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Genomewide Association Studies in 
Pharmacogenomics
Gregory McInnes1, Sook Wah Yee2, Yash Pershad3 and Russ B. Altman3,4,*

The increasing availability of genotype data linked with information about drug- response phenotypes has enabled 
genomewide association studies (GWAS) that uncover genetic determinants of drug response. GWAS have discovered 
associations between genetic variants and both drug efficacy and adverse drug reactions. Despite these successes, 
the design of GWAS in pharmacogenomics (PGx) faces unique challenges. In this review, we analyze the last decade 
of GWAS in PGx. We review trends in publications over time, including the drugs and drug classes studied and the 
clinical phenotypes used. Several data sharing consortia have contributed substantially to the PGx GWAS literature. 
We anticipate increased focus on biobanks and highlight phenotypes that would best enable future PGx discoveries.

Genomewide association studies (GWAS) are an unbiased ap-
proach used to detect associations between genotype and pheno-
type in genotyping array or sequencing data. Since the first GWAS 
in 2005, GWAS have become a mainstay of genetics research.1 
GWAS have been performed for thousands of traits and have led 
to a better understanding of human genetics and the develop-
ment of diagnostics and therapeutics.2,3 The growing abundance 
of genetic data linked with phenotype data has made GWAS an 
essential approach for understanding how genotype influences 
phenotype.

GWAS have been used to elucidate the mechanisms of interin-
dividual differences in drug response.4 The study of the role genet-
ics plays in drug response, broadly known as pharmacogenetics or 
pharmacogenomics (PGx; PGx is used interchangeably for phar-
macogenetics and pharmacogenomics throughout this paper), has 
revealed clinically actionable insights that can improve patient out-
comes, prevent severe adverse events, and reduce treatment costs.5 
The earliest PGx GWAS were published between 2007 and 2008 
around the same time.6 These studies demonstrated the unique 
power of GWAS and have provided important lessons for future 
studies of GWAS in PGx. For example, using only 74 cases and 130 
controls, one study in 2007 identified associations between hepatic 
adverse events in patients on the oral direct thrombin inhibitor 
ximelagatran and the HLA locus.7 Since then, many more GWAS 
of the genetics of drug response have been published, studying 
dozens of drugs, identifying hundreds of genetic associations with 
drug response.

We performed a systematic review of the PGx GWAS literature 
and analyzed the number of studies over the last 13 years, which 
drugs and drug classes have been studied, and the ancestral popula-
tions of the study cohorts. We curated more than 400 papers to see 
which specific clinical end points have been used by researchers to 
study PGx and, based on these findings, make recommendations 
for data collection in biobanks to enable future PGx GWAS.

GENOMEWIDE ASSOCIATION STUDIES FOR 
PHARMACOGENOMICS
GWAS seek statistical associations between genomic loci and a 
phenotype of interest. An independent statistical test evaluates 
the potential association between a locus and the phenotype.8 
The number of tests depends on the source of genetic data; geno-
typing arrays capture hundreds of thousands to millions of loci, 
whereas sequencing methods may identify millions of polymor-
phisms. Due to the enormous number of statistical tests, multiple 
hypothesis (e.g., Bonferroni) correction adjusts the resulting P val-
ues in order to limit false- positive results.9 The typical upper limit 
on P values for statistical significance for genotyping arrays is 5 
× 10- 8.10 This cutoff is determined using a Bonferroni correction 
by dividing 0.05 (the frequently used P value significance thresh-
old) by the total number of independent tests (i.e., the number of 
positions on the genotyping array) yielding the threshold that has 
been adjusted for the total number of statistical tests performed. 
To detect associations with this stringent P value cutoff, either the 
variants for the phenotype of interest must have large effect sizes 
or the study must be designed with large enough sample sizes to 
detect a modest effect size (for a detailed discussion of how sample 
size affects the ability to detect variants with different effect sizes, 
see Visscher et al.).2,11 Loci with a P value below the significance 
threshold become candidate variants for further investigation.

Effect sizes are also important for interpreting the impact of a 
variant. Whereas P values indicate a measure of confidence that 
the observed effect is a true association, effect sizes represent the 
magnitude of the likelihood that carrying a particular allele will 
lead to a change in phenotype. PGx variant effect sizes have been 
shown to be larger for dichotomous drug response traits than for 
other traits.12 Because drug response phenotypes are typically not 
under the same selective pressure as variants that lead to disease, 
it is hypothesized that drug response alleles have larger effect 
sizes due to a lack of negative selective pressure. This makes PGx 
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variants especially clinically relevant because they more often lead 
to a change in phenotype.

With the release of the UK Biobank and other large phenotype- 
linked genetic datasets, GWAS have become a common analysis 
to run on many traits using hundreds of thousands of subjects.13 
These studies benefit from massive cohorts of volunteer subjects 
with readily available phenotype data on many traits. Most of the 
phenotypes studied through these GWAS are easily defined, such 
as presence or absence of a disease or a quantitative measure, such 
as height.

