovering spatial patterns in benthic communities through the application of

geospatial tools (e.g., sonar, high-resolution videography, etc.) has emerged as a field in its

own right [20–22]. The key advantage to geospatial methods, especially sonar, is that they can

provide near to full, high-resolution coverage of the areas surveyed versus the seafloor “snap-

shots” obtained by traditional in situ sampling [22]. In addition, with the proliferation of tech-

niques for the analysis of sonar data (e.g., acoustic segmentation via visual, supervised, and/or

unsupervised classification), acoustically-defined habitats (referred to as “provinces” in the

present study) or areas of the seafloor consisting of apparently homogeneous geophysical con-

ditions can be readily derived and used in analysis. Despite its clear potential, not all acoustic

features that appear to characterize distinct regions are relevant to benthic community struc-

ture [23–26]. For instance, regions defined using acoustic data in areas consisting of unconsol-

idated sand and gravel sediments did not correspond well to infaunal assemblage boundaries

[24]. Further, significant but weak associations between sonar backscatter and community

structure have also been observed [25]. Beyond the “seascape” scale, other scales at which

sonar data should be analyzed to provide useful information on community structure are
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unclear. Yet, scale selection for the purposes of analysis can be as critical as the observational

scale is for identifying relationships [4].

Multiscale ordination (MSO) extends spatial statistics to examining the structure of biotic-

environmental relationships by inserting multivariate regression results from a direct gradient

method, such as redundancy analysis (RDA), into an empirical variogram [27–29]. MSO is

distance-based, where the spatial structure in a data set is scrutinized using an empirical vario-

gram, a plot of the sum of the mean squared species-specific differences between pairs of sam-

ples against their geographic distance [7,27]. MSO takes the fitted and residual output of a

nonspatial regression analysis and partitions it at different spatial scales or distance intervals in

geographic space. Results are then examined critically for spatial patterns. When fitted and

residual variograms are combined and compared to the empirical variogram, they can indicate

whether the regression model is misspecified or whether the biotic-environmental relationship

changes with spatial scale. The presence of a small-scale trend in the residual variogram may

suggest the presence of potentially important species interactions, while a trend at a large spa-

tial scale may be evidence that one or more environmental variables have been missed. Fur-

thermore, spatial correlation structure in the residuals creates non-independence problems

that can undermine the data analysis [14,30].

The goal of this study was to use multiscale ordination to examine the spatial structure and

biotic-environmental relationships of infaunal communities using six data sets ranging from

freshwater to near marine conditions. It was envisioned that identifying characteristics common

to all six data sets would provide valuable and perhaps general insights. Analysis of the data

focused on quantifying the fraction of community variation that is below the sampling interval,

and therefore below the resolution of the study, estimating the amount of community variation

explained by commonly used in situ and seascape-scale explanatory variables, determining

whether explanatory variables identified during the model selection process removed spatial

structure in the data, or whether unresolved and therefore problematic structure remained, and

assessing the effectiveness and limitations of the sampling and analytical scales used. We

hypothesized that small scale community variability would be large and impose a limit on the

amount of variation that could be explained by in situ and seascape-scale environmental vari-

ables. We predicted that spatial structure within the observational scale of the studies would be

present but effectively explained by a few common environmental variables. Additionally, it was

expected that incorporating spatial scale elements would alter the perceived effectiveness of how

well these environmental variables explained community variation, and the altered perception

would be large enough to potentially affect research and management directions.

Materials and methods

This study analyzed six benthic biotic-environmental data sets from five study locations in

New York, USA including three locations within the Hudson River Estuary and two in eastern

Long Island’s Peconic Estuary (Fig 1 & Table 1). The five locations represented a range of ben-

thic environments from freshwater (Kingston-Saugerties) to brackish (Haverstraw Bay and

Tappan Zee) to near marine (Robins Island and Shelter Island). Sites are moderate in area,

ranging from 3.3 to 16.5 km2.

Acoustic provinces

Seascape or habitat-scale environmental data were generated by segmenting each site into

regions of the seafloor with apparently homogeneous geophysical conditions (Table 1). This

was based primarily on visual interpretation of backscatter intensity and texture in multibeam

and/or sidescan sonar surveys (e.g., Fig 2), assuming that the sonar data represented proxies
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for a variety of natural features and phenomena (e.g., exposure to subtidal currents, vulnerabil-

ity to sedimentation, compaction, shell hash) that could govern faunal patterns in the benthos

[22,23,31–35]. These regions will be referred to as acoustic provinces in this study. Backscatter

data were obtained for the Haverstraw Bay and Robins Island sites with a Kongsberg Simrad

EM 3000D multibeam sonar system (300 kHz). Multibeam data were gridded on a 1m resolu-

tion with horizontal accuracy of 1m. Sidescan sonar data were acquired for the Kingston-Sau-

gerties, Tappan Zee, and Shelter Island areas using an Edgetech DF-1000 or 272 DT sidescan

sonar system (100 kHz), gridded on a 2 m resolution. Chirp sub-bottom seismics, sediment

cores, and grain size data from grabs were also used as supplementary information for the

identification of acoustic provinces at Kingston-Saugerties and Tappan Zee by Bell et al.

(2000) [36], and their province maps for these sites were adopted. Province identification was

carried out prior to and independently of any faunal sampling or analysis, and no backscatter

or supplementary data used in the identification of provinces were used in the subsequent fau-

nal analyses. Visual interpretation resulted in 10 provinces for Kingston-Saugerties [36,37] 5

provinces for Haverstraw Bay [38], 10 for Tappan Zee [36], and 6 and 7 provinces, respectively,

for the Robins Island and Shelter Island sites [39]. Provinces were represented as categorical

variables in subsequent data analyses. Although character designators (A-J) were used to iden-

tify provinces within a site (e.g., Fig 2), habitat types did not map across sites thereby making

general between-site comparisons impossible. For example, there were no freshwater channel

deposits at any other site than Kingston-Saugerties. In addition, sampling years and seasons

also differed making any potential between-site analysis confounded by time.

