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Introduction

The three-dimensional (3D) freehand ultrasound (US) technique 
involves the determination of positions and orientations of 
real-time US images in a 3D space. This technique transforms 
a conventional US into an advanced US that could determine 
the position of the scanned objects. In medical application, 
sweeping the 3D freehand US over the anatomy reconstructs 
the 3D volume of the anatomy.[1-3] This technique provides an 
advantage over the conventional 3D US for the unlimited range 
of reconstruction. Furthermore, the conventional US-guided 
intraoperative surgery, which surgeons perform surgery based 
on US image visualizing, could be enhanced by determining 
the real-time location of a cancer lesion or an organ of interest 
with respect to surgical tools.[4-6]

If one wants the US to provide positioning a scanned object 
accurately, an US calibration process must be performed. The 

real-time positions and orientations of the US probe in 3D are 
determined by a tracking device. A tracking sensor is attached 
on the outer body of the US probe so that the tracking device 
could read the position of the sensor moving with the probe. 
The conventional US probes are attached with a tracking sensor 
so that the motion of the probe is known in real time. The US 
calibration process finds the rigid transformation relating the 
attached sensor to the US image. This rigid transformation 
is varied depending on the US probe of choice and the 
location where the sensor attached on the probe. The US 
calibration involves matching the US images with the known 
corresponding position in space. The calibrating structure with 
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known geometry is called US calibration phantom. Figure 1 
shows the relationship of spatial transformations in the US 
calibration process which can be expressed as:

X T T TSXPh W
Ph

Pr
W

Im
Pr

Im= � � � � (1)

where XPh = [x,y,z,1]T and XIm = [u,v,0,1]T are the 4 × 1 position 
vectors of the corresponding point sets in the phantom frame 
and image frame, respectively. A

B T�  is the 4 × 4 matrix 
combining the rotation and translation of frame A which refers 
to frame B. W

Ph T� is the transformation to determine the position 
and orientation of the tracking device which refers to the 
calibrated phantom estimated using a spatial localizer or a 
tracking sensor. Pr

W T�  is the transformation between the 
tracking sensor on the US probe and the tracking device. Im

Pr T�  
is the transformation between US images and the sensor on 
the probe. S is a 4 × 4 scale matrix.

During the calibration process, the tracked probe scans the US 
calibration phantom to capture the feature of the phantom 
display in US images, while the tracking device reads the 
corresponding transformation matrices: W

Ph T�  and Pr
W T� . The 

algorithm behind US calibration involves (1) extraction the 
point set displayed in US images: X Im , and matching to the 
corresponding phantom geometry: XPh , and (2) estimation of 

Im
Pr T� and S according to Equation 1.

Most state-of-the-art US calibrations focus on the accuracy of 
the technique regardless of the contribution of other factors 
to its efficiency. Practical US calibration requires the ability 
to perform intraoperatively. Chen et al.[7] addressed that the 
sterilization protocols might require US recalibration inside 
the operation room. During surgery, the surgeon might need 
to validate and recalibrate the accuracy of the freehand US. 
Therefore, the practical US calibration needs to be fast, 
automatic, and accurate, for the use intraoperatively. As per 
our literature review, we barely found any study in which 
high accuracy and fast and automatic functionality were 
simultaneously achieved in the US calibration. The choice of 
the US calibration phantom used in the calibration procedure 

is thought to be one of the pivotal factors responsible for 
achieving efficiency in the process.

Several US calibration phantom designs have been proposed 
in the last two decades each with particular benefits.[8] The 
point phantom, cross-wire phantom, and plane-type phantom 
are known to provide insufficient dimensionality to state a 
corresponding 3D position of a phantom in a single scan. As 
a result, these phantoms require a number of input US images 
and the corresponding tracking data to iteratively define Im

Pr T�
and S. On the other hand, the N-fiducial phantom (sometimes 
called Z-fiducial phantom)[7,9-14] is one of the few phantom 
designs that provide full XPh at a single scan. It used the 
construction of three wires oriented in a plane to form an N 
shape or Z shape. The intersection of the N-fiducial 
(three wires) with the scan plane determines one 3D position 
where the scan plane intersects the fiducial (mathematical 
explanations are in the next section). Whenever at least three 
noncollinear N-fiducials were intersected within a scan plane, 
the position and orientation of that plane in space could be 
determined. In other words, at least three noncollinear XPh in 
a single frame was considered sufficient to solve the least 
square problem in Equation 1 for the frame transformations, 
Im
Ph T� and S. Compared to other designs of the phantom that 
provide single-frame capability such as 2D alignment 
phantom,[15] the N-fiducial phantom is more widely used due 
to the robustness of precise fabrication and convenience of 
use.[8]

