

Received 12 September 2014 Accepted 15 September 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; indole; bis-indolymethane; MRI contrast agent; N—H···O hydrogen bonds; C—H··· π interactions

CCDC reference: 1024391 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of dimethyl 3,3'-[(4-chlorophenyl)methylene]bis(1*H*-indole-2-carboxylate)

Yu-long Li, Hong-shun Sun,* Hong Jiang, Ning Xu and Hong Xu

Chemical Engineering Department, Nanjing College of Chemical Technology, Geguan Road No.265 Nanjing, Nanjing 210048, People's Republic of China. *Correspondence e-mail: njutshs@126.com

In the title compound, $C_{27}H_{21}ClN_2O_4$, the mean planes of the two indole ring systems (r.m.s. deviations = 0.021 and 0.024 Å) are approximately perpendicular to one another, with a dihedral angle of 79.54 (12)°. The benzene ring is twisted with respect to the mean planes of the two indole ring systems at angles of 80.14 (15) and 86.30 (15)°. In the crystal, molecules are linked by N-H···O hydrogen bonds, forming inversion dimers with an $R_2^2(18)$ ring motif. The dimers are linked by a further N-H···O hydrogen bond, forming chains along [100]. There are intra- and intermolecular C-H··· π interactions present, the latter linking the chains to form a three-dimensional supramolecular structure.

1. Chemical context

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter *et al.*, 1977; Sundberg, 1996). Among them, bis-indolymethane derivatives have been found to be potentially bioactive compounds (Chang *et al.*, 1999; Ge *et al.*, 1999). In recent years, the synthesis and applications of bis-indolymethane derivatives have been studied widely. The title compound is one of the bis-indolymethane derivatives used as a precursor for MRI contrast agents (Ni, 2008). We report herein on its synthesis and crystal structure. Similar structures are reported by Sun *et al.* (2012, 2013).

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The benzene ring (C1–C6) is twisted with respect to the two indole rings, (N1/C8–C15) and (N2/CC18–C25), making dihedral angles of 80.14 (15) and 83.30 (15)°, respectively. The indole ring systems make a dihedral angle of 79.54 (12)°.

In the crystal, molecules are linked by N-H···O hydrogen bonds, forming inversion dimers with an $R_2^2(18)$ ring motif

research communications

The molecular structure of the title molecule, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

(Fig. 2 and Table 1). The dimers are linked by a further N– $H \cdots O$ hydrogen bond, forming chains along [100] (Fig. 2 and Table 1). There are intra- and intermolecular C– $H \cdots \pi$ interactions present (Table 1); the latter link the chains to form a three-dimensional supramolecular structure.

3. Synthesis and crystallization

Methyl indole-2-carboxylate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; 4-chlorobenzaldehyde (7.0 g, 50 mmol) was added and the mixture heated to reflux. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product formed was filtered off and washed thoroughly with methanol; yield 95%. The reaction was followed by TLC (CHCl₃:hexane = 1:1). Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Figure 2

A perspective view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg3, Cg4 and Cg5 are the centroids of the N1/C8/C9/C14/C15, C1–C6, C9–C14 and C19–C24 rings, respectively.

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$	0.86	2.04	2.862 (3)	159
$N1-H1A\cdots O3^{ii}$	0.86	2.08	2.923 (4)	168
$C20-H20A\cdots Cg1$	0.93	2.89	3.568 (4)	131
$C10-H10A\cdots Cg3$	0.93	2.90	3.705 (5)	146
$C27 - H27A \cdots Cg4^{iii}$	0.96	2.78	3.719 (5)	166
$C11 - H11A \cdots Cg5^{iv}$	0.93	2.88	3.750 (4)	156

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) x + 1, y, z; (iii) -x + 2, -y + 1, -z + 1; (iv) -x + 2, -y, -z + 1.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically, and constrained to ride on their parent atoms: N-H =0.86 Å and C-H = 0.93, 0.96, and 0.98 Å for aromatic, methyl and methine H atoms, respectively, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(N,C)$ for other H atoms.

