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Abstract: This paper presents spectrum sensing as a classification problem, and uses a spectrum-
sensing algorithm based on a signal covariance matrix and long short-term memory network (CM-
LSTM). We jointly exploited the spatial cross-correlation of multiple signals received by the antenna
array and the temporal autocorrelation of single signals; we used the long short-term memory network
(LSTM), which is good at extracting temporal correlation features, as the classification model; we then
input the covariance matrix of the signals received by the array into the LSTM classification model to
achieve the fusion learning of spatial correlation features and temporal correlation features of the
signals, thus significantly improving the performance of spectrum sensing. Simulation analysis shows
that the CM-LSTM-based spectrum-sensing algorithm shows better performance compared with
support vector machine (SVM), gradient boosting machine (GBM), random forest (RF), and energy
detection (ED) algorithm-based spectrum-sensing algorithms for different signal-to-noise ratios
(SNRs) and different numbers of secondary users (SUs). Among them, SVM is a classical machine-
learning algorithm, GBM and RF are two integrated learning methods with better generalization
capability, and ED is a classical, traditional, and spectrum-sensing algorithm.

Keywords: spectrum sensing; machine learning; long short-term memory; covariance matrix

1. Introduction

In recent years, machine learning has been widely used in the fields of speech recogni-
tion and text translation, and more and more experts and scholars have applied machine-
learning algorithms to spectrum sensing to improve its performance [1–3]. Integrated
learning algorithms in machine learning combine multiple classification algorithms to
improve the accuracy of classification by combining multiple “single learners” with some
strategy. For example, in [4,5], the authors use an integrated learning algorithm for spec-
trum sensing, which solves the problem of poor performance under low signal-to-noise
ratio (SNR) conditions, and they compare this algorithm with support vector machine
(SVM) and show that the integrated learning-based spectrum-sensing algorithm can achieve
higher performance. In [6,7], the authors take the use of random forest (RF) for spectrum
sensing, which does not require prior knowledge of the noise distribution, and a com-
parison with several machine-learning algorithms such as decision trees, and plain Bayes
shows that the RF model has the best performance. In [8], the authors use the classical
machine-learning classification algorithm SVM for spectrum sensing, which is tested using
signals from real environments and compared with algorithms such as energy detection
(ED); the results show that the SVM-based spectrum-sensing algorithm is more accurate
than ED. Both [9,10] used temporal data of the signal as the input data for the long short-
term memory network (LSTM) network model to study spectrum sensing as a classification
problem, and the performance was significantly improved in the case of a single primary
user (PU) and a single secondary user (SU) with superior detection performance in a
colored noise background.
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To improve the performance of spectrum sensing, Amr Hussein et al. used an array
antenna model [11] to simulate the case of multiple SUs. The elements of the covariance
matrix of multiple signals represent the spatial correlation between the signals, and the
correlation is large when the PU is present, and small vice versa, thus identifying the
presence or absence of the PU [12]. Cao K. and Yang Z. first applied random matrix
theory [13] (RMT) in the field of wireless communication to achieve high-performance
spectrum sensing. Since then, spectrum-sensing algorithms based on RMT have been
widely used. The signal data processing method based on RMT has some features that
the traditional data processing method does not have. These include obtaining the spatial
correlation features of the signal. Many scholars form a sampled signal matrix and cal-
culate its covariance matrix by acquiring the perceptual data of multiple SUs. The signal
covariance matrix is used as the input data of the model [14–16]. Compared with using the
energy features of the signal data, etc., this improves the performance of spectrum sensing.
Examples of machine-learning algorithms based on the signal covariance matrix are as
follows: in [17], the authors used SVM for spectrum sensing, using the signal covariance
matrix as the input data for the model, and the used algorithm improves the detection
probability over the current blind spectrum sensing (BSS) [18] algorithm in a strong noise
background. In [19], the authors use the signal covariance matrix map (GSM-CM) as the
input for the convolutional neural network (CNN) model, and the algorithm uses GSM-CM
for spectrum sensing, which has a better performance for orthogonal frequency division
multiplexing (OFDM) signals in a low SNR environment. In [20], the authors used deep
neural networks to learn features autonomously from the data itself and used the sample
covariance matrix as the input to the CNN model, which was modeled according to the
actual environment, and the algorithm significantly improved the detection performance
compared to the conventional maximum eigenvalue detection algorithm.