In situ community and environmental data

Faunal and sediment samples were collected in situ using a modified Van Veen grab (20 × 20

cm) at Haverstraw Bay (n = 51), Tappan Zee (n = 100), Robins Island (n = 60), and Shelter

Island (n = 70) and a petite PONAR grab (15 × 15 cm) at Kingston-Saugerties (n = 44; 3 pooled

samples per station). Sampling locations were random, but stratified by province, to ensure

full coverage of the habitats present. The Kingston-Saugerties site was sampled in Fall 2001

and Spring 2002 (designated with a suffix ‘01 and ‘02 in results), and each data set was analyzed

separately. Water depth was recorded at the time of sample collection. A sediment subsample

for grain size analysis was drawn from each grab sample and the remainder washed through a

Fig 1. Map of study areas including the number of samples within each location in parentheses.

https://doi.org/10.1371/journal.pone.0189313.g001

Table 1. Data inventory table with references. RPD and LOI refer to the apparent redox potential discontinuity depth and sediment organic matter measured by loss on

ignition, respectively.

Study Location (Sample

Size)

Sampling Device Water Depth RPD LOI Grain Size

Reference

Surficial Percent

Cover

Acoustic Province

Reference

Kingston-Saugerties ’01 (44) Petite PONAR grab ✔ ------- ✔ [41] ------- [36]

Kingston-Saugerties ’02 (44) Petite PONAR grab ✔ ------- ✔ [41] ------- [36]

Haverstraw (53) Modified van Veen

grab

✔ ✔ ------- [40] ------- [38]

Tappan Zee (100) Modified van Veen

grab

✔ ------- ------- [40] ✔ [36]

Robins (60) Modified van Veen

grab

✔ ------- ------- [40] ✔ [39]

Shelter (70) Modified van Veen

grab

✔ ------- ------- [40] ✔ [39]

https://doi.org/10.1371/journal.pone.0189313.t001
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0.5 mm sieve for fauna. Macrofauna remaining on the sieve were preserved in 10% buffered

formalin. In the lab, grain size analysis to estimate percent gravel, sand, and mud was con-

ducted using the technique described by Folk (1974) [40] for all locations except Kingston-

Saugerties, where the hydrometer method for particle size analysis was used instead [37,41].

Faunal samples were sorted under a dissecting microscope, identified to species whenever pos-

sible, and species abundance per sample was enumerated.

Surficial percent cover data were obtained from analysis of images extracted from seabed

surface videos recorded at Tappan Zee (n = 100), Robins Island (n = 60), and Shelter Island

(n = 70) using a 2 megapixel Seatrex HD underwater camera mounted on an aluminum tripod.

Videos captured 17.5 × 30 cm areas of the seafloor except at Tappan Zee where the camera had

to be lowered closer to the bottom since visibility was limited due to the extremely turbid con-

ditions at this location. Recordings from Tappan Zee covered 13.5 × 23.5 cm areas of the sea-

floor. Percent cover estimates of the visible surficial components present in each image (e.g.,

shell, pebble, fauna, etc.) were obtained by supervised maximum likelihood classification anal-

ysis in ArcGIS 10.1 (ESRI, Redlands, CA).

Empirical variograms

Spatial variability in the species assemblages was examined by constructing an empirical vario-

gram of the multivariate faunal data for each site [27]:

g hð Þ ¼
Ps

i¼1

1

2nh

P
a;bjhab�h

ðxia � xibÞ
2

ð1Þ

Fig 2. Example of categorical acoustic provinces (right) created from backscatter data (left) from the Haverstraw Bay study site.

Points indicate the location of sampling stations. Basemap from https://nationalmap.gov.

https://doi.org/10.1371/journal.pone.0189313.g002
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where γ(h) is the empirical variance in the faunal data at distance class h, xia and xib are

Hellinger transformed abundances for species i (i = 1 to s) in samples a and b, respectively,

and the inner summation is over all pairs of samples separated by a geographic distance of

approximately h. The Hellinger transformation is the square root of the relative abundance

of each species in a sample [42]. As such, it focuses the analysis on compositional differ-

ences and downplays the influence of highly abundant species to prevent them from domi-

nating the analysis. In addition, when used in conjunction with Euclidian distance, the

ecological distance measure utilized here and in the multivariate regression analyses pre-

sented below, it produces good representations of ecological dissimilarity [42]. Summing

Eq 1 for all pairs of samples, instead of a distance class subset, yields s2 the total sample var-

iance [43].

A plot of γ(h) vs. distance classes h is called a variogram plot and shows how variance

between samples changes with spatial scale. Changes in γ(h) with distance indicate the pres-

ence of spatial patterns in community structure. Often when spatial structure is present, γ
(h) increases from some minimal value at small distances, indicating that community differ-

ences increase as samples are collected further apart. This is not the only pattern possible,

and variograms with no trend, negative trends, periodic trends, and more complex patterns

have been observed [14,44–46],. Important features of the multivariate variogram relevant

to the present study include the sill, which is the value of the variance where the variogram

plot levels out (if it exists) and the nugget or nugget effect, the value of γ(h) at h = 0 [14,27]. If

a sill is present, the range indicates the distance at which community variance is no longer

increasing. For reference, definitions of the variogram terms and their ecological interpreta-

tions are provided in Table 2. The quantity γ(h) is termed the semivariance in most refer-

ences on spatial statistics, although Bachmaier and Backes (2008) [43] suggest that the

prefix “semi” is applied incorrectly. Because of its common usage, it will be called semivar-

iance in the present study. Variograms were created using the rda(), mso(), and msoplot()

functions in the vegan package of R (R Foundation for Statistical Computing, Vienna, Aus-

tralia). The code for mso() and msoplot() was created and first published by Wagner (2004)

[28].

Estimating small-scale variation

Empirical variograms created for each site were fit to a number of common models utilized in

spatial statistics [48]. Since no a priori guidance or mechanistic reason was found to choose

one model over the others, multiple models with a variety of characteristics, including with/

without an inflection at small spatial scales and with/without an asymptotic sill, were fit. The

Table 2. Variogram nomenclature [14,47,48]. Symbols refer to model parameters in Eqs 2–6.