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support. Funding for this research was provided by Nanjing College of Chemical Technology (NHKY-2013–02).

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{27}H_{21}ClN_2O_4$
M _r	472.91
Crystal system, space group	Triclinic, P1
Temperature (K)	293
a, b, c (Å)	10.126 (2), 11.090 (2), 12.246 (2)
α, β, γ (°)	109.58 (3), 111.50 (3), 91.32 (3)
$V(Å^3)$	1188.7 (4)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.20
Crystal size (mm)	$0.30 \times 0.20 \times 0.10$
Data collection	
Diffractometer	Enraf–Nonius CAD-4
Absorption correction	ψ scan (North <i>et al.</i> , 1968)
T_{\min}, \dot{T}_{\max}	0.943, 0.981
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4651, 4381, 2728
Rint	0.024
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.603
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057. 0.177. 1.01
No. of reflections	4381
No. of parameters	307
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.180.33
(max) (mm ()	,

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), and SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008).

References

- Chang, Y. C., Riby, J., Chang, G. H., Peng, B. C., Firestone, G. & Bjeldanes, L. F. (1999). *Biochem. Pharmacol.* 58, 825–834.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Ni, Y. (2008). CMIR, 4, 96–112.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, 02764.
- Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, 01516.
- Sundberg, R. J. (1996). *The Chemistry of Indoles*, p. 113. New York: Academic Press.

supporting information

Acta Cryst. (2014). E70, 259-261 [doi:10.1107/S1600536814020686]

Crystal structure of dimethyl 3,3'-[(4-chlorophenyl)methylene]bis(1*H*-indole-2-carboxylate)

Yu-long Li, Hong-shun Sun, Hong Jiang, Ning Xu and Hong Xu

Computing details

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Dimethyl 3,3'-[(4-chlorophenyl)methylene]bis(1H-indole-2-carboxylate)

Crystal data $C_{27}H_{21}CIN_2O_4$ $M_r = 472.91$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 10.126 (2) Å b = 11.090 (2) Å c = 12.246 (2) Å a = 109.58 (3)° $\beta = 111.50$ (3)° $\gamma = 91.32$ (3)° V = 1188.7 (4) Å³

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.943, T_{\max} = 0.981$ 4651 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.177$ S = 1.014381 reflections 307 parameters Z = 2 F(000) = 492 $D_x = 1.321 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.30 \times 0.20 \times 0.10 \text{ mm}$

4381 independent reflections 2728 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = 0 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -14 \rightarrow 13$ 3 standard reflections every 200 reflections intensity decay: 1%

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.1P]$	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta ho_{ m min} = -0.33 { m e} { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.48461 (11)	0.07229 (11)	0.16877 (9)	0.0792 (4)	
01	1.1884 (2)	0.5955 (2)	0.8803 (2)	0.0542 (6)	
N1	1.3863 (3)	0.3971 (3)	0.7210 (3)	0.0494 (7)	
H1A	1.4745	0.4332	0.7676	0.059*	
C1	0.8128 (3)	0.1650 (3)	0.5022 (3)	0.0481 (8)	
H1B	0.8548	0.1250	0.5593	0.058*	
N2	0.8964 (3)	0.3420 (3)	0.9111 (2)	0.0472 (7)	
H2A	0.8496	0.3612	0.9590	0.057*	
O2	1.4243 (2)	0.6008 (2)	0.9253 (2)	0.0643 (7)	
C2	0.6959 (3)	0.0963 (3)	0.3918 (3)	0.0486 (8)	
H2B	0.6599	0.0110	0.3745	0.058*	
03	0.6953 (2)	0.4961 (2)	0.8462 (2)	0.0649 (7)	
C3	0.6339 (3)	0.1556 (3)	0.3084 (3)	0.0505 (8)	
O4	0.7917 (3)	0.5349 (2)	0.7210(2)	0.0649 (7)	
C4	0.6861 (4)	0.2805 (4)	0.3326 (3)	0.0636 (10)	
H4A	0.6429	0.3198	0.2752	0.076*	
C5	0.8042 (4)	0.3484 (3)	0.4436 (3)	0.0544 (9)	
H5A	0.8401	0.4334	0.4599	0.065*	
C6	0.8694 (3)	0.2916 (3)	0.5305 (3)	0.0392 (7)	
C7	0.9952 (3)	0.3692 (3)	0.6546 (3)	0.0379 (7)	
H7A	0.9867	0.4608	0.6708	0.045*	
C8	1.1433 (3)	0.3553 (3)	0.6522 (3)	0.0387 (7)	
C9	1.1884 (3)	0.2641 (3)	0.5618 (3)	0.0420 (7)	
C10	1.1168 (4)	0.1620 (3)	0.4438 (3)	0.0520 (8)	
H10A	1.0169	0.1414	0.4082	0.062*	
C11	1.1962 (4)	0.0937 (3)	0.3823 (4)	0.0610 (10)	
H11A	1.1492	0.0269	0.3042	0.073*	
C12	1.3474 (4)	0.1226 (4)	0.4348 (4)	0.0628 (10)	
H12A	1.3983	0.0729	0.3917	0.075*	
C13	1.4211 (4)	0.2216 (3)	0.5474 (4)	0.0586 (9)	
H13A	1.5211	0.2412	0.5814	0.070*	
C14	1.3401 (3)	0.2928 (3)	0.6098 (3)	0.0458 (8)	