PGx studies using GWAS face unique benefits and challenges 
when compared to disease genetics.4 Drug pharmacokinetics and 
pharmacodynamics operate within networks of proteins that are 
responsible for drug metabolism, transport, and the drug target. 
Genetic influences on drug response are frequently identified 
within these networks and are often either mono-  or oligogenic 
with large effect sizes. For example, the association between 
NUDT15 and thiopurine- induced leukopenia was detected using 
only 33 cases with a P value of 5 × 10- 94.14 Similarly, the earliest 
GWAS of warfarin maintenance dose included only 181 subjects 
to detect associations between dose and CYP2C9 and VKORC1.15

Although small sample sizes sometimes suffice, PGx associations 
with more complex associations may be missed. Compared with 
disease genetics, collecting cohorts with well- phenotyped data 
to study PGx using GWAS is especially challenging. PGx stud-
ies necessitate a drug exposure in order to observe the phenotype 
of interest. Therefore, to collect a cohort, a researcher must first 
identify a population with the disease of interest, then treat those 
patients with the drug of interest, then observe interindividual dif-
ferences in response. At each step, the potential patient population 
is winnowed down leaving study cohorts small, even when starting 
with massive, biobank- scale cohorts. One common approach used 
to alleviate this challenge is to use population controls rather than 
drug- matched controls. A study with population controls uses an 
existing cohort of samples as controls (e.g., the Wellcome Trust 
Case Control Consortium; https://www.wtccc.org.uk/) who may 
or may not have ever taken the query drug.16

THIRTEEN YEARS OF PGX GWAS
We performed a systematic review of the PGx GWAS literature.17 
We identified PGx GWAS using two mechanisms: (1) entries in 
the GWAS Catalog who has studied phenotype was “Response 
to Drug,”3 and (2) literature curations from PharmGKB, which 
identify papers that used GWAS derive associations with drug re-
sponse.18 This yielded 428 papers (as of March 27, 2021), which 
were then manually curated to verify accuracy. Of the 428 papers, 
4 were removed for being unrelated to this study. A full list of all 
publications is available in Table S1.

We identified 424 PGx GWAS published between 2007 and 
2020 in the GWAS Catalog (Figure 1a). PGx GWAS publications 
have been published in 123 journals, with The Pharmacogenomics 
Journal publishing the most. PGx GWAS represent 8.9% of all en-
tries in the GWAS Catalog (Figure 1b). The highest percent of 
GWAS focusing on PGx was in 2015, with 17% of all GWAS being 
PGx related. The year 2015 also represents the year with the high-
est number of PGx GWAS published with 57 publications.

In the last 5  years, the median sample size of PGx GWAS is 
1,220 (Figure 1c). The median sample size among PGx GWAS has 
remained mostly constant over the last 5 years (except for 2016), 
contrasted with all other GWAS, whose median sample size has 
grown steadily. The sample size in other forms of GWAS contin-
ues to increase, seeing a peak in 2019 with a median sample size of 
10,584. However, we find that larger sample sizes do not necessar-
ily yield more associations (Figure S1). We observe only a modest 
correlation between sample size and the number of significant as-
sociations discovered by a study (R  =  0.15, Pearson’s correlation 
between the base- 10 logarithm of sample count and number of 
significant associations at P value < 5 × 10- 8).

MOST STUDIED DRUGS
We found that 45 drug classes (Anatomical Therapeutic Chemical 
(ATC) Classification Level 3) have been studied using GWAS. 
These 45 drug classes include 8 out of the 12 top prescribed drug 
therapeutic category (https://clinc alc.com/Downl oads/Top25 
0Drug s- DrugL ist.pdf). Cancer drugs (ATC: L01) are the most 
studied, with 89 total publications, followed by antidepressants, 
antipsychotics, and lipid modifying agents. Fenofibrate is the most 
studied individual drug, with nine total publications performing 
GWAS on fenofibrate response. All PGx GWAS have yielded 
586 total unique drug- variant associations (P value < 5  ×  10- 8; 
Figure 2a). We defined unique associations as a significant asso-
ciation identified in a PGx GWAS for a drug class that is not in 
linkage disequilibrium (R2 < 0.5, calculated using LDlinkR using 
all populations in 1000 Genomes) with another significantly as-
sociated variant for the same drug class.19,20 The specific signifi-
cance threshold varies between studies depending on the number 
of polymorphisms tested, but 5 × 10- 8 is broadly accepted and 
used here for consistency.