Term Symbol Variogram Definition Ecological Interpretation

Nugget c0 The y-intercept of a variogram at

distance h = 0.

Variance that occurs at a spatial scale smaller than the sampling interval. Estimates the

community variance that is below the resolution of a survey.

Sill c0 + c1 The value of the variance where the

variogram levels off.

Community variance of pairs of samples that are separated at large enough geographic

distances that they are spatially independent.

Range a for Eqs 4 & 5 The geographic distance where the

sill is reached.

The geographic distance beyond which community structure in pairs of samples are

spatially independent. Spatial structure is present at distances below the range.h such that

ɣ(h) = 0.95(c0 + c1)
for Eqs 2, 3, & 6

Maximum

Extent

hmax The largest geographic distance

between two samples in a study.

Identical to the variogram definition; this simply refers to the maximum geographic

distance between two samples in a study.

https://doi.org/10.1371/journal.pone.0189313.t002
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models included the exponential, Gaussian, spherical, piecewise linear, and logistic as follows:

g hð Þ ¼ c0 þ c1 1 � e� ha
� �

ð2Þ

g hð Þ ¼ c0 þ c1 1 � e�
h2
a2

� �
ð3Þ

g hð Þ ¼
c0 þ c1

3

2

h
a
�

1

2

h3

a3

� �

for 0 < h � a

c0 þ c1 for h � a
ð4Þ

8
><

>:

g hð Þ ¼
c0 þ

c1
a
h for 0 < h � a

c0 þ c1 for h > a
ð5Þ

8
<

:

g hð Þ ¼ c0 þ
c1ah2

1þ ah2
ð6Þ

In the above equations, c0 is the nugget effect, c0 + c1 is the sill, and a defines the rate and, in

the case of the spherical and piecewise linear models, the range at which the sill is reached. For

asymptotic models (exponential, Gaussian, and logistic), the range is estimated as the value of

h where γ(h) equals 95% of its sill [48].

Models were fit by weighted least squares, as suggested by Cressie (1993) [47], with weight-

ing factors defined by the number of sample pairs in each distance class. Only distance classes

less than half the maximum extent of the site (i.e., hmax/2)were utilized, since beyond that dis-

tance, sampling locations in the center of the site can no longer contribute to variance esti-

mates, leading to potential bias [27,47]. In the present application, distance classes were set to

intervals of 0.25, 0.50, or 0.75 km. The interval was selected for each data set to have plots with

about 10 γ(h) values. This usually allowed the distance classes to contain >30 sample pairs, a

recommendation suggested by Journal and Huijbregts (1978) [49]. Weighted least squares was

carried out using function nls() in the stats package of R (R Foundation for Statistical Comput-

ing, Vienna, Australia). It was assumed that the residuals were approximately normally distrib-

uted, and model selection was achieved using the small sample, bias-adjusted version of

Akaike’s Information Criterion (AICc) [50,51].

Distributional properties of parameter estimates in variogram fits are “not well understood”

[47]. Since individual sample points are reused multiple times in creating the variogram (Eq

1), independence assumptions are violated, and application of procedures such as bootstrap,

jackknife, or cross-validation to determine errors in parameter estimates are not valid [47]. As

a result, no error analysis of parameter estimates was possible.

Multiscale ordination

Multiscale ordination (MSO) extends spatial statistics to examining the spatial structure of

biotic-environmental relationships by inserting regression results into the variogram [27–29]. It

does this by partitioning the xia and xib pairs in Eq 1 into fitted and residual parts ðx̂ iafit þ x̂ iaresÞ
and ðx̂ ibfit þ x̂ ibresÞ, respectively. Substituting these into Eq 1 leads to:

g hð Þ ¼
Xs

i¼1

1

2nh

X

a;bjhab�h

½ðx̂ iafit � x̂ ibfitÞ
2
þ ðx̂ iares � x̂ ibresÞ

2
þ 2ðx̂ iafit � x̂ ibfitÞðx̂ iares � x̂ ibresÞ�
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or

gðhÞ ¼ gfitðhÞ þ gresðhÞ þ gcrossðhÞ ð7Þ

The first two terms on the right-hand side are variograms of the fitted and residual values.

The third term is twice the covariance between the fitted and residual differences for distance

class h [27]. Multivariate regression estimates of biotic-environmental relationships can be

obtained by redundancy analysis (RDA) for small to moderate environmental gradients or

canonical correspondence analysis (CCA) for large gradients [28]. Detailed steps to implement

this procedure are available in Borcard et al. (2011) [52] and Legendre and Legendre (2012)

[14].

In the present study, estimates of predicted and residual Hellinger transformed abundance

values were obtained by RDA. RDA is a multivariate method that combines multiple linear

regression with ordination. A parsimonious set of explanatory environmental variables was

identified by sequentially adding variables in a forward selection process [53]. Candidate vari-

ables for each site included water depth, grab penetration depth, apparent redox potential dis-

continuity (RPD) depth, grain size (% gravel, sand, and mud), sediment organic content

measured by loss on ignition (LOI), surficial percent cover (shell, seaweed, and other materials

observed in bottom images), and categorical variables as binary 1/0 values representing each

acoustic province. At each step in the process, the environmental variable explaining the larg-

est amount of faunal variability was selected, and its effect removed before the next best fitting

variable was considered. Variables identified by forward selection were trimmed back to a

smaller set by the AICc stopping criterion [54].

Categorical province variables were also combined into smaller sets (e.g., A&E combined,

B&D combined, etc.) and regressions evaluated by the AICc criterion to ensure that the small-

est number of distinct provinces was selected. Results from multivariate regression tree (MRT)

analysis [55] were used to guide the formation of sets of provinces to avoid trying all 2n - 1

unique combinations. Forward selection in RDA was carried out in Canoco 4.5 (Microcom-

puter Power, Ithaca, NY, USA), and variograms of regression results with the final set of

explanatory variables were created using the rda(), mso(), and msoplot() functions in the

vegan package of R (R Foundation for Statistical Computing, Vienna, Australia). MRT was

run using the mvpart package in R (R Foundation for Statistical Computing, Vienna,

Australia).