C15	1.2682 (3)	0.4352 (3)	0.7465 (3)	0.0421 (7)
C16	1.2854 (3)	0.5492 (3)	0.8566 (3)	0.0435 (7)
C17	1.4544 (5)	0.7217 (4)	1.0310 (4)	0.0861 (14)
H17A	1.5566	0.7502	1.0740	0.129*
H17B	1.4165	0.7089	1.0883	0.129*
H17C	1.4102	0.7863	1.0007	0.129*
C18	0.9788 (3)	0.3408 (3)	0.7625 (3)	0.0377 (7)
C19	1.0442 (3)	0.2506 (3)	0.8189 (3)	0.0407 (7)
C20	1.1385 (3)	0.1625 (3)	0.7983 (3)	0.0501 (8)
H20A	1.1738	0.1553	0.7366	0.060*
C21	1.1774 (4)	0.0877 (4)	0.8703 (4)	0.0604 (9)
H21A	1.2390	0.0289	0.8567	0.073*
C22	1.1255 (4)	0.0985 (4)	0.9646 (4)	0.0640 (10)
H22A	1.1550	0.0474	1.0131	0.077*
C23	1.0335 (4)	0.1817 (3)	0.9869 (3)	0.0565 (9)
H23A	1.0004	0.1889	1.0500	0.068*
C24	0.9908 (3)	0.2555 (3)	0.9116 (3)	0.0447 (8)
C25	0.8887 (3)	0.3933 (3)	0.8212 (3)	0.0407 (7)
C26	0.7834 (3)	0.4793 (3)	0.7995 (3)	0.0459 (8)
C27	0.6854 (5)	0.6167 (4)	0.6893 (5)	0.0922 (15)
H27A	0.7009	0.6511	0.6319	0.138*
H27B	0.6943	0.6868	0.7648	0.138*
H27C	0.5907	0.5662	0.6501	0.138*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0580 (6)	0.0938 (8)	0.0525 (6)	0.0045 (5)	0.0014 (4)	0.0102 (5)
01	0.0494 (14)	0.0606 (14)	0.0504 (13)	0.0031 (11)	0.0266 (11)	0.0107 (11)
N1	0.0327 (14)	0.0601 (17)	0.0575 (17)	0.0042 (12)	0.0215 (13)	0.0205 (14)
C1	0.0460 (18)	0.0504 (19)	0.0497 (18)	0.0086 (15)	0.0175 (15)	0.0222 (16)
N2	0.0437 (15)	0.0562 (16)	0.0462 (15)	0.0066 (13)	0.0277 (13)	0.0134 (13)
O2	0.0417 (13)	0.0720 (16)	0.0589 (14)	-0.0074 (12)	0.0128 (11)	0.0088 (13)
C2	0.0441 (18)	0.0450 (18)	0.0527 (19)	0.0006 (15)	0.0176 (16)	0.0154 (16)
03	0.0427 (13)	0.0794 (18)	0.0800 (17)	0.0187 (12)	0.0360 (13)	0.0249 (14)
C3	0.0404 (18)	0.060 (2)	0.0435 (18)	0.0072 (16)	0.0130 (15)	0.0140 (16)
O4	0.0632 (16)	0.0732 (16)	0.0851 (18)	0.0372 (13)	0.0431 (14)	0.0447 (15)
C4	0.064 (2)	0.077 (3)	0.052 (2)	0.014 (2)	0.0130 (18)	0.038 (2)
C5	0.053 (2)	0.057 (2)	0.054 (2)	0.0014 (16)	0.0153 (17)	0.0287 (17)
C6	0.0328 (15)	0.0458 (17)	0.0434 (16)	0.0069 (13)	0.0193 (13)	0.0169 (14)
C7	0.0379 (16)	0.0390 (16)	0.0417 (16)	0.0073 (13)	0.0209 (13)	0.0150 (13)
C8	0.0359 (16)	0.0418 (16)	0.0437 (16)	0.0053 (13)	0.0202 (13)	0.0174 (14)
C9	0.0438 (17)	0.0433 (17)	0.0496 (18)	0.0077 (14)	0.0279 (15)	0.0195 (15)
C10	0.0517 (19)	0.0517 (19)	0.059 (2)	0.0041 (16)	0.0320 (17)	0.0169 (17)
C11	0.075 (3)	0.050(2)	0.064 (2)	0.0047 (18)	0.043 (2)	0.0122 (18)
C12	0.073 (3)	0.055 (2)	0.082 (3)	0.0176 (19)	0.057 (2)	0.022 (2)
C13	0.050 (2)	0.063 (2)	0.080 (3)	0.0171 (17)	0.0406 (19)	0.030 (2)
C14	0.0425 (18)	0.0501 (19)	0.0564 (19)	0.0112 (15)	0.0290 (15)	0.0232 (16)