Based on the above machine-learning-based spectrum-sensing algorithms, we present
a summary. In [5], the cyclic spectrum of the signal is used as the input of the ensemble
learning algorithm to learn the cyclostationary feature of the signal. In [6], the amplitude of
the signal is used as the input of the RF algorithm to learn the periodic spectrum feature of
the signal. In [9,10], the temporal series data of the signal are used as the input of LSTM to
learn the temporal correlation feature of the signal. In [16], the covariance matrix of the
signal is used as the input of the SVM algorithm to learn the spatial feature of the signal.
In [19,20], the covariance matrix of the signal is used as the input of the CNN algorithm to
learn the spatial feature of the signal. In essence, the spectrum-sensing algorithm described
above is used to select appropriate input features and combines with the machine-learning
algorithm to obtain good sensing performance. The reason for this is that input features are
one of the determinants of the performance of machine-learning algorithms [21], and the
selection of appropriate input features is crucial. In addition, the above algorithm learns
only a single feature of the signal in terms of energy, cyclostationarity, temporal correlation
or spatial correlation.

Motivation: Based on the previous research, we expand the idea and consider that in
the case of the array antenna model, multi-channel signals have spatial cross-correlation
features, and single-channel signal sequences also have temporal auto-correlation features.
We then choose the LSTM algorithm, which is good at extracting temporal correlation fea-
tures, and take the signal covariance matrix, which reflects spatial correlation features, as its
input, thus realizing the joint learning of the above two types of features. The simulations
show that our CM-LSTM algorithm has excellent detection performance, which verifies
that we have a CM-LSTM-based spectrum-sensing algorithm that perfectly matches the
machine-learning algorithm with its input features.

Contribution: The main contributions of this paper can be summarized as follows:
(1) We take the dimensionally transformed signal covariance matrix as the input of LSTM,
which enables LSTM to better distinguish feature differences between signal and noise.
Input features are one of the determinants of the performance of machine-learning algo-
rithms [21], and it is crucial to choose appropriate input features. The multi-channel signal
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covariance matrix contains spatial cross-correlation, and the covariance matrix features of
signal and noise are obviously different. The simulation results show that excellent sensing
performance can be obtained by using the dimensionally transformed multi-channel signal
covariance matrix as the input to the LSTM. (2) We choose the LSTM algorithm that is
good at extracting temporal correlation features to learn the covariance matrix of multi-
channel signals, so that the CM-LSTM algorithm can simultaneously learn the temporal
correlation features of single-channel signals and the spatial correlation features of multi-
channel signals. Through simulation, the chosen algorithm is compared with GBM, RF,
SVM in machine learning and the classical spectrum-sensing algorithm ED algorithm in
non-machine-learning algorithms. We confirm that the CM-LSTM-based spectrum-sensing
algorithm has high detection performance under different SNR and different numbers of
SUs. (3) We choose the array antenna model simulation to generate data, which makes the
generated signal data more suitable for the actual application scenario. The array antenna
model includes a single transmitting antenna and multiple receiving antennas, which are
consistent with the spectrum-sensing scenario we studied with one PU and multiple SUs,
and after the position of the reference antenna is determined by the array antenna model,
the positions of other receiving antennas can be obtained quickly, which makes the process
of generating signal data more convenient.

The rest of this paper is organized as follows. In Section 2, we present a system model
for the case of multiple SUs simulated by an array antenna model. In Section 3, data
preprocessing of the original signal data is presented, and the CM-LSTM spectrum-sensing
algorithm and algorithm flow are detailed. Section 4 presents a simulation analysis of the
CM-LSTM spectrum-sensing algorithm and compares it with three machine-learning algo-
rithms GBM, RF, and SVM, and a non-machine-learning algorithms ED. The conclusions
are discussed in Section 5.