Following MSO, the spatial structure of the variogram components generated by RDA fit-

ting was analyzed for scale dependence in the biotic-environmental relationship, stationarity

of the residuals, and spatial autocorrelation in the residuals using methods in Wagner (2003)

[27]. Scale dependence in the biotic-environmental relationship was tested by constructing a

Bonferroni-corrected point confidence interval around γ(h) and determining if the sum of the

variograms γfit(h)+γres(h) lies wholly within it. If any points in the sum lie outside then γcross(h)

is significantly different from 0 at specific distance classes, and the biotic-environmental rela-

tionship is scale-dependent. Stationarity of the residuals was examined by determining

whether γres(h) reached a sill after short distances and remained there over most of the range.

Presence of a spatial trend in γres(h) over large distance classes indicates that important envi-

ronmental variables were missing in the RDA model. Spatial autocorrelation in the residuals

was tested by a series of Bonferroni-adjusted Mantel tests [56] between the distance matrix

formed by the residuals and a geographic distance matrix at each distance class interval. The

Bonferroni correction set the significance level of the tests at α/n where α = 0.05 and n = the

number of distance classes. A significant outcome for a distance class indicates that spatial cor-

relation is present in the residuals [7,28]. The scale dependence and spatial autocorrelation
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analyses are built into the msoplot() function in the vegan package of R (R Foundation for Sta-

tistical Computing, Vienna, Australia).

RDA performance at local vs. habitat-level scales

Variogram measures were recomputed to quantify the extent the RDA models explained local

vs. habitat-level community variation. This analysis also assessed the ability of acoustic prov-

inces to serve as proxies for habitats within the study areas. The variogram function mso() was

modified slightly to replace the geographic distance matrix between pairs of samples with a

matrix of two “distance” classes: within (1) and between (2) acoustic provinces. The output

provided the variogram estimates for γ, γfit, and γres for each “distance” class. Assuming that

small-scale variation in the data cannot be explained by the RDA models’ biotic-environmen-

tal relationships, estimates of the nugget effect were subtracted from γres to assess model per-

formance of only that part of the variation within the observational scale of the surveys.

Results

Summary of faunal and environmental data

An abundant and diverse fauna occurred at each study site. Mean abundance per m2, mean

species density per sample, and species richness at each site are summarized in Table 3. Species

richness varied from 25 taxa at Haverstraw Bay to 95 taxa at Shelter Island. The study sites rep-

resented a wide range of benthic environments ranging from freshwater at Kingston-Sauger-

ties, to mesohaline at Haverstraw Bay and Tappan Zee (salinity ranges of 8.5–14.5 during

sampling), to almost marine conditions at Robins Island and Shelter Island (salinity ranges of

28.5 to 31 during sampling). Average water depth varied from 5.7 to 9.9 m among study loca-

tions, and depth measurements varied widely at sampling stations within study areas

(Table 4). The greatest variation in depth occurred at Kingston-Saugerties with sampling sta-

tions ranging from 1 to 22 m. The smallest variation was at Shelter Island with a range of 3 to

11 m. The sediments across all locations were mostly sandy or muddy and rarely contained

substantial gravel, with some notable exceptions at individual sampling stations (Table 4).

Nevertheless, the grain size range varied broadly; for example, percent mud ranged from less

than 4% to greater than 83% within each study area.

The surficial percent cover classes from maximum likelihood analysis of seafloor images

varied moderately among study locations (Table 5). A total of 5 cover classes were identified at

Tappan Zee, with the majority of the sampling stations at this site composed of mud, silty

shell, or other silt-covered material. Robins Island and Shelter Island had 9 and 14 cover clas-

ses, respectively. Surficial sediments at these two sites were predominantly combinations of

rock, pebble, sand, mud, shell, shell hash, and silty material. Occasionally, biotic cover consist-

ing of live slipper snails (Crepidula fornicata) and sponges (Microciona porifera) was present.

Table 3. Summary of faunal data including mean abundance of all taxa per m2, mean species density per sample, and overall species richness at each study location.

Study Location Number of samples Mean abundance Mean species density Species richness

Kingston-Saugerties ’01 44 5776 10 47

Kingston-Saugerties ’02 44 3849 12 54

Haverstraw Bay 51 2643 9 25

Tappan Zee 100 2575 11 40

Robins Island 60 7063 25 71

Shelter Island 70 18534 24 95

https://doi.org/10.1371/journal.pone.0189313.t003
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Empirical variograms of community data and estimates of small-scale

variation

The emprirical variance γ(h) increased with geographic distance class across all study loca-

tions, indicating that spatial structure was present in the species assemblages (Fig 3). At small

distance classes, γ(h) was dominated by pairs of samples that were within the same acoustic

province, and γ(h) reached a sill once it became dominated by between-province sample pairs

at large distance classes. The shape of γ(h) was smooth for the Haverstraw Bay, Tappan Zee,

Robins Island and Shelter Island sites, but more variable in the Kingston-Saugerties data sets.

The pattern for Kingston-Saugeties probably reflects the elongated north-south structure of

this study area in the Hudson River where short east-west distances can place sample pairs in

different provinces but long north-south distances can still lead to within-province pairs con-

tributing to γ(h).

Based on estimates of the nugget effect in the variogram models, small-scale variability rep-

resented a substantial fraction of the overall community variance across all data sets, ranging

from 36 to 59% of the total faunal variance (Table 6). A piecewise linear model was selected for

2 of the 6 data sets (Kingston-Saugerties ‘01, Robins Island), a spherical model for 3 data sets

Table 4. Summary of environmental data. Mean values (and range) of the grab-scale environmental variables acquired via in situ sampling. RPD and LOI refer to the

apparent redox potential discontinuity depth and sediment organic matter measured by loss on ignition, respectively.