C15	0.0378 (16)	0.0469 (17)	0.0461 (17)	0.0055 (14)	0.0200 (14)	0.0190 (15)
C16	0.0374 (17)	0.0534 (19)	0.0427 (17)	-0.0011 (15)	0.0181 (14)	0.0194 (15)
C17	0.077 (3)	0.083 (3)	0.058 (2)	-0.031 (2)	0.012 (2)	-0.002 (2)
C18	0.0292 (14)	0.0415 (16)	0.0382 (15)	0.0022 (12)	0.0131 (12)	0.0104 (13)
C19	0.0333 (15)	0.0455 (17)	0.0398 (16)	0.0016 (13)	0.0139 (13)	0.0125 (14)
C20	0.0413 (18)	0.056 (2)	0.058 (2)	0.0120 (15)	0.0219 (16)	0.0249 (17)
C21	0.048 (2)	0.063 (2)	0.079 (3)	0.0170 (17)	0.0232 (19)	0.038 (2)
C22	0.055 (2)	0.076 (3)	0.068 (2)	0.009 (2)	0.0157 (19)	0.045 (2)
C23	0.055 (2)	0.072 (2)	0.0490 (19)	0.0034 (19)	0.0202 (17)	0.0316 (18)
C24	0.0423 (17)	0.0509 (19)	0.0394 (16)	0.0007 (15)	0.0160 (14)	0.0154 (15)
C25	0.0334 (15)	0.0467 (17)	0.0413 (16)	0.0015 (13)	0.0177 (13)	0.0125 (14)
C26	0.0348 (16)	0.0480 (18)	0.0482 (18)	0.0024 (14)	0.0178 (14)	0.0085 (15)
C27	0.088 (3)	0.090 (3)	0.117 (4)	0.050 (3)	0.043 (3)	0.056 (3)