In theory, calibration using N-fiducial phantoms could be fast, 
demanding only one-frame input image and using a 
(noniterative) closed-form solution[16-18] to solve for Im

Pr T� and 
S. However, the main drawback of using this phantom is a 
time-consuming process of extracting the feature of the 
phantom from the US images.[14]

Since at least three noncollinear points are required to 
determine a plane, multiple N-fiducials are placed in an 
unpatterned (noncollinear) multitude of designs. Hsu et al. 
pointed out that the main drawback of using this phantom 
is the difficulty to segment pixels that represent wire-plane 
intersection in the US images.[14] First of all, the unpatterned 
multiple N-fiducials appear as scattered dots in a US image 
which is difficult to be distinguished from the background 
speckle noise, signal artifact, or floating debris in the US 
medium. Second, an individual wire does not appear as a single 
dot or disc in the US scans as expected. Ameri et al.[19] have 
demonstrated that a US scan of a rope or a rod-like component 
(as in the N-fiducial phantom) would produce various patterns 
of US hyperechoic noise including widespread or blurred. 
This not only compounds the segmentation difficulty but also 
introduces the inaccuracy to identify them.

Several works have expressed the need for performing the 
extraction manually.[9-11,20] The manual extraction process is 
tedious and time-consuming, making the technique unlikely 
to be used in the operating room. According to Ameri et al.,[19] 
the effect of US hyperechoic noise could result in local bias 

Figure 1: Frame of motion and the relation between each frame in 
ultrasound calibration
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in the signal such that distorted displayed features. In such a 
case, manual extraction is considered an inaccurate extraction 
method since it relies on the intensity display in the image.

Lindseth et al.[11] and Hsu et al.[14] have successfully 
automatized the segmentation of images from an N-fiducial 
phantom given a predefined searching region. Their approaches 
do require manual identification of either the searching window 
or determination of the default scaling parameters. However, 
the accuracy of the extracted data has not been evaluated 
qualitatively. The concern on the effect of signal distortion 
has not been accounted or discussed.

The sophisticated approaches for automatic extraction 
include modifying the phantom so that the scan images 
display some linear patterns that could be picked up by the 
algorithmic image processing. Several attempts have been 
made in the recent past to align multiple N-fiducials in an 
obvious pattern. Comeau et al.[9] proposed a design where 
three N-fiducials form a floor and two parallel side walls of 
a rectangular box that, in the scan, appear as dots forming 
corners of a rectangle. Although the design could easily be 
segmented, it lacks a repetitive pattern which enables one to 
recognize and correct the distortion of an individual dot. Plus 
toolkit[21] suggested the N-fiducial phantom design where the 
equivalent-sized fiducials were flipped left to right layer by 
layer. Świa̧tek-Najwer et al.[22] and Rao et al.[23] also calibrated 
a US probe on a phantom with a similar concept to Plus toolkit. 
The lateral strands of all fiducials were vertically co-aligned 
such that two parallel and straight dotted lines visible in scan 
images served as the landmark for detection. Nevertheless, 
these patterns constraint only on the lateral strands but not on 
the middle strands. The distortion of the middle strands could 
remain unrecognized.

A different approach includes constraining the extracted 
positions in three dimensions. Knowing the collinearity in 
2D space constraints is insufficient. Chen et al.[7] added the 
fiducial registration error (FRE) of the estimated N-fiducial 
in 3D space as feedback to iteratively exclude unwanted data 
in the next stage. The algorithm extracts US images in two 
phases: faster in the first extraction phase and then slowed 
down in the FRE iterative feedback phase (with an average 
of 12.5 s per calibration trial). Even though Chen’s extraction 
has the 3D constraint, the iterative feedback method requires a 
lot of execution time and a large amount of input data without 
guarantee of convergence. This is in contrast to the benefits 
of N-fiducial designs which are capable of single-frame 
calibration.

Other than the automatic extraction, the step of computing the 
calibration results, Im

Ph T� and S, is accounted for fast and 
accurate calibration. Most research on US calibration used the 
iterative methods to minimize FRE of the calibration results. 
The iterative methods could determine the calibration in high 
accuracy with noise-contaminated data. The drawback of the 
methods is that it requires a large number of US image 
extracted data, uses a relatively high amount of time, and 

generally could not guarantee of the true minimization. The 
different method is using a closed-form solution to compute 
the calibration results. Pagoulatos et al.[10] used the closed-form 
solution based on singular value decomposition (SVD)[16] to 
calculate the calibration results and achieved lower accuracy 
compared to the iterative method. Boctor et al.[17] used the 
closed-form solution based on robot hand–eye calibration to 
determine the transformation between two moves of the probe 
using only two corresponding frames. Boctor et al. only 
presented the preliminary evaluation and effectiveness. The 
calibration involving the N-fiducial phantom with a closed-
form solution has yet to achieve high accuracy with few US 
frame. The low accuracy could result from the limitation of 
the closed-form solutions which inaccuracy occurs with noise-
contaminated input data.