Study Location Water Depth (m) % Gravel % Sand % Mud (Silt-Clay) RPD (cm) LOI (%)

Kingston-Saugerties ’01 9.9 (1.3–22.0) ------- 67.8 (11.6–99.8) 32.2 (0.2–88.5) ------- 2.9 (0.6–6.6)

Kingston-Saugerties ’02 9.7 (1.1–22.0) ------- 66.3 (11.6–99.8) 33.1 (0.2–88.5) ------- 3.0 (0.6–6.6)

Haverstraw 6.4 (2.8–19.9) 14.2 (0–92.3) 19.39 (1.5–65.7) 66.0 (3.3–98.1) 1.0 (0–5.0) -------

Tappan Zee 7.0 (2.7–12.2) 9.1 (0–64.4) 13.0 (1.1–60.8) 77.9 (3.4–98.9) ------- -------

Robins 9.5 (3.6–18.3) 0.5 (0–8.5) 54.2 (11.4–98.6) 45.3 (1.3–88.4) ------- -------

Shelter 5.7 (2.6–11.1) 14.2 (0–63.8) 77.0 (4.3–99.0) 8.8 (0.2–83.8) ------- -------

https://doi.org/10.1371/journal.pone.0189313.t004

Table 5. Percent surficial cover from maximum likelihood analysis of images extracted from underwater video surveys at the Tappan Zee, Robins Island, and Shel-

ter Island locations.

Percent Cover Class Abbreviation Study Location (number of classes)

Tappan Zee (5) Robins Island (9) Shelter Island (14)

Mean % ± 1 SD Mean % ± 1 SD Mean % ± 1 SD

Sand PCSa - - 40.19 ± 43.17

Mud PCMu 97.60 ± 9.63 81.88 ± 37.11 3.17 ± 14.2

Shell Fragment PCShFg - 1.65 ± 3.12 1.58 ± 2.91

Shell PCSh 0.08 ± 0.61 0.26 ± 1.17 7.10 ± 20.68

Rock PCR - - 0.67 ± 2.85

Pebble PCPb - - 1.19 ± 8.18

Seaweed PCSw - 0.44 ± 2.35 4.94 ± 8.74

Silty Shell PCSiSh 0.97 ± 8.36 0.66 ± 2.41 4.85 ± 16.01

Shell Pebble PCShPb - - 10.53 ± 25.53

Muddy Sand PCMuSa - 14.74 ± 33.51 13.5 ± 28.00

Silty Material PCSiCovered 1.07 ± 3.61 - -

Anthropogenic Anthro - - 0.004 ± .040

Unknown Unk 0.21 ± 1.16 0.01 ± 0.05 0.09 ± 0.67

Microciona prolifera Mpor - 0.02 ± 0.10 0.14 ± 0.32

Crepidula spp. Crep - 0.15 ± 0.84 11.87 ± 27.28

https://doi.org/10.1371/journal.pone.0189313.t005

Quantifying scale-variance relationships

PLOS ONE | https://doi.org/10.1371/journal.pone.0189313 January 11, 2018 11 / 25

https://doi.org/10.1371/journal.pone.0189313.t004
https://doi.org/10.1371/journal.pone.0189313.t005
https://doi.org/10.1371/journal.pone.0189313


(Kingston-Saugerties ‘02, Tappan Zee, and Shelter Island), and an exponential model was

selected for Haverstraw Bay. The range over which spatial variation was apparent in the data

sets varied between 0.62 and 3.87 km or over 16–26% of the maximum extent in the study

Fig 3. Empirical multivariate variogram of community data (points) and the percentage of sample pair comparisons between acoustic provinces (bars). Distance

intervals ranged from 0.25 to 0.75 km among study locations. Arrows on the vertical and horizontal axes indicate nugget and range estimates, respectively.

https://doi.org/10.1371/journal.pone.0189313.g003
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areas. There was no relationship between scaled values of the nugget and range (product-

moment correlation, r = 0.23, p = 0.66).

Nonspatial RDA results

The forward selection process in RDA resulted in the selection of 5 to 7 explanatory variables

and r2 values representing 42 to 52% of the total variance (Fig 4; Table 7). Acoustic provinces

dominated the analysis at all sites, but other environmental variables identified in forward

selection and subsequently retained by the AICc model selection criterion were water depth

(Kingston-Saugerties’01, Haverstraw Bay, Robins Island, and Shelter Island), percent sand

(Kingston-Saugerties’01 and ‘02, Haverstraw Bay, and Shelter Island), percent mud (Tappan

Zee) and the percent cover classes from image analysis including % shell fragment cover at

Tappan Zee, and % mud cover, % shell fragment cover, and %M. porifera cover at Robins

Island. LOI and RPD were not selected in the RDA.

Multiscale ordination

MSO results indicated that the spatial dependence in the faunal data was captured by the

explanatory variables selected in the RDA, and that the residuals contained no detectible spa-

tial structure (Fig 5). Variograms formed from RDA predictions γfit(h) had evident spatial

structure at all sites and strongly paralleled the shape of the empirical variograms, suggesting

that the functional form of the RDA model was not misspecified. Points in the variograms

formed by the sum γfit(h)+γres(h) lay within the Bonferroni-corrected point confidence interval

around γ(h), indicating that there were no problems with scale dependence in the biotic-envi-

ronmental relationships. The variogram of γres(h) quickly reached a sill and did not continue

to increase with distance class, indicating that the stationarity assumption was met and no

unknown environmental factor(s) was present influencing the spatial structure of the residu-

als. In addition, Bonferroni-adjusted Mantel tests between residuals and a geographic distance

matrix at each distance class interval were non-significant, excluding the possibility of autocor-

related residuals.

RDA performance at local vs. habitat-level scales

Subtracting the nugget estimates of small-scale variability from RDA regression residuals

altered the perception of RDA model performance both overall and at local vs. habitat levels

(Fig 6). With small-scale variability removed from the residuals, the nonspatial RDA explained

Table 6. Fitted variogram models, total variance estimates (s2), variogram parameter estimates (c0, c1, and a), and other variogram relationships for each study loca-

tion. c0 is an estimate of the nugget effect and c0/s2 is an estimate of the fraction of the total variance represented by small-scale variability. The sum c0 + c1 is the sill, and a
defines the rate and, in the case of the spherical and piecewise linear models, the range at which the sill is reached. For the exponential model, the range was estimated as

the distance where the variogram model reached 95% of the sill. The maximum extent is the largest geographic distance between two sampling locations in a study.