2. System Model

Spectrum sensing can be expressed as a binary hypothesis test problem:

x(n) =
{

u(n), H0
s(n) + u(n), H1

(n = 1, 2, . . . , N) (1)

where H1 indicates that the channel to be detected is occupied by the user, and H0 indicates
that the channel is idle, s(n) represents the transmitted signal of the PU, u(n) represents
the independent identically distributed additive white Gaussian noise with a mean value
of 0 and a variance of σ2

n , and N is the number of sampling points of the received signal.
Assuming that the signal system model has M array element antennas to receive

signals, the signal received by the antennas can be expressed as:

xi(n) =
{

ui(n), H0
a(θ)s(n) + ui(n), H1

(i = 1, 2, . . . , M) (2)

where θ is the space angle vector of the arrival wave, a(θ) is the direction vector.
If the first antenna is selected as the reference point, then a(θ) can be expressed as:

a(θ) =
[
1, e−jrT

2 k, e−jrI
3k, e−jrT

4 k, · · · , e−jrM
Tk
]T

(3)

where ri(i = 1, · · · , M; r1 = 0) is the position vector relative to the reference point, and k is
the wave number vector such as k = k[cos θ, sin θ]T.

After simplification, we can obtain:

a(θ) =
[
1, e−jπ cos θ2 , e−jπ cos θ3 , e−jπ cos θ4 , · · · , e−jπ cos θM

]T
(4)

Let:
V = [x1, x2, · · · , xM]T (5)
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u = [u1, u2, · · · , uM]T (6)

where ui is the noise signal received by the i-th antenna and xi is the sampled signal
received by the i-th antenna.

X is then expanded into the following matrix form:

V =


x1
x2
...
xM

 =


x1(1) x1(2) · · · x1(N)
x2(1) x2(2) · · · x2(N)

...
...

...
...

xM(1) xM(2) · · · xM(N)

 (7)

The sample covariance matrix of the sampled signal is given by:

R̂x =
1
N

M

∑
k=1

xkxH
k =

1
N

VVH =

{
σ2

n IM, H0

Rs + σ2
n IM, H1

(8)

where σ2
n is the noise variance, IM represents the identity matrix of order M, and Rs is the

sample covariance matrix of the transmitted signal.
Assuming there are 40 array element antennas, the grayscale images of the sample

covariance matrix under the assumptions of H0 and H1 are shown in Figure 1a,b, respec-
tively. When there is no PU, the values other than the diagonal are very small, and the
brightness distribution of the grayscale image is relatively uniform. When a PU exists, all
the values except the diagonal are larger, and the brightness distribution of the grayscale
image is uneven.

(a) (b)

Figure 1. The grayscale image of the sample covariance matrix of noise and signal with 40 array
element antennas: (a) H0 under Rx(N) ; (b) H1 under Rx(N).

The elements in the covariance matrix represent the correlation between random
variables. The smaller the correlation, the smaller the element value, and the darker
the brightness of the grayscale image. The diagonal elements are the autocorrelation of
random variables. When the correlation is strong, the value is larger, and the diagonal
brightness of the grayscale image is brighter. The off-diagonal elements represent the cross-
correlation between random variables. The correlation is weaker than the autocorrelation.
The off-diagonal brightness is darker than the diagonal brightness of the grayscale image.
As shown in Figure 1a, the noise is random, the correlation between the noise received by
different SUs is weak, and the color of the grayscale map outside the diagonal is darker; as
shown in Figure 1b, different SUs receive the same transmit signal, and the useful signals
received by the users are mutually correlated, and the brightness of the grayscale map
outside the diagonal is brighter compared with Figure 1a.

The grayscale maps of the useful signal and the noise are distinctly different, i.e., the
covariance matrix features of the useful signal and the noise are distinctly different, so we
use the LSTM model to extract these features and achieve spectrum sensing.
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3. Spectrum-Sensing Algorithm Based on CM-LSTM

The spectrum-sensing algorithm based on CM-LSTM performs spectrum sensing
according to the obtained historical data information, without prior information of the PU
and without determining the noise distribution. The covariance matrix after dimensional
transformation is used as the input data of the LSTM model, so that the CM-LSTM algorithm
can simultaneously learn the spatial correlation features of multiple signals received by
the antenna array and the temporal correlation features of single signals. The CM-LSTM
spectrum-sensing algorithm consists of two modules, data preprocessing, and model
training and sensing.

3.1. Data Preprocessing

Matlab is used to generate a dataset, generate a series of random sequences at the
transmitting end, and enter the Gaussian white noise channel after QPSK modulation.
The array element antenna module is then used to simulate multiple SUs, so that each
antenna receives different data information.

In the experiment, the SNR range is [−20 dB, 0 dB], the interval is 1dB, the numbers
of array element antennas are set to 10, 20, and 40, and the number of sampling points
is 1000. The collected signal is calculated to obtain the covariance matrix of the signal.
After the signal covariance matrix is dimensionally transformed, the total amount of data is
(2000 × 100), (2000 × 400) and (2000 × 1600), respectively. The dataset is divided by slicing.
The first 700 datasets and last 700 datasets are used as training sets, while the remaining
datasets are used as validation sets.