As per our literature review, we barely found any study in 
which high accuracy and fast and automatic functionality were 
simultaneously achieved in the US calibration. The aforesaid 
automatic extraction method[7,11,14] relies on semiautomatic 
approaches and iterative methods for calibration to achieve 
high-accuracy results. The calibration using the closed-form 
solutions was never performed by data taken from automatic 
extraction and evaluated with clear verification.

The objective of our research was to develop an automatic US 
calibration process by proposing a phantom design and the 
corresponding automatic extraction algorithm. The phantom and 
the algorithm should extract precise data so that the closed-form 
solution[16] can accurately estimate the transformation matrix. The 
proposed phantom design is based on N-fiducial phantom. The 
phantom provides recognizable features on a US image while 
still retaining the noncollinearity of multiple N-fiducials. The 
automatic extraction algorithm corresponding to this design was 
proposed based on the Random Sample Consensus (RANSAC)[24] 

model estimation. The constraints in both 2D and 3D positions 
are considered in the model. Thus, it should better extract the 
precise positions than the mentioned algorithms[7,21] which only 
2D constraints are used. The efficiencies of the proposed phantom 
design and the automatic extraction were evaluated based on the 
accuracy of the extraction itself and the accuracy of the overall 
calibration using the same closed-form method.

Materials and Methods

Phantom design
The N-fiducial phantom used the geometrical relation of at 
least three noncollinear N-fiducials to position the US scanning 
plane, using the intersection of the plane with the fiducial. 
For one N-fiducial, the US scan plane intersects the fiducial 
at three points, Pr, Pm, and Pl, as illustrated in Figure 2a and b.

The 2D vectors, i.e., Pr, Pm, and Pl, represented the corresponding 
points in the US image frame reference. The position vector 
of the point where the plane intersected with the middle strand, 
i.e., P x y zm m m m

T= [ ], , ,1 , was determined by the distance ratio 
between Pr, Pm, and Pl:
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x x rWm a= + � (2)

y y rHm a= + � (3)

z zm a= � (4)

where W and H were the width and height, respectively, of an 
N-shape fiducial. x and y were the vectors of directions along 
the width and height, respectively. z was the vector with the 
vertical direction. r was the scalar ratio of the distance between 

Pr and Pm and the distance between Pr and Pl, i.e., r
p p
p p
l m

l r

=
−
−

To attain single-frame calibration, at least three noncollinear 
Pm needs to be identified in the same US scan to determine 
a transformation of 6 degrees of freedom. The n numbers 
of fiducials scanned in the same US image frame were 
considered; the point sets {Pm,j}; j = 1,2…, n were the 
intersection points of the middle strand of the jth N-fiducials 
with a scan plane. Note that the 3D position vectors of these 
point sets were linearly independent (noncollinear) if the 
matrix formed with these vectors as row vectors had at least 
a rank of 3.

Most studies varied xa,j or za,j arbitrarily among the set of points 
and kept Hj and Wj constants so that the point set {Pm,j} was 
noncollinear [Figure 3a]. As a consequence, none of the sets of 
{Pl,j}, {Pm,j}, and {Pr,j} were seen as collinear in the scanning 
plane and made extraction difficult [Figure 3b]. In our proposed 
design [Figure 3c], Hj was arbitrary while xa,j was kept linearly 
dependent. Since xa,j indicated the position of the left strand 
and Hj was constant, the left and right strands of multiple 
N-fiducials formed two parallel planes. Thus, {Pl,j} and {Pr,j} 
formed two dotted lines in the scanning plane. The lines were 
easily recognizable and established the lateral boundary of 
{Pm,j}, as depicted in Figure 3d.

Considering an individual N-fiducial’s height along with the 
constant width (or linear change of width), all the N-fiducials 
are arranged in a linear pattern avoiding the co-alignment 
of all middle wires. For the prototype design in this article, 
the heights of N-fiducials were varied while the widths were 
constant.