Study Location Fitted Model s2 c0 c1 a (km) Sill

(c0 + c1)

Range

(km)

Maximum Extent

(km)

Scaled Nugget

(c0/s2)

Scaled Range (Range/ Maximum

Extent)

Kingston-Saugerties

’01

Linear 0.30 0.16 0.16 3.87 0.32 3.87 18.01 0.54 0.22

Kingston-Saugerties

’02

Spherical 0.44 0.25 0.22 4.39 0.46 4.39 18.01 0.57 0.24

Haverstraw Exponential 0.51 0.21 0.32 0.89 0.53 2.22 9.64 0.42 0.23

Tappan Zee Spherical 0.43 0.18 0.27 0.57 0.45 0.57 4.02 0.42 0.14

Robins Linear 0.44 0.16 0.32 0.79 0.48 0.79 3.00 0.36 0.26

Shelter Spherical 0.51 0.19 0.32 0.62 0.51 0.62 3.89 0.37 0.16

https://doi.org/10.1371/journal.pone.0189313.t006
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>71% of the remaining variance in community structure. When comparisons were restricted

to sample pairs within the same acoustic province, the RDA model explained 21–100% of the

remaining variance in community structure. The within-province comparisons were notably

weak for Haverstraw (33%), Tappan Zee (24%), Robins Island (42%), and Shelter Island

(23%). When comparisons were restricted to sample pairs in different acoustic provinces, the

RDA model explained >73% of the remaining variance in community structure. Negative

residual values in the two Kingston-Saugerties data sets are addressed in the discussion.

Discussion

In this study, the nugget estimates of small-scale variability represented a substantial propor-

tion of the total community variation across all data sets analyzed (36–59%). The estimates

were only about 10% less than the variation present at the smallest distance class in the empiri-

cal variograms; thus, even if these observed values were substituted for the nugget effect esti-

mates, the results would not change substantially. Since the nugget estimates were based on

the analysis of empirical variograms, they are independent of the multivariate RDA regres-

sions. Potential causal factors for the small-scale variation include biotic interactions [7] and

patchiness in settlement [57], especially at a scale approaching the organisms themselves [19],

small-scale variability in measured environmental variables, other unmeasured environmental

factors that become important at small scales [58,59] and measurement error.

Small-scale variability of this magnitude has been reported in other benthic faunal studies

[60–64]. Chapman et al. (2010) [63] examined intertidal macrofauna and microalgae and

found that samples 50 cm apart were highly variable and no larger amount of variation was

added at scales between 2 and 400 m. They concluded that large-scale processes were less

important than small-scale environmental variation in structuring benthic biota. Fraschetti

et al. (2005) [60] sampled the rocky intertidal fauna along the Apulian coast of Italy and Greece

and concluded that the largest variation was at meter spatial scales relative to 10s to 100s of

kilometers. Johnson et al. (2007) [61] determined that > 90% of the variability in salt marsh

annelids occurred at< 50m. In their study of soft sediment macrofauna in the Baltic Sea,

Kraufvelin et al. (2011) [64] observed most variability at the smallest sampled level (10 m).

Sampling infauna off coastal New Jersey at multiple spatial scales, Ramey et al. (2009) [62]

found more variability between troughs and crests of sand ripples< 1 m apart than similar fea-

tures 2 m to 4 km apart. In the current study, large-scale habitat differences in the faunal

assemblages were evident. It is striking, therefore, that small-scale variation is still such a domi-

nant characteristic.

A common feature of these benthic studies is the use of a hierarchical nested sampling

design and analysis of resulting data by nested ANOVA. This has been a dominant

Fig 4. Ordination triplots illustrating the nonspatial RDA results. Scores for individual samples plotted as points. Sample points close to one another tend to

have similar faunal structure than those further apart. Different point shapes and color represent samples collected from different acoustic provinces. Polygons

enclose samples from each province. Continuous explanatory variables and individual taxa are plotted as vectors. The vector arrowheads represent high, the

origin averages, and the tail (when extended through the origin) low values of the selected environmental variables. Projections of sample points onto an

individual taxa vector approximate the Hellinger transformed abundances for that taxon. For clarity, only species with the highest amounts of explained variance

(typically those with > 10%) are plotted. Acca = Acteocina canaliculata, Antr = Anadara transversa, Baca = Batea catharinensis, Baim = Balanus imporvisus,
Balamp = Balanus amphitrite, Boclig = Boccardia ligerica, Cdeco = Chironomus decorus, Chispp = Chironomidae sp., Crfo = Crepidula fornicata, Crpl = Crepidula
plana, Crychi = Cryptochironomus sp., Cscap = Coelotanypus scapularis, Cpoli/Cypo = Cyathura polita, Dstag = Dorylaimus cf. stagnalis, Elle = Elasmopus levis,
Endi = Ensis directus, Eusa = Eumida sanguinea, Geudem = Geukensia demissa, Gtigr = Gammarus tigrinus, Hefi = Heteromastus filiformis, Hofl = Heteromysis
formosa, Hypgra = Hypaniola grayi, Ifrey = Isochaetides freyi, imTubwo = immature Tubificidae without hair setae, Lepplu/Lepl = Leptocheirus plumulosus,
Lesm = Lembos smithi, Lhoff = Limnodrilus hoffmeisteri, Lyhy = Lyonsia hyalina, Mazo =Macroclymene zonalis, Melnit/Meni =Melita nitida, Meme =Mercenaria
mercenaria, Mula =Mulinia lateralis, Mytleu/Myle =Mytilopsis leucophaeata, Neasuc/Nesu = Neanthes succinea, Nema = Nematode, Olig = Oligochaeta,

Ophi = Ophiuroidea, Pago = Pandora gouldiana, Pahe = Panopeus herbstii, Phalt = Polypedilum halterale, Pygo = Polygordius sp., Racu/Racun = Rangia cuneata,

Scfr = Scoloplos fragilis, Stbe = Streblospio benedicti, Teag = Tellina agilis, and Thsp = Tharyx sp.

https://doi.org/10.1371/journal.pone.0189313.g004
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experimental design and analysis approach in marine studies of spatial patterning (see cita-

tions in Fraschetti et al. 2005 [60]), especially in the intertidal. It is a powerful technique, one

that has led to significant understanding of the relative importance of biotic and physical

Table 7. RDA forward selection results, eigenvalues, and AICc for each study location. Minimum AICc values are indicated in bold. Capital letters listed in the “Vari-

able” column are provinces, and the variables are listed in order of selection.