We curated the total set of publications to better understand 
what specific phenotypes are used as clinical end points in PGx 
GWAS. We find that for most drug response GWAS, 56% of 
studies use therapeutic efficacy as the clinical end point, whereas 
40% are related to adverse drug reactions (ADRs). We defined ef-
ficacy as any end point that directly studied differences in patient 
outcomes (e.g., recurrence- free survival). Whereas studies using 
ADRs as an end point use the incidence of an unwanted ADR as 
the phenotype of interest. We also identified three papers using a 
biomarker unrelated to the therapeutic mechanism and one paper 
that performed a GWAS to directly study drug metabolism.

The specific phenotypes measured vary by drug class, but sev-
eral patterns emerged. For example, studies of response to asthma 
therapeutics nearly always study drug response and most often 
use the change in forced expiratory volume after treatment as the 
GWAS phenotype. Whereas studies of antidepressants or antipsy-
chotics often use a quantitative measure of disease severity (e.g., the 
Hamilton Rating Scale for Depression) or incidence of a side effect 
(e.g., weight gain) as a clinical end point. There is no significant 
difference in the number of significant associations discovered by 
papers studying response or ADRs (Figure 2b). However, the sam-
ple size of GWAS of drug response is larger than those studying 
ADRs (P  =  0.01, Student’s t- test) with a median sample size of 
738, compared to 669 (Figure S2).
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FIGURE 1 Statistics of pharmacogenomics (PGx) genomewide association studies (GWAS) performed from 2008 through June 2020. (a) The 
total number of publications studying PGx each year. (b) The percent of all GWAS published that study PGx in the GWAS Catalog. (c) The cohort 
size of PGx GWAS (blue) compared to the cohort size of all other GWAS (red), derived from the GWAS Catalog. The year of publication is derived 
from PubMed which may differ from the actual publication date. Publications were queried from GWAS Catalog on March 27, 2021.

FIGURE 2 (a) Number of newly discovered drug response associations each year that had not previously been identified (P < 5 × 10- 8) or in 
linkage disequilibrium with a previously identified variant (R2 < 0.5). Colors represent Anatomical Therapeutic Chemical (ATC) groups. Only the 
top nine ATC groups ranked by number of unique associations are shown. All other ATC groups are grouped into “Other.” (b) The sixteen most 
studied ATC groups using genomewide association studies (GWAS) and whether response or adverse drug reactions (ADRs) were the focus of 
the study. Colors represent whether the study had significant findings (p < 5 × 10- 8). All ATC groups not in the top 16 are grouped into “Other.” 
The large number of vaccine associations discovered in 2012 were derived mostly from a single publication studying side effects of the 
smallpox vaccine.102 PGx, pharmacogenomics.
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Cancer drugs
Antineoplastic agents, drugs used to treat cancer, are the most fre-
quently studied drug class using PGx GWAS. These drugs are of 
particular interest because the indication is severe and high toxic-
ity of antineoplastics leads to many ADRs. The great interest in 
improving outcomes for patients with cancer broadly in the medi-
cal field is reflected in the abundance of PGx GWAS as well. This 
section focuses on cancer PGx studies.

We identified 94 GWAS of cancer drugs. We find that 61 of 
these studies sought to study PGx influence on outcomes of indi-
vidual drugs, whereas the rest focused on broader drug classes or 
combination therapies. The most studied individual cancer drugs 
are methotrexate and paclitaxel, with six studies each. Six indepen-
dent studies have investigated PGx of paclitaxel response; four of 
which studied the genomics of paclitaxel- induced peripheral neu-
ropathy and have implicated the gene S1PR1 in peripheral neurop-
athy risk.21 Other frequently studied drugs are cisplatin and other 
platinum compounds (13 studies), and anthracyclines (5 studies).

The associations investigated by cancer PGx studies are divided 
between response and ADRs. Among these 59 GWAS, 33 looked 
for genetic associations with ADRs, 25 studied drug response, and 
one studied genetic influence on a related biomarker. The most 
frequently studied phenotype is survival. Twelve studies evaluated 
heterogeneity in drug response by performing a GWAS, regressing 
on the amount of time post- treatment patients survived. The most 
frequently studied ADRs are drug- induced peripheral neuropathy 
(8 studies) and drug- induced agranulocytosis (4 studies).

Despite the great interest in the PGx of cancer treatment, most 
PGx GWAS do not find significant associations with response to 
treatment. Only 17 of the 59 studies find any significant associa-
tion with the studied phenotype (P value < 5 × 10- 8). This may be 
due to other confounding factors that weakened the associations, 
such as disease heterogeneity and prior therapies.22

PHARMACOGENES IN GWAS
Years of PGx research have led to curated lists of important phar-
macogenes, which are known to modulate drug response often by 
being involved in drug metabolism or transport. To determine 
how many of these known important pharmacogenes are among 
the top loci in PGx GWAS, we combined lists of genes from 
PharmGKB (https://www.pharm gkb.org/vips), the US Food 
and Drug Administration (FDA) Table for Pharmacogenomics 
Biomarkers(https://www.fda.gov/medic al- devic es/preci sion- 
medic ine/table - pharm acoge netic - assoc iations), and the Clinical 
Pharmacogenetic Implementation Consortium (CPIC; https://
cpicp gx.org/) into a final list of 210 genes (Table S4). We then 
queried variants in the gene loci (plus 50 kilobases upstream 
and downstream) from the reported associations in the GWAS 
Catalog for our list of PGx GWAS. Figure 3 shows 46 drugs that 
have at least one significant association with one of the pharma-
cogenes. We identified 45 drug- gene pairs with significant asso-
ciations (P value < 5 × 10- 8). In this section, we describe several 
noteworthy findings from these PGx GWAS in relation to im-
portant pharmacogenes.