Geometric parameters (Å, °)

Cl1—C3	1.745 (3)	C9—C14	1.413 (4)	
O1-C16	1.203 (4)	C10—C11	1.370 (5)	
N1-C14	1.365 (4)	C10—H10A	0.9300	
N1-C15	1.384 (4)	C11—C12	1.406 (5)	
N1—H1A	0.8600	C11—H11A	0.9300	
C1—C2	1.380 (4)	C12—C13	1.363 (5)	
C1—C6	1.382 (4)	C12—H12A	0.9300	
C1—H1B	0.9300	C13—C14	1.402 (4)	
N2-C24	1.370 (4)	C13—H13A	0.9300	
N2-C25	1.378 (4)	C15—C16	1.457 (4)	
N2—H2A	0.8600	C17—H17A	0.9600	
O2—C16	1.336 (4)	C17—H17B	0.9600	
O2—C17	1.448 (4)	C17—H17C	0.9600	
C2—C3	1.367 (5)	C18—C25	1.383 (4)	
C2—H2B	0.9300	C18—C19	1.441 (4)	
O3—C26	1.213 (4)	C19—C20	1.408 (4)	
C3—C4	1.365 (5)	C19—C24	1.412 (4)	
O4—C26	1.329 (4)	C20—C21	1.368 (5)	
O4—C27	1.451 (4)	C20—H20A	0.9300	
C4—C5	1.388 (5)	C21—C22	1.406 (5)	
C4—H4A	0.9300	C21—H21A	0.9300	
C5—C6	1.384 (4)	C22—C23	1.361 (5)	
C5—H5A	0.9300	C22—H22A	0.9300	
С6—С7	1.526 (4)	C23—C24	1.392 (5)	
C7—C18	1.520 (4)	C23—H23A	0.9300	
С7—С8	1.521 (4)	C25—C26	1.457 (4)	
C7—H7A	0.9800	C27—H27A	0.9600	
C8—C15	1.382 (4)	C27—H27B	0.9600	
C8—C9	1.448 (4)	C27—H27C	0.9600	
C9—C10	1.411 (4)			
C14—N1—C15	108.9 (3)	C14—C13—H13A	121.4	