Study Location Variable Eigenvalue Sum(Eigenvalue) AICc

Kingston-Saugerties’01 Water Depth 0.200 0.200 -102.13

E 0.095 0.295 -105.27

G 0.084 0.379 -108.30

H 0.065 0.444 -110.47

I 0.044 0.488 -111.26

C 0.033 0.521 -111.19

F 0.033 0.554 -111.15

B 0.018 0.572 -109.59

Kingston-Saugerties’02 AGI 0.221 0.221 -51.75

H 0.081 0.302 -54.16

E 0.075 0.377 -56.60

% Sand (grain size) 0.061 0.438 -58.45

C 0.036 0.474 -58.52

LOI 0.021 0.495 -57.31

Haverstraw C 0.192 0.192 -59.11

Water Depth 0.115 0.307 -64.58

% Sand (grain size) 0.038 0.345 -64.99

B 0.039 0.384 -65.54

D 0.037 0.421 -66.01

A (or E) 0.019 0.440 -64.89

Tappan Zee BIJ 0.185 0.185 -183.83

% Mud (grain size) 0.114 0.299 -196.72

DF 0.051 0.350 -202.06

A 0.040 0.390 -206.15

CH (&EG) 0.017 0.407 -206.66

% Cover Shell Frag 0.015 0.422 -206.85

Water Depth 0.012 0.434 -206.54

% Silt-Covered Material 0.004 0.438 -204.77

Robins Island A 0.148 0.148 -139.13

% Cover Mud 0.106 0.254 -144.81

BC 0.080 0.334 -149.23

% Cover M. prolifera 0.067 0.401 -153.12

Water Depth 0.043 0.444 -155.02

E (& DF) 0.041 0.485 -156.94

% Cover Shell Frag 0.031 0.516 -157.89

% Cover Seaweed (or Crepidula) 0.012 0.528 -156.51

Shelter Island % Sand (grain size) 0.129 0.129 -172.20

CEG 0.098 0.258 -178.30

D 0.060 0.318 -181.63

A 0.062 0.380 -185.61

B (or F) 0.046 0.426 -188.26

Water Depth 0.024 0.450 -188.54

% Cover Rock 0.018 0.468 -188.10

https://doi.org/10.1371/journal.pone.0189313.t007
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processes at different scales (e.g., [1,64–67]. It requires a priori knowledge of the important

spatial scales of variability [68–70] a feature not known for the sites in the current study. It has

been shown, for example, that regions derived from backscatter data do not necessarily corre-

spond to distinct faunal assemblages [24,25,71].

It should also be noted that other methods have been developed and successfully applied to

examine spatial patterning. Two in particular, spectral analysis [70,72] and Moran’s eigenvec-

tor maps [14,52,73] are particularly appropriate for detecting spatial patterns, characterizing

them, identifying the characteristic scales if they exist, and relating biotic-abiotic variables by

linking them through a spatial structure analysis. The current study had a more limited scope

of determining whether a set of commonly collected set of environmental variables accounted

Fig 5. MSO plots for each study area. Crosshairs are the sum of fitted and residual variograms, solid lines are Bonferroni-corrected point confidence envelope of the

empirical variogram, open diamonds represent the fitted variogram, and open squares are the residual variogram. Numbers above the distance axis are the number of

sample pairs in each distance class. See the explanation of Eq 7 definitions of these quantities. Solid squares, although absent in all cases, would indicate the presence

significant spatial autocorrelation in the residuals (detected via Mantel tests). Distances are in kilometers.

https://doi.org/10.1371/journal.pone.0189313.g005
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for the spatial patterns in the fauna assemblages. Multiscale ordination was well suited to

addressing this question.

The combination of commonly used in situ and sonar-derived province variables in the

RDA regressions consistently accounted for the spatial structure in all of the data sets. The evi-

dence supporting this result is very strong in the variogram analysis where the fitted variogram

paralleled the empirical variogram, the residuals at large spatial scales exhibited no trend, and

there was no suggestion that the biotic-environmental relationship changed with spatial scale.

This outcome held across all six infaunal data sets from markedly different environments rang-

ing from freshwater to near marine conditions. Of the explanatory variables considered, cate-

gorical acoustic province variables were dominant in the analyses and accounted for 51–80%

of the fitted community variance. This suggests that acoustic provinces were good proxies for

habitat in all six of the data sets, a result not wholly expected given the evidence of weak biotic

associations with acoustic features found in other studies [23–26]. Strayer et al. (2006) [37] has

suggested that large, seascape-scale predictors may function to integrate the dominant control-

ling processes. The importance of these categorical variables at the six locations examined in

this study suggests that benthic infaunal community structure is patchy on a seascape scale, in

contrast to a more continuous gradational structure. Additionally, since the scaled range esti-

mated from the data was only 14–26% of the maximum extent of the study areas (Table 6), the

surveys were well suited to detect community structure differences driven by large-scale envi-

ronmental changes.