GWAS confirm findings from candidate gene studies
The very nature of GWAS enables interrogation of wide swaths of 
the genome, empowering a much broader search for associations 
than candidate gene studies. Previous candidate gene studies have 
identified polymorphisms in genes associated with drug response 
or hypersensitivity and PGx GWAS have confirmed many of 
these associations. For example, GWAS have confirmed CYP2C9 
and VKORC1 as being strongly associated with warfarin mainte-
nance dose,15,23– 27 which was previously known through candi-
date gene studies.28,29 GWAS also revealed novel associations of 
CYP4F2 with warfarin dose by controlling for the strong effects 
of CYP2C9 and VKORC1.23

The HLA region
Prior to PGx GWAS, genetic polymorphisms in HLA locus have 
been shown to play a role in a broad range of drug hypersensitivity 
or rare toxicity.30 PGx GWAS confirmed those previously known 
associations with the HLA locus and reported new associations, 
such as sulfasalazine- induced agranulocytosis.31 The large effect 
sizes for associations of HLA alleles with drug- induced hypersen-
sitivity or rare toxicity enable new discoveries even in studies with 
small sample sizes and consequently only a few cases. For instance, 
a study with only 30 cases identified an association between HLA- 
B and sulfasalazine- induced agranulocytosis. Interestingly, PGx 
GWAS revealed that polymorphisms in HLA locus could also be 
important for hepatitis B vaccine response as well as interferon- 
beta therapy.32– 34

Discovery in non- European cohorts
GWAS cohorts have historically been over- represented by sub-
jects of European descent (discussed in detail in the next sec-
tion).35 Allele frequencies in pharmacogenes can vary greatly 
across global populations and can lead to heterogeneity in drug 
response.36– 38 This allelic variation in pharmacogenes leads 
to an opportunity to discover novel drug- gene associations in 
non- European populations. For example, thiopurine toxicity is 
known to be associated with variants in TPMT; however, using 
a non- Europeans cohort, a novel locus, NUDT15, was identi-
fied.14,39 The causal variant in NUDT15 is most common in East 
Asians and Hispanics, but rare in Europeans. Based on the results 
of these studies and subsequent replications, the FDA approved 
labels state that testing for TPMT and NUDT15 deficiency 
should be considered when prescribing thiopurine drugs.40 
Other population- specific PGx GWAS in individuals of African 
descent have led to discoveries of ethnic specific variant associa-
tions with warfarin dose.25,41– 43 For example, a study by De et al., 
which have led to discovery of an ethnic specific variant upstream 
of a biological relevant gene, EPHA7, with population- specific 
warfarin- associated bleeding.43

Novel substrate discovery
PGx GWAS has successfully identified novel substrates for trans-
porters. For example, GWAS provided the first evidence that allo-
purinol is a substrate of ABCG2 through GWAS.44
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Pleiotropy between disease and pharmacogenomic traits
Among these significant associations between pharmacogenes 
and PGx traits, two of the genes are also associated with disease 
traits relevant to the drug treatment: (1) ABCG2 and its associ-
ation with allopurinol drug response, along with serum uric acid 
levels and gout,45 and (2) IFNL3/IFNL4 locus encoding inter-
leukin 28B (IL28B) and its association with hepatitis C infection 
and clearance46– 48 and response to peg- interferon therapy for hep-
atitis C.49 Other examples beyond pharmacogenes that are worth 

mentioning are statin response with single nucleotide variants 
in genes50– 52 that affect lipid LDL- levels (e.g., LPA, APOE, and 
PCSK9),53 as well as metformin response with single- nucleotide 
polymorphism in glucose transporter, SLC2A2,54 that also affect 
plasma glucose and HbA1c levels.55

STUDIED POPULATIONS
We next studied the distribution of ethnicities in PGx GWAS 
participants by extracting the broad ancestral population reported 