C14—N1—H1A	125.6	N1-C14-C13	129.0 (3)
C15—N1—H1A	125.6	N1—C14—C9	108.2 (3)
C2C1C6	122.0 (3)	C13—C14—C9	122.8 (3)
C2C1H1B	119.0	C8—C15—N1	110.2 (3)
C6—C1—H1B	119.0	C8—C15—C16	129.1 (3)
C24—N2—C25	108.9 (2)	N1—C15—C16	120.7 (3)
C24—N2—H2A	125.5	O1—C16—O2	123.8 (3)
C25—N2—H2A	125.5	O1—C16—C15	125.2 (3)
C16—O2—C17	116.1 (3)	O2—C16—C15	110.9 (3)
C3—C2—C1	118.9 (3)	O2—C17—H17A	109.5
C3—C2—H2B	120.5	02—C17—H17B	109.5
C1 - C2 - H2B	120.5	H17A - C17 - H17B	109.5
C4 - C3 - C2	120.3	Ω^2 —C17—H17C	109.5
C4 - C3 - C11	121.1(3) 1187(3)	H17A - C17 - H17C	109.5
C^2 C^3 C^{11}	110.7(3) 120.2(3)	H17B C17 H17C	109.5
$C_2 = C_3 = C_1$	120.2(3)	$C_{25} C_{18} C_{10}$	109.5
$C_{20} = 04 = C_{27}$	110.3(3)	$C_{23} = C_{18} = C_{19}$	100.5(3)
$C_3 = C_4 = C_3$	119.4 (5)	$C_{23} = C_{18} = C_7$	123.4(3)
C5—C4—H4A	120.5	C19 - C18 - C7	128.2(2)
C5—C4—H4A	120.3	$C_{20} = C_{19} = C_{24}$	118.2 (3)
C6 - C5 - C4	121.0 (3)	$C_{20} = C_{19} = C_{18}$	135.0 (3)
C6—C5—H5A	119.5	C24—C19—C18	106.7 (3)
C4—C5—H5A	119.5	C21—C20—C19	119.1 (3)
C1—C6—C5	117.5 (3)	C21—C20—H20A	120.4
C1—C6—C7	121.9 (3)	C19—C20—H20A	120.4
C5—C6—C7	120.5 (3)	C20—C21—C22	121.0 (3)
C18—C7—C8	112.7 (2)	C20—C21—H21A	119.5
C18—C7—C6	110.0 (2)	C22—C21—H21A	119.5
C8—C7—C6	114.8 (2)	C23—C22—C21	121.8 (3)
С18—С7—Н7А	106.2	C23—C22—H22A	119.1
С8—С7—Н7А	106.2	C21—C22—H22A	119.1
С6—С7—Н7А	106.2	C22—C23—C24	117.4 (3)
C15—C8—C9	105.6 (3)	C22—C23—H23A	121.3
C15—C8—C7	123.1 (3)	C24—C23—H23A	121.3
C9—C8—C7	131.3 (3)	N2—C24—C23	129.3 (3)
C10—C9—C14	117.8 (3)	N2—C24—C19	108.3 (3)
С10—С9—С8	135.1 (3)	C23—C24—C19	122.5 (3)
C14—C9—C8	107.1 (3)	N2-C25-C18	109.8 (3)
C11—C10—C9	119.3 (3)	N2-C25-C26	116.6 (3)
C11—C10—H10A	120.4	C18—C25—C26	133.4 (3)
C9-C10-H10A	120.4	03-C26-04	123.4(3)
C_{10} $-C_{11}$ $-C_{12}$	121 3 (3)	03-C26-C25	123.4(3)
C_{10} $-C_{11}$ $-H_{11A}$	119.3	$04 - C^{26} - C^{25}$	1132(3)
C12— $C11$ — $H11A$	119.3	04 - C27 - H27A	109 5
C13 - C12 - C11	121.6 (3)	04 - 027 - H27R	109.5
С13_С12_Н12А	110 (3)	$H_{27} = C_{27} = H_{27} B$	109.5
$C_{13} = C_{12} = 1112A$ $C_{11} = C_{12} = H_{12}A$	117.2	$\frac{112}{A} - \frac{12}{B} - \frac{12}{B}$	109.5
C_{11} $-C_{12}$ $-C_{112}$ C_{14}	117.2 117.2 (2)	$\begin{array}{c} U_{4} \\ U_{2} \\$	109.5
$C_{12} = C_{13} = C_{14}$	117.2 (3)	$\frac{112}{A} - \frac{12}{C} - \frac{12}{C}$	109.3
U12-U13-III3A	121.4	$\Pi \angle D - U \angle D - \Pi \angle U$	109.3