3.2. CM-LSTM Spectrum-Sensing Model
3.2.1. LSTM Model Structure

The internal structure of the LSTM [22] model is shown in Figure 2, where xt is the
input of the unit, ht is the output of the LSTM unit, ht−1 is the output of the previous
LSTM unit, ct and ct−1 are the current and previous unit states, respectively, σ (from left to
right) are the values of the memory gate, forget gate and output gate, respectively, � is the
Hadamard product and tanh is the activation function.

Figure 2. LSTM model structure.

The gates are used to select the information. They include a sigmoid neural network
layer and a pointwise multiplication operation. The input is a vector; after the activation
function, the output is a real vector between 0 and 1.

3.2.2. Training and Sensing of the CM-LSTM Spectrum-Sensing Model

The dimensional transformed signal covariance matrix is transmitted to the LSTM
model as the input data, so that the LSTM model can extract the spatial correlation features
and temporal correlation features of signal data. The first step consists of passing through
the forget gate layer, while discarding the useless information. After the activation function,
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the output value is between 0 and 1 and is transmitted to the memory gate. The memory
gate decides to store useful information in the cell state. The sigmoid layer determines the
value to be updated, and the tanh layer creates a new candidate value vector to generate the
candidate memories. For the missing attribute information of the forgetting gate, the corre-
sponding new attribute information is found in the memory layer, added to supplement
the discarded attribute information, and provided to the output gate. According to the
state of the cell, the sigmoid function is used to determine the part of the cell state that
needs to be output. It is then processed by the tanh layer. After the two are multiplied, they
pass through the fully connected layer, and the softmax classifier is used to obtain the final
result and determine whether the PU exists. The flow of the spectrum-sensing algorithm
based on CM-LSTM is shown in Algorithm 1, where timesteps represent the length of
time series, an epoch represents all the data that are sent to the network to complete a
forward calculation and back propagation process, batch_size represents the number of
data samples captured in one training, num_class represents the number of categories of
the model output result, W f , Wi, Wc, and Wo represent the weight matrix, b f , bi, bc, and
bo represent the bias term, ot is the output of the output gate, and ft is the output of the
forget gate.

Algorithm 1 CM-LSTM spectrum-sensing algorithm.
Input: train sample, test sample
Output: test accuracy
Data preprocessing:

1: Label the data
2: Divide the dataset in stages:
3: (0, 700),(1000, 1700) Divided into training sets
4: (700, 1000),(1700, 2000) Divided into validation sets

Model phase:
5: Input data
6: Set up timesteps = 1, epoch = 100, batch_size = 32, num_class = 2
7: Forget gate: choose to forget some unimportant information in the past by calculating.
8: ft = σ

(
W f · [ht−1, xt] + b f

)
9: Memory gate: decide which of the newly entered information xt and ht−1 will be re-

tained.
10: it = σ(Wi · [ht−1, xt] + bi)

11: C̃t = tanh(WC · [ht−1, xt] + bC)
12: After passing the forget gate and memory gate, update the information of the next state.
13: Ct = ft ∗ Ct−1 + it ∗ C̃t
14: Output gate: calculate the output of the signal through the updated information state.
15: ot = σ(Wo[ht−1, xt] + bo)
16: ht = ot ∗ tanh(Ct)
17: Use the cross entropy loss function to calculate the loss value between the predicted

value and the true value.
18: Loss = −[y log ŷ + (1 − y) log(1 − ŷ)]
19: Optimize the loss value through the adam optimizer until the loss converges.
20: Dense: the softmax classification function is used for classification through the

dense layer.
21: return Enter the number of test data n, count the number of correct tests, record it as k,

and record k/n as the obtained accuracy rate.