FIGURE 3 Gene- drug associations identified using genomewide association studies (GWAS). Associations included in this figure were 
identified through the reported associations in GWAS Catalog. Each point represents a reported association between a gene region, plus 
50 kilobases upstream and downstream, and a drug response measured phenotype. The variant with the lowest P value within the locus 
from any study was selected. The most specific drug or drug class was selected based on Anatomical Therapeutic Chemical (ATC) code. For 
example, studies of general statin use are not included because there are studies specifically for rosuvastatin and simvastatin. The letters on 
the right side of the figure represent ATC level 1 code of the drug’s ATC code. Absence of a dot means that there was no study that reported 
an association for that drug- gene pair for that specific drug in GWAS Catalog. Only drugs and genes with at least one association are shown. 
Neighboring genes may share associations if they are within 50 kilobases. Circles indicate variants that are reported by GWAS Catalog to be 
in coding regions (e.g., missense variants), diamonds indicate variants in noncoding regions (e.g., intronic). For example, warfarin: single- 
nucleotide polymorphisms in noncoding region of CYP2C8 (diamond), coding region of CYP2C9 (circle), coding region of CYP4F2 (circle), and 
noncoding region of VKORC1 (diamond), are significantly associated with warfarin response (blue color diamond or circle) at P < 5 × 10- 8. PGx, 
pharmacogenomics.
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in the GWAS Catalog for each study accession and mapping those 
to global populations.56 Individuals of European descent comprise 
the vast majority of PGx GWAS participants. We find that 88% of 
study participants are of European ancestry in the discovery phase 
of PGx GWAS, with the next highest studied population being in-
dividuals of Hispanic/Latin American descent at 4% (Figure 4d). 
In the replication phase of experiments, Europeans represent 
73% of study subjects, with a greater number of non- European 
individuals contributing to replication experiments than in the 
discovery phase (Figure  4e). Although the sample size of PGx 
GWAS has grown since 2008, the proportion of non- European 
individuals of non- European descent included in PGx GWAS has 
remained largely unchanged since 2008 (Figure 4a,b). There is an 
increasing frequency of very large cohorts in PGx GWAS, how-
ever, these studies primarily comprise European subjects. These 
studies with very large sample sizes resulted from the use of an al-
ternative approach to conduct PGx GWAS, where self- reported 
questionnaires from 23andMe survey data were used to assess an-
tidepressant efficacy and side effects.57 A total of 48,000 research 
participants answered surveys related to antidepressant used and 
health history. This largest PGx GWAS analysis also includes 
190,000 healthy controls free of known neuropsychiatric diseases.

Discovery in non- European cohorts
GWAS cohorts have historically been over- represented by subjects 
of European descent.35 Although Europeans account for the vast 

majority of studied subjects, we find that, at the individual study 
level, there is moderately better representation of broader demo-
graphics. In total, 53% of all PGx studies focus solely on individu-
als of European descent, with a median sample size of 4,300. The 
next most studied population is Asians, comprising 16% of all 
studies, followed by Africans at 15%.

IMPACTFUL CONSORTIA AND COHORTS IN PGX GWAS
Data from patients recruited for other studies or clinical trials 
are sometimes useful for PGx analyses. This is especially true in 
GWAS where large sample sizes are needed. Once phenotypic and 
genotypic data are collected, they can be used repeatedly for new 
discovery cohorts independently or included in meta- analyses. 
The data can also be used as a control cohort for a separate study 
of a different phenotype. Additionally, consortia can wield 
funding and resources to enable research. Consortia can bring 
together scientists across institutions and disciplines forming col-
laborations that lead to studies that may not have otherwise been 
possible.

We curated the manuscripts in our set to determine which 
cohorts or consortia were the most impactful throughout PGx 
GWAS. We counted the number of times specific cohorts were 
used as either a discovery or replication cohort in any GWAS, as 
well as the number of GWAS consortia produced. We find that 
many cohorts are used for various studies, including disease as-
sociations as well as PGx research. In Figure 5 we show the 17 

FIGURE 4 Pharmacogenomics (PGx) genomewide association studies (GWAS) populations from 2008 to 2020 show European bias in study 
participants. Each color represents an ancestral population. (a) Discovery cohort size for PGx GWAS over time. Dot size is correlated with 
study size. (b) Percentage of total PGx GWAS participants in discovery cohorts belonging to each ancestral population over time. (c) The 
percentage of PGx GWAS focusing on each ancestral population over time. (d) Percent of all PGx GWAS participants in discovery cohorts based 
on their ancestral population. (e) Percent of all PGx GWAS participants in replication cohorts based on their ancestral population.
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consortia and cohorts that contributed most to PGx GWAS, as 
well as the time period where papers were published using the co-
horts’ data.