C6—C1—C2—C3	-0.4 (5)	C14—N1—C15—C16	-176.7 (3)
C1—C2—C3—C4	0.2 (5)	C17—O2—C16—O1	-2.2 (5)
C1—C2—C3—Cl1	-179.2 (2)	C17—O2—C16—C15	174.5 (3)
C2—C3—C4—C5	0.1 (5)	C8-C15-C16-O1	-2.9 (5)
Cl1—C3—C4—C5	179.6 (3)	N1-C15-C16-O1	173.6 (3)
C3—C4—C5—C6	-0.4 (6)	C8—C15—C16—O2	-179.6 (3)
C2-C1-C6-C5	0.1 (5)	N1-C15-C16-O2	-3.1 (4)
C2-C1-C6-C7	177.8 (3)	C8—C7—C18—C25	151.8 (3)
C4—C5—C6—C1	0.2 (5)	C6—C7—C18—C25	-78.6 (3)
C4—C5—C6—C7	-177.4 (3)	C8—C7—C18—C19	-32.3 (4)
C1—C6—C7—C18	-39.6 (4)	C6—C7—C18—C19	97.2 (3)
C5—C6—C7—C18	138.0 (3)	C25—C18—C19—C20	176.3 (3)
C1—C6—C7—C8	88.9 (3)	C7—C18—C19—C20	-0.2 (5)
C5—C6—C7—C8	-93.6 (3)	C25-C18-C19-C24	-1.0 (3)
C18—C7—C8—C15	-65.3 (4)	C7—C18—C19—C24	-177.5 (3)
C6—C7—C8—C15	167.7 (3)	C24—C19—C20—C21	-1.5 (4)
C18—C7—C8—C9	113.9 (3)	C18—C19—C20—C21	-178.6 (3)
C6—C7—C8—C9	-13.2 (4)	C19—C20—C21—C22	-0.5 (5)
C15—C8—C9—C10	-177.0 (3)	C20-C21-C22-C23	1.0 (6)
C7—C8—C9—C10	3.8 (6)	C21—C22—C23—C24	0.6 (5)
C15—C8—C9—C14	1.7 (3)	C25—N2—C24—C23	179.4 (3)
C7—C8—C9—C14	-177.5 (3)	C25—N2—C24—C19	-0.4 (3)
C14—C9—C10—C11	1.4 (5)	C22—C23—C24—N2	177.5 (3)
C8—C9—C10—C11	179.9 (3)	C22—C23—C24—C19	-2.8 (5)
C9-C10-C11-C12	0.5 (5)	C20-C19-C24-N2	-176.9 (3)
C10-C11-C12-C13	-1.7 (6)	C18—C19—C24—N2	0.9 (3)
C11—C12—C13—C14	0.8 (5)	C20-C19-C24-C23	3.3 (5)
C15—N1—C14—C13	-179.6 (3)	C18—C19—C24—C23	-178.9 (3)
C15—N1—C14—C9	0.7 (3)	C24—N2—C25—C18	-0.2 (3)
C12-C13-C14-N1	-178.5 (3)	C24—N2—C25—C26	174.8 (3)
C12—C13—C14—C9	1.2 (5)	C19—C18—C25—N2	0.8 (3)
C10-C9-C14-N1	177.5 (3)	C7—C18—C25—N2	177.4 (3)
C8—C9—C14—N1	-1.5 (3)	C19—C18—C25—C26	-173.1 (3)
C10-C9-C14-C13	-2.3 (5)	C7—C18—C25—C26	3.5 (5)
C8—C9—C14—C13	178.8 (3)	C27—O4—C26—O3	-1.7 (5)
C9—C8—C15—N1	-1.3 (3)	C27—O4—C26—C25	176.8 (3)
C7—C8—C15—N1	178.0 (3)	N2-C25-C26-O3	-7.7 (4)
C9—C8—C15—C16	175.5 (3)	C18—C25—C26—O3	165.9 (3)
C7—C8—C15—C16	-5.2 (5)	N2-C25-C26-O4	173.8 (3)
C14—N1—C15—C8	0.4 (3)	C18—C25—C26—O4	-12.6 (5)

Hydrogen-bond geometry (Å, °)

Cg1, Cg3, Cg4 and Cg5 are the centroids of the N1/C8/C9/C14/C15, C1-C6, C9-C14 and C19-C24 rings, respectively.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2A···O1 ⁱ	0.86	2.04	2.862 (3)	159
N1—H1A···O3 ⁱⁱ	0.86	2.08	2.923 (4)	168

supporting information

C20—H20 <i>A</i> ··· <i>Cg</i> 1	0.93	2.89	3.568 (4)	131
C10—H10 <i>A</i> ··· <i>Cg</i> 3	0.93	2.90	3.705 (5)	146
C27—H27 <i>A</i> ··· <i>Cg</i> 4 ⁱⁱⁱ	0.96	2.78	3.719 (5)	166
C11—H11 A ···Cg5 ^{iv}	0.93	2.88	3.750 (4)	156

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+2; (ii) *x*+1, *y*, *z*; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) -*x*+2, -*y*, -*z*+1.