4. Experiment Analysis

In machine learning, choosing different hyperparameters, loss functions, classification
functions, and optimization functions will generate different results, where hyperparame-
ters are variables determined based on experience and the effectiveness of the validation
set on the model. Therefore, we select appropriate parameters for the four algorithms GBM,
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RF, SVM, and CM-LSTM to ensure the fairness of the algorithm comparison, and analyze
the hyperparameters and function combinations of the four machine-learning algorithms,
the combination of CM-LSTM, GBM, RF, and SVM algorithms with the highest accuracy is
obtained. Then, the structure of the CM-LSTM algorithm is analyzed, the role of each layer
in the algorithm structure is taken, and its advantages are shown. Finally, we compare the
performance of the four algorithms GBM, RF, SVM, and ED with the CM-LSTM algorithm,
and verify the performance of the algorithm.

4.1. Algorithm-Related Parameter Analysis
4.1.1. Analysis of Related Parameters of CM-LSTM Algorithm

We compared the spectrum-sensing results by training the model with different hyper-
parameters epoch and batch_size (cf. Table 1). At epoch 100 and batch_size 32, the spectrum
detection accuracy is the highest, reaching 100%.

Table 1. The accuracy of CM-LSTM model parameters and related functions.

SNR = −10 dB Accuracy

Epoch
50 0.92

100 1.00
200 0.93

Batch_size 16 0.98
32 1.00

Classifier sigmoid 0.98
softmax 1.00

Loss_function binary_crossentropy 0.98
categorical_crossentropy 1.00

Optimizer
SGD 0.50

Adam 1.00
Rmsprop 0.85

In addition, the spectrum-sensing results when using different classifiers, loss func-
tions, and optimizer functions, are compared (cf. Table 1). Data transmission in the model
needs to ensure that the dimensions match each other. Under the Pytorch framework,
the ouput of softmax and categorical_crossentropy are compressed into two dimensions,
and the outputs of sigmoid and binary_crossentropy are compressed into one dimension.
Therefore, softmax and categorical_crossentropy, sigmoid and binary_crossentropy are per-
formed as a combination. It can be seen from Table 1 that the accuracy of the combination
of softmax and categorical_crossentrop is 100%, while the accuracy of the combination
of sigmoid and binary_crossentropy is 98%. The accuracy difference between the two
is small because the classification functions and loss functions are used for classification
tasks. For the two classification tasks, the loss functions of categorical_crossentropy and
binary_crossentropy are almost the same. However, since the derivatives on both sides of
the sigmoid function gradually approach 0, it is easy to cause the gradient to disappear,
while the softmax function avoids the disappearance of the gradient by introducing an
exponential function. Therefore, the accuracy of the combination of softmax and categori-
cal_crossentrop is higher. When using the SGD optimizer, the gradient update is frequent,
which causes the loss function to highly oscillate and eventually stay at the local mini-
mum or saddle point, resulting in an accuracy decrease. The RMSProp optimizer adds
a second-order momentum on the basis of SGD, and uses the window sliding weighted
average to calculate the second-order momentum, which solves the problems of local
minimums and saddle points. The Adam optimizer integrates the first-order momentum
of SGD and the second-order momentum of RMSProp. The first-order momentum can
reduce the parameter update speed, which reduces the shock. When the gradient direction
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is the same, it can accelerate the parameter update, which accelerates the convergence.
The second-order momentum can solve the problems of local minimum and saddle point.
The Adam optimizer integrates the advantages of first-order momentum and second-order
momentum, and has a strong robustness to the selection of hyperparameters. Therefore, it
has a higher accuracy rate.

In summary, in order to train the model, we choose the hyperparameter combination
at epoch 100, a batch_size of 32, the softmax classifier, the categorical crossentropy loss
function, and the Adam optimizer.

4.1.2. Analysis of Related Parameters of GBM Algorithm

In the GBM algorithm, n_estimators defines the number of decision trees that need to
be used, max_depth defines the maximum depth of the tree, min_samples_leaf defines the
minimum number of samples required for the end node in the tree, min_samples_split de-
fines the minimum number of samples that a node in the tree needs to split, and max_features
defines the number of features used for classification. The appropriate choice of these pa-
rameters is to prevent the model from overfitting, and the choice of these hyperparameters
is a variable determined by experience and the effect of the validation set on the model.
Among them, n_estimators, max_depth, min_samples_leaf, and max_features are set to
a large value, which is easy to overfit, and a small set of min_samples_split is easy to
overfit. Therefore, after adjusting the parameters, we obtain an accuracy of different values,
as shown in Table 2. In addition, subsample is the ratio of the subsamples used to train each
decision tree to the total samples; setting its value smaller than 1 can make the model more
stable. According to experience, it is generally set to 0.8, and after parameter debugging,
we achieve a higher accuracy when the subsample is 0.7.