Consortia focusing on PGx to advance research have been es-
tablished with a goal of combining cohorts collected from differ-
ent investigators for PGx GWAS. For example, the International 
Serious Adverse Events Consortium, International Clopidogrel 
Pharmacogenomics Consortium, International drug- induced 
liver injury (DILI) consortium, and many others outside of North 
America, such as Japan PGx Data Science Consortium and African 
Pharmacogenomics Consortium.58 These have led to several dis-
coveries of new genomewide significant loci for PGx studies, such 
as the discovery of single- nucleotide polymorphisms in SLC2A2, a 
glucose transporter, as determinant of interindividual differences 
in response to anti- diabetic drug, metformin, by the MetGen 
Consortium,54 the discovery of new loci in addition to CYP2C19 
for clopidogrel response by the International Clopidogrel 
Pharmacogenomics Consortium,59 and the discovery of PTPN22, 
a new loci beyond the HLA- locus for drug- induced liver injury by 
the International DILI consortium.60 Many of the studies identi-
fied are meta- analyses, combining data from many smaller studies 

into larger GWAS that are better powered to detect associations 
with small effect sizes.61

A unique international collaborative effort worth highlighting 
that has led to more than 45 published GWAS in PGx studies is the 
PGRN- RIKEN Global Alliance (Table S2). This collaboration was 
founded in 2008, under the leadership of Yusuke Nakamura from 
The University of Tokyo, along with Kathleen Giacomini and Mark 
Ratain, two well- established PGRN NIH- funded investigators. 
From 2008 to 2016, RIKEN (Center for Genomics Medicine and 
Center for Integrative Medical Sciences) provided full support for 
genomewide genotyping to investigators from Pharmacogenomics 
Research Network (PGRN), who had well- characterized cohorts 
with PGx phenotype along with collected DNA samples. This unique 
collaboration supported 46 distinct GWAS with more than 56,000 
multi- ethnic DNA samples, which were genotyped and analyzed by 
the alliance (http://pgrn2 016.weebly.com/riken - proje cts.html).62,63 
The individual studies included samples from various sources, 
including clinical trial cooperative groups (e.g. CALGB64), PGx 
related consortia (e.g., International Warfarin PGx Consortium, 
International Clopidogrel PGx Consortium), and electronic 
health- record linked with biorepository of DNA (e.g., BioVU and 

FIGURE 5 Impactful consortia and cohorts in pharmacogenomics (PGx) genomewide association studies (GWAS). Each row represents 
a single cohort, consortia, or institution, and its length of the bar in the right- most part of the figure represents the number of published 
GWAS data from that cohort has contributed to (a single publication may contain more than one GWAS). Colors represent drug Anatomical 
Therapeutic Chemical (ATC) groups. Dots on the left side of the figure represent the annual publication frequency of each consortium or 
cohort. Larger dots indicate more publications. Abbreviations: CHS: Cardiovascular Health Study; Rotterdam: Rotterdam studies; AGES: 
Age, Gene, Environment, Susceptibility; PEAR: Pharmacogenomic Evaluation of Antihypertensive Responses; PROSPER: Prospective study 
of Pravastatin in the Elderly at Risk; CATIE: Clinical Antipsychotic Trials of Intervention Effectiveness; FHS: Framingham Heart Study; SJCRH: 
St. Jude Children’s Research Hospital; BioVU: Vanderbilt University Biobank; CAMP: Childhood Asthma Management Program; CARE: 
Childhood Asthma Research and Education; GERA: Genetic Epidemiology Research on Adult Health and Aging; MESA: Multi- Ethnic Study 
of Atherosclerosis; STAR*D: Sequenced Treatment Alternatives to Relieve Depression; ARIC: Atherosclerosis Risk in Communities; CALGB: 
Cancer and Leukemia Group B.
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RPGEH). The collaborations have led to the first PGx studies for 
various drug classes, for example, response, adverse drug response, 
and drug levels of aromatase inhibitors in patients with breast can-
cer,65– 67 paclitaxel- induced peripheral neuropathy,68 response to 
various drugs to treat asthma.69,70 Although the PGRN- RIKEN 
sunset in 2016, the collected data have led to continuous publica-
tions by the investigators ranging from functional genomic studies 
to meta- analysis and polygenic risk score analysis (Table S3). The 
summary statistics from several of the PGx GWAS by the alliance 
are disseminated and populated here (https://www.pgrn.org/riken 
- gwas- stati stics.html). Overall, this collaboration shows the pow-
erful impact of PGRN- RIKEN in PGx GWAS, which serves as a 
model in accelerating the PGx GWAS.

FUTURE PERSPECTIVES
Although sample sizes have increased dramatically, the number of 
novel associations detected has not (Figure 2a). In order to detect 
existing unexplained heritability in drug response, the field will 
need larger sample sizes, more diverse cohorts, and a broader array 
of statistical tests. In this section, we describe future perspectives 
that may help to further develop PGx association studies.

Biobanks
The growing number and availability of biobanks providing 
phenotype- linked genotype data offers an opportunity. Huge 
amounts of genotype data linked with clinical data offers an 
opportunity to detect associations at an unprecedented scale. 
Resources like the BioBank Japan (BBJ)71 and UK Biobank 
have already generated extreme interest and huge numbers 
of discoveries, but to be useful for PGx, these resources must 
have sufficient drug data. Most of the studies we identified 
were drawn from cohort studies specifically recruited to study 
PGx. However, with the availability of biobanks, such as UK 
Biobank and the coming release of data from the All of Us 
Research Program, studying there is an opportunity to study 
drug response at unprecedented scales. Furthermore, there are 
enormous genomic data initiatives occurring globally, working 
diligently to integrate genomics into healthcare, such as the 
100 million genomes through the Chinese Precision Medicine 
Initiative.72 These projects offer rich phenotype data linked to 
genotype data, but in order to study PGx sufficient phenotype 
data needs to be available.