Assuming that the substantial small-scale variability, as measured by the nugget estimates

obtained from the fitted empirical variograms, represents faunal variability below the resolu-

tion of the sampling surveys, subtracting it from the residual variance provides a more honest

way to assess RDA performance. After doing so, RDA accounted for greater than 71% of the

faunal variance remaining (Fig 6). The variance explained was much higher for Robins Island

(79%), and probably even greater for the two Kingston-Saugerties data sets. There, estimated

small-scale variation exceeded the residual from RDA, resulting in a negative variance. As with

any regression analysis, estimates from fitting an empirical variogram and a nonspatial RDA

both have uncertainty. Errors in the RDA residual can be assessed by a cross-validation

method [74], but unfortunately errors in parameter estimates in fitting empirical variograms

have not been evaluated [47]. Perhaps not coincidently, both Kingston-Saugerties data sets

had the largest relative nugget estimates, both exceeding 50% of the total faunal variation, and

largest absolute standard errors of γ(h) as evidenced by the confidence intervals in Fig 5. These

two data sets also had the least regular transition from within to between province sample pair

comparisons with distance (Fig 3). Both the precision and shape of an empirical variogram is

known to vary with the configuration of sampling locations [68,69,75], and these factors could

certainly have played a role in the nugget effect estimates [76]. In any event, estimates of

explained variance at all sites are substantially above an amount that would be considered

acceptable in a multivariate study of biotic-environmental relationships.

Extending this small-scale nugget adjustment to comparisons of sample pairs laying within

and between provinces (Fig 6) provides some useful insights on the effectiveness of RDA

results at local and seascape scales. In comparing pairs of samples from different provinces,

RDA accounted for >73% of the remaining faunal variation after nugget adjustment. This

again verifies the effectiveness of acoustic provinces as relevant seascape scale explanatory vari-

ables. The outcome was more mixed for pairs of samples occurring within the same province.

After subtracting the nugget effect, the RDA explained high fractions of the remaining faunal

variance (74–84%) for the two Kingston-Saugerties data sets, but it explained relatively low

faunal variance at the Haverstraw (33%), Tappan Zee (24%), Robins Island (42%), and Shelter

Island (23%) sites.
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One potential explanation for the weak within-province results at Haverstraw, Tappan Zee,

Robins Island, and Shelter Island is that the fauna were responding to a patchy rather than

Fig 6. Community variance explained by RDA models (fit) compared to nugget corrected residual variance (res − c0). For each data set, comparisons are made for the

entire nonspatial RDA and for results broken down into components representing variation within and between acoustic provinces.

https://doi.org/10.1371/journal.pone.0189313.g006
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gradational environmental driver that would have been detected in the residual variogram. If

that were the case, one possible avenue of analysis would be to take advantage of the more

complete coverage that sonar provides to generate potentially useful explanatory variables.

Neighborhood statistics for high-resolution bathymetry and backscatter data are readily avail-

able in GIS and specialized sonar processing software such as Fledermaus (Quality Positioning

Services, Portsmouth, NH, USA). These applications can estimate a variety of derived, inte-

grated variables such as grey-level co-occurrence measures [77], angular range analysis mea-

sures [78], rugosity [79], exposure to wave action and subtidal currents (e.g., aspect and

bathymetric position index (BPI)), and vulnerability to sedimentation (slope, BPI). Adjusting

the radius surrounding sampling locations when calculating neighborhood statistics is one

way to alter the scale of the derived measures. Given the study results to date, this exploration

clearly should be focused on assessing within-province rather than between-province variation

in community structure.

Accepting the evidence that the study locations are patchy at a seascape-scale defined by the

acoustic provinces, the empirical variogram for each site (Fig 3) should be regarded as a com-

plex composite formed from multiple within and between habitat spatial relationships. It is

possible that community assemblages within each province have unique and perhaps quite dif-

ferent spatial structures leading to differences in variogram shape, nugget, sill, and range char-

acteristics. In the current study, four of the six variograms appear well behaved with a simple,

smooth shape trending to a sill, suggesting that the spatial patterns of the fauna across prov-

inces are similar. The variograms from the Kingston-Saugerties data sets are the exceptions,

where the spatial relationships forming the composite variogram seem more complex. The

two variograms are similar in shape with pronounced maxima. Sampling locations were

repeated in the two seasonal studies at this site, allowing the possibility that the pattern

includes an interplay between the actual sample and/or habitat configuration. While some

methods exist for estimating variances when combining heterogeneous strata with differing

spatial characteristics for univariate data [80] and for combining multiple independent spatial

processes within a single region for multivariate data [76], no general method exists for pre-

dicting the effects on variance of complex combinations of study area shapes, extents, and sam-

pling intervals [4].

Decomposing a large-scale variogram containing multiple habitats could be approached by

a sampling study with a large enough sampling effort to generate empirical variograms for

each bottom type. The variogram criteria used in present study required a minimum of 10 dis-

tance classes with 30 pairs of samples within each class [47]. Ten distance classes were selected

to ensure variance estimates at enough spatial scales to fit a variogram model but not too many

to make the Bonferroni-adjusted tests examining RDA results too conservative. Meeting these

criteria would require a minimum of 35 sampling locations within each acoustic province to

examine within habitat spatial structure. This level of sampling would be substantially greater

than the 5–10 samples per province in the present study, and it may be difficult to achieve in

practical terms. Sampling density at the sites in the current study ranged from 1.7 to 18 sam-

ples per km2 and collection and processing effort for each survey required 9 to 18 months. The

high cost of sampling is one reason that in situ sampling tends to be sparse in many studies

[17,22]. Consistent with ecological interpretations of hierarchy theory [6–8,27,28] biotic inter-

actions would tend to become increasingly dominant at smaller spatial scales, so a study at sub-

stantially increased sampling density would have to shift emphasis at least in part to assessing

biotic processes in addition to measuring small-scale environmental variation. This might

begin, therefore, to provide an insight into why the nugget was such a large fraction of the total

variance.
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None of the six surveys, consisting of 45–100 benthic samples collected across 4–7 habitats

in moderate sized areas (3.3 to 16.5 km2), suffered from the problem of scale arbitrariness [1].

Spatial structure in the infaunal community was effectively explained by commonly collected

environmental variables, and therefore, biotic-environmental inferences were not compro-

mised by the presence of spatial structure in the data. On the other hand, a large fraction of

community variation (36–59%) was below the resolution of the surveys and within-province

variation was only moderately explained in four of the six data sets. Both these results highlight

further challenges to understanding heterogeneity in benthic communities.
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