Table 2. The accuracy of GBM model parameters and related functions.

SNR = −10 dB Accuracy

n_estimators 100 0.32
120 0.35

max_depth 5 0.30
7 0.35

min_samples_leaf 50 0.29
60 0.35

min_samples_split 100 0.27
130 0.35

max_features 5 0.34
9 0.35

subsample 0.7 0.35
0.8 0.28

In summary, we choose the parameter combination of n_estimators as 120, max_depth
as 7, min_samples_leaf as 60, min_samples_split as 130, max_features as 9, and subsample
as 0.7 to train the GBM model.

4.1.3. Analysis of Related Parameters of RF Algorithm

In the RF algorithm, n_estimators defines the maximum number of weak learners,
where, if its value is small, it easily leads to under-fitting, and, if its value is large, will lead to
too much calculation. After the value of n_estimators reaches a certain number, the model
improvement obtained by increasing n_estimators will be very small, so we generally
choose a moderate value, which defaults to 100. However, after debugging parameters, we
see that when n_estimators is 144, the model has high accuracy, and max_depth defines the
maximum depth of the decision tree, which is usually 10–100. Generally, when the amount
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of data is small, there is no limit to its depth. However, our total data are (2000 × 100),
(2000 × 400) and (2000 × 1600), and their size is moderate, so we set it to 20 through
debugging, as shown in Table 3. In addition, random_state is a random seed that generates
a random number every time; random seeds are very important for parameter adjustment
processes, and if we use different random seeds every time, even if the parameter values are
unchanged, the results will be different every time, which is not conducive to comparing the
results of different models. Therefore, we set it to 0 here to ensure that, when random_state
is 0, training the model with the same parameter values will return the same results.

In summary, we choose the parameter combination of n_estimators as 144, max_depth
as 20 and random_state as 0 to train the RF model.

Table 3. The accuracy of RF model parameters and related functions.

SNR = −10 dB Accuracy

n_estimators 120 0.36
144 0.40

max_depth 10 0.37
20 0.40

random_state 0 0.40
5 0.33

4.1.4. Analysis of Related Parameters of SVM Algorithm

In the SVM algorithm, the values of hyperparameter penalty factor C and kernel
function coefficient gamma are 10−8–108, where C represents the penalty coefficient of the
model for errors, and gamma reflects the distribution of data mapped to high-dimensional
feature space. Generally, the values of C and gamma are between 0.1–10, then, according
to the performance of the model, we multiply them by 0.1 or 10 every time as a step size
to determine the approximate range, and then refine the search interval to determine the
final value. Through this debugging step, we finally determined that C is 0.5 and gamma is
0.8. In addition, because we are studying nonlinear problems, we use kernel functions to
transform nonlinear problems into linear problems, in which poly is a polynomial kernel
function which can map data from low-dimensional space to high-dimensional space,
but there are many parameters and a large amount of computation. RBF is a Gaussian
kernel function that can map samples to high-dimensional space, but compared with the
polynomial kernel function, it requires fewer parameters, and it can be seen from Table 4
that the RBF kernel function has higher performance, so we chose to use the RBF kernel
function. The degree and cafe0 parameters are only valid for poly kernel function, where
degree denotes the highest degree of the polynomial, and cafe0 denotes the constant value
of polynomial kernel function.

In summary, we choose a combination of parameters with C as 0.5, gamma as 0.8, and
kernel function RBF to train the SVM model.
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Table 4. The accuracy of SVM model parameters and related functions.

SNR = −10 dB Accuracy

Kernel_function Poly 0.31
RBF 0.35

C 0.5 0.35
1 0.28

gamma 0.8 0.38
1 0.35

degree 2 0.33
3 0.31

Cafe0 0.5 0.27
1 0.30

4.2. Structural Analysis of CM-LSTM Model

In order to have a clearer understanding of the chosen algorithm, its structure is
presented in Table 5, where the parameters corresponding to each layer, the total number of
parameters and the number of training parameters, are detailed. Among them, the LSTM
layer performs feature extraction on the input data, while the batch_normalization layer
normalizes the output of the previous layer, which can speed up the training and network
convergence, control the gradient explosion, prevent the gradient from disappearing and
efficiently prevent overfitting. The dense layer undergoes nonlinear changes to the previ-
ously extracted features, extracts the associations between these features, and maps them
to the output space. Since the problem we are studying is binary classification, it can be
seen from Table 5 that the final output shape of the model is 2. In addition, the number of
training parameters of the chosen algorithm is of 947,586 bits, which is less than 5 Mb. It
can also be seen that the training parameters occupy a small amount of memory and the
equipment requirements are low, thus the chosen algorithm does not require expensive
equipment, which also increases its feasibility.