Several key features are important for conducting retrospective 
PGx- focused cohort studies using biobanks. At a minimum, infor-
mation about patient demographics (e.g., age and sex), the name 
of the prescribed drug, the date of the prescription, and diagnosis 
codes for any subsequent encounters with the medical system fol-
lowing the initial prescription. Ideally, the drug formulation would 
be represented using a standardized terminology that maps the 
active ingredients of the drug, route of administration, and dose 
to a representative code, such as the systematized nomenclature of 
medicine clinical terms (SNOMED CT) or the National Health 
System’s dictionary of medicines and devices (dm+d). This core 
set of phenotype data would enable many of the PGx GWAS of 
PGx of side effect incidence to be replicated, assuming sufficient 
samples exist. These data are already available in the UK Biobank 

for 230,000 participants in the form of longitudinal clinical data 
derived from general practitioner visits.73

Response studies may require additional data, which could be 
cumbersome to collect. For example, we find that many efforts 
studying the genetics of heterogeneity in depression treatment use 
an instrument, such as the Hamilton Rating Scale for Depression 
(HAM- D), before and after treatment as a quantitative measure of 
the change in phenotype.74 These tests may not be regularly con-
ducted prior to and following treatment, and therefore would not 
be available in biobanks collecting the data from providers. This 
presents a challenge to researchers studying the PGx of depression 
to design a phenotype based on the phenotypes that are available, 
rather than an ideal quantitative measure. Periodic self- reported 
phenotypes may be sufficient for detecting associations in treatment 
response, provided that they are done before and after treatment.75

We find that quantitative measures of biomarkers are frequently 
used to measure response and toxicity risk and study PGx effects. 
For example, biomarkers, such as blood lipid levels, are frequently 
used to measure statin response, which has known genetic influ-
ences. Biobanks already collect measurements of key biomarkers 
and researchers have conducted GWAS to study the genetic influ-
ences of interindividual differences in these levels.76 Combining 
periodic measurements of biomarkers with recent drug exposures 
could allow for PGx focused studies of the change in biomarkers in 
response to treatment.

In instances where longitudinal clinical data are limited and only 
information about patient prescriptions is available, it may still be 
possible to conduct PGx GWAS. A recent study found that by per-
forming a GWAS on which type of statin (e.g., atorvastatin vs. sim-
vastatin) a subject was prescribed at the time of the UK Biobank 
participant intake survey recapitulated previously identified statin 
response alleles.77 Performing GWAS on drug selection may dis-
cover associations with ADRs or response that have inadvertently 
led the patient to take one drug over another.

Diversity in PGx Studies
There is a known bias toward the inclusion of Europeans in genet-
ics research,78 and here we show that PGx suffers from the same 
issue. Diversification of study populations in PGx studies may 
lead to the discovery of more associations and thus yield greater 
clinical outcomes.35 Pharmacogenes are under lower evolutionary 
constraint than disease genes,79 which leads to vastly different al-
lele frequencies between global populations.37 Additionally, non- 
European populations harbor a higher frequency of previously 
unseen rare deleterious variants in pharmacogenes, likely as the 
result of being understudied.37 Narrowly focusing research on a 
single population limits the impact of PGx by limiting the degree 
to which important associations can be discovered.

GWAS must also move beyond studying uniform ethnic popu-
lations. Much of the global population admixed. Rather than seek-
ing to avoid admixture, methods need to be developed to account 
for admixture and multi- ethnic cohorts. Trans- ethnic GWAS have 
been performed successfully, but remain the exception rather than 
the rule.80 It is already standard procedure to include values derived 
from principal component analysis as covariates in the GWAS to 
account for some population diversity, we must build upon this 

REVIEW

https://www.pgrn.org/riken-gwas-statistics.html
https://www.pgrn.org/riken-gwas-statistics.html


CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 110 NUMBER 3 | September 2021 645

strategy to expand the reach of PGx GWAS. Methods have been 
developed to determine local ancestry, which enables the inclusion 
of admixed individuals in GWAS, boosting power to detect associ-
ations.81 Building upon these methods will be critical for further-
ing our understanding of PGx.

Beyond GWAS
With the increasing availability of sequencing data (as opposed to 
genotyping data) it will be possible to perform association tests 
that account for rare variants. Nearly all the studies identified 
through this review use genotyping data, which has limited ability 
to identify rare variants, even when probes are designed to detect 
them.82 GWAS may not detect associations between independent 
rare variants unless the effect size is extremely large, but tests that 
aggregate the effects of rare or deleterious variants in a region or 
gene can be used to detect an effect.83 Such tests can be used to de-
tect PGx effects of rare variants in sequencing and exome data and 
have been shown to be able to detect the influence of deleterious 
variants in CYP2D6 on ADRs related to opioid use.84

Phenome- wide association studies (PheWAS) have grown in inter-
est as a method of identifying the effect of individual variants across 
a broad range of phenotypes.85 PheWAS, much like GWAS, perform 
independent statistical tests analyzing the association between geno-
type and phenotype. Rather than look across the genome for genetic 
associations with a phenotype, PheWAS look across a range of phe-
notypes, or the phenome, for phenotype associations with an indi-
vidual genotype. Using PheWAS, it will be possible to study the effect 
of individual variants or PGx phenotypes (e.g., CYP2D6 metabolizer 
status) across a range of drug response phenotypes. Recent work 
showed that there are significant associations between cytochrome 
P450 phenotypes and maintenance dose in the UK Biobank, demon-
strating that PGx studies that more broadly link PGx phenotypes and 
drug response phenotypes may enable further discovery.86

Polygenic risk scores (PRS) are a growing area of interest in dis-
ease genetics and may have applications in predicting individual 
drug response. PRS generates scores for an individual based on the 
sum of a large number of variants with small effect sizes throughout 
the genome initially identified through GWAS. These scores can 
be used to predict the probability of disease occurrence, or possi-
bly drug response. Lanfear et al. retrospectively demonstrated that 
PRS may identify patients with heart failure who have increased 
survival benefit when treated with beta blockers.87

With greater availability of sequencing data, studies focused 
on the effects of structural variants, including copy number vari-
ants, will be feasible. There are several known pharmacogenes with 
frequent structural variation that have a strong influence on drug 
response, including CYP2D6.88 Genome sequencing data are best 
equipped for the identification of structural variants, and studies 
of the more than 50,000 TOPMED genomes has shown that there 
is much more heterogeneity in CYP2D6 structural variation than 
had been previously shown.89 The ability to accurately detect these 
events will improve the ability to study associations with drug re-
sponse. It will be possible to perform PheWAS of drug response to 
study the broader effect of structural variants on drug response.90

Functional characterization
Other considerations to complement PGx GWAS are associa-
tions of extreme PGx phenotypes and functional genomic stud-
ies. As noted, large effect size could be achieved with extreme 
traits such as those from rare drug toxicities.7 However, charac-
terization of such extreme response phenotypes has been slow due 
to small sample sizes and challenges in identifying them.91 Future 
studies are needed to know whether extreme drug response traits 
could be effective ways to uncover novel loci. PGx GWAS have 
revealed plausible mechanisms underlying drug response or tox-
icities. Despite this, there are challenges in follow- up studies from 
GWAS and these have been reviewed recently.92 Investigators 
have applied various technologies, tool sets, and complex analyses 
to unravel the variants discovered, such as those examples from 
PGRN- RIKEN collaboration (see Table  S2). Two examples 
worth mentioning about followed up from initial PGx GWAS 
are the used of multiple functional genomics studies to discover 
additional mechanism of drug action of anastrozole93 and the 
utilization of massively parallel variant function assays to de-
termine 3,000 missense variants in NUDT1594 and more than 
6,000 missense variants in CYP2C9.95 This increase in func-
tional data enables computational prediction of variant function 
using approaches, such as machine learning, which may someday 
increase the clinical utility of rare variants as they are detected in 
patients.96– 98

CONCLUSION
Associations derived from GWAS only serve as a starting place 
for understanding the influence of genetics on drug response.99 
The discovered associations are frequently not causal, but rather 
in linkage disequilibrium with the causal variant. Fine mapping 
must be performed to identify causal variants such that they can 
be used for diagnostic purposes.100 Even more importantly, find-
ings must be reproducible by subsequent studies in external co-
horts to confirm associations. Then, organizations, such as the 
CPIC, develop therapeutic guidelines that provide clinical rec-
ommendations based on a patient’s genotype. Many such guide-
lines have been developed and many of the drug- gene associations 
represented in those guidelines have evidence of an association 
observed through GWAS.101 Bringing these discoveries to their 
full clinical utility is critical to meet the goal of bringing PGx into 
the clinic.

The field of PGx has greatly expanded the collective knowledge 
of drug response genetics through the use of GWAS. Hundreds of 
associations between genes and drugs have been discovered and, 
as large datasets become increasingly available, many more will be 
discovered. There are opportunities in therapeutic areas not yet 
studied. Notably, common drugs used in these therapeutic catego-
ries, such as ophthalmic and otolaryngological drugs, dermatologic 
drugs, renal drugs and gastrointestinal drugs, have not been exten-
sively studied in GWAS.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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