Table 5. CM-LSTM model structure and corresponding training parameters.

Layer(Type) Output Shape Param

lstm_1(LSTM) (None, 1, 128 ) 885,248

batch_normalization_1 (Batch (None, 1, 128)) 512

lstm_2(LSTM) (None, 1, 64) 49,408

batch_normalization_2 (Batch (None, 1, 64)) 256

lstm_3(LSTM) (None, 1, 32) 12,416

batch_normalization_3 (Batch(None, 1, 32)) 128

dense_1(Dense) (None, 2)) 66

Total parameters: 948,034
Trainable parameters: 947,586
Non-trainable parameters: 448

4.3. Comparison of the CM-LSTM, GBM, RF, SVM, and ED Algorithms

The spectrum-sensing models based on GBM, RF, SVM, ED, and CM-LSTM were
simulated, and we compared the accuracy of the five models under different SNR and
analyzed the influence of the number of different array element antennas on the accuracy
of the four models. The parameter settings of all the algorithms are presented in Table 6.

In order to evaluate the performance of the chosen algorithm, at 40 antennas, the ac-
curacy of the five algorithms of GBM, RF, SVM, ED, and CM-LSTM under different SNR
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is compared, as shown in Figure 3. It can be clearly seen that, in the case of low SNR and
high SNR, the accuracy of the spectrum-sensing algorithm based on CM-LSTM used in
this paper is better than that of GBM, RF, SVM, and ED algorithms. This is more obvious
at low SNR. When the SNR is −10 dB, the accuracy of the CM-LSTM algorithm can reach
100%, while GBM and SVM are only 35%, RF is 40%, and ED is 38%. This is because
the CM-LSTM spectrum-sensing algorithm can simultaneously extract the spatial cross-
correlation features of multiple signals received by the antenna array and the temporal
autocorrelation features of each signal compared with the other four algorithms, thus
having a higher accuracy.

Table 6. GBM, RF, SVM, and CM-LSTM model parameter settings.

Models Adjusted Parameters Value

GBM

max_depth 7
max_features 9
n_estimators 120

min_samples_leaf 60
min_samples_split 130

subsample 0.7

RF
max_depth 20

random_state 0
n_estimators 144

SVM

Kernel function RBF
C 0.5

gamma 0.8
degree 3
coef0 1

CM-LSTM

Epoch 100
Batch_size 32

Classier softmax
Loss function categorical_crossentropy

Optimizer Adam

Figure 3. Obtained accuracy with different SNR.
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In order to further evaluate the performance of the chosen algorithm, when the SNR
is −10 dB, the five algorithms of GBM, RF, SVM, ED, and CM-LSTM are simulated with
different numbers of antennas (cf. Figure 4). It can be seen that the accuracy variation of
all the algorithms has the same law. The amount of received signal data increases with
the increase in the number of antennas. The model can perform feature extraction on
more signal and noise information, making the difference in features between signal and
noise more significant, thus the model has a higher accuracy rate. Moreover, the CM-
LSTM algorithm has higher accuracy than GBM, RF, SVM, and ED for different numbers
of antennas.

Figure 4. Accuracyof the different algorithms as a function of the number of antennas, for an SNR of
−10 dB.

5. Conclusions

This paper uses machine-learning technology to study the spectrum-sensing problem
as a classification problem. A CM-LSTM spectrum-sensing algorithm is studied. The algo-
rithm can extract not only the spatial cross-correlation features of multiple signals received
by the antenna array, but also the temporal autocorrelation features of single signals, which
significantly improves the performance of spectrum sensing. Through simulation verifica-
tion, the parameter combination that makes the CM-LSTM spectrum-sensing algorithm
the most accurate is obtained. Finally, the CM-LSTM-based spectrum-sensing algorithm
is compared with GBM-, RF-, SVM-, and ED-based spectrum-sensing algorithms, and the
simulation analysis shows that this algorithm has better performance with different SNR
and different numbers of SUs.
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