Figure 4 shows the prototype made of two laser-cut acrylic 
plates for the front and back sides (90 mm × 70 mm × 5 mm) 
and two side plates (100 mm × 70 mm × 5 mm). The assembly 
of four plates formed an open-ended box of dimensions 
(110 mm × 90 mm × 70 mm). The front and back plates had 
15 holes with diameter 1 mm, laser cutting corresponding to 
5 N-fiducials stacked in the vertical direction. The front plate 
had an extension part for attaching a tracking sensor. It ensured 
that the origins of every fiducial (where its left strand and 
middle strand intersect) coincided in the x–y plane [Figure 2] 
and were placed outside of the box.

Automatic extraction algorithm
RANSAC[24] is a method used to estimate the parameters of 
a certain model from a set of data contaminated by a large 

amount of outlier data. In the input US images, the extracted 
dots from the image processing technique may contain the 
outlier dots generated by an US echo shadow or floating debris 
up to 20% of the data. RANSAC was used to exclude the 
outliers and estimate the parameters of two models: one is the 
2D model entitled by the pattern of N-fiducial alignment and 
another is the 3D plane, knowing that the scanning features are 
the results of the scanning plane intersection with the phantom.

First, thresholding and morphological operations were applied 
to US images. Then, RANSAC was used to estimate the 
parameters of the models. Figure 5a depicts the feature point 
sets (displayed as red dots) extracted from an example input US 
image where RANSAC was used to estimate five parameters 
of the model of a palette of evenly spaced rectangles: α, δ1, 
δ2, δ3, and δ4. The equations to define the model were based 
on the basic equation of 2D lines as follow: 

Figure 3: Comparison between the convention N-fiducial phantom 
(a and b) design and our design with N- fiducial arrangement (c and d)

dc

ba

Figure 4: The prototype of our phantom design (a) Top view 
and (b) close-up view showing the arrangement of 5 N-fiducials

ba

Figure 2: The N-fiducial in the phantom. (a) Top view of an N-fiducial 
phantom that contains only one N-fiducial and (b) the relation of an 
N-fiducial intersects with the ultrasound scan plane

ba
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two parallel lateral lines:

− + + =−α δ1

1
0x y � (5)

and − + + =−α δ1

2
0x y � (6)

five horizontal lines:

α δ δx y j j n+ + + − = ∈[ ]3 4
1 0 1( ) , , � (7)

where n is the number of N-fiducials stacked vertically in the 
design. α, δ1, δ2, δ3, and δ4 are the parameters in the equation 
of lines.

With each estimation of the 2D model, the point sets were then 
categorized into three groups (the left strands, the right strands, 
and the middle strands) and assigned to each orthogonal 
line, such that Pl,j, Pm,j, and Pr,j are points in the US image 
representing the left, middle, and right strands of jth N-fiducial, 
respectively. The assignment of the point set was defined using 
distance matrices.

For the next stage, the left and right strand 2D points, Pl,j and 
Pr,j, were replaced by the points, p l j'

,
 and p r j'

,
, that defines 

the intersection in the palette (intersection between Equation 
7 and Equations 5-6). p l j'

,
 and p r j'

,
could be thought of as 

the projection of the points onto the estimated model.

p
j j

l j'
( )

,
( )

,

δ δ δ α
α

δ δ α δ
α

1 3 4

2
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2

1

2

1

1
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1

− − −( )
+

+ − +
+







� (8)

p
j j

r j'
( )

,
( )

,

δ δ δ α
α

δ δ α δ
α

2 3 4

2
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2

2

2

1

1

1

1

− − −( )
+

+ − +
+







� (9)

and the point representing the middle strand, q u vm j, ,
0 0( ) , was 

replaced by p m j'
,

, its orthogonal projection on the 
corresponding jth horizontal line (Equation 7), as follows:

p

a j v u
a

a v au j
a

m j'

( )
,

( )
,

 

 

3 4 0 0

2

2

0 0 3 4

2

1

1

1

1

+ − +( ) +
−

+ + + −
−

















 � (10)

where j n∈ −[ , ]0 1 Then, each set of p r j'
,

 and p l j'
,

 was used 
to estimate a 3D point set Pm j,  using Equations 2-4, as shown 
in red dots in Figure 5b.

RANSAC was again used to estimate three parameters 
representing the scanning plane in 3D space from Pm point set,

Estimated plane equation:

ax by cz d+ + + = 0 � (11)

and the 3D point representing the middle strand, P x y zm j, , ,
0 0 0( ) , 

was replaced by P m j'
,

, the orthogonal projection of Pm,j on the 
estimated plane where

P

x a
ax by cz d
a b c

y b
ax by cz d
a b c

z

m j'

,

,
,

0

0 0 0

2 2 2

0

0 0 0

2 2 2

−
+ + +
+ +
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+ +

00
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−
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
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
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

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










c

ax by cz d
a b c

� (12)

The estimations of both models are continued in an iterative 
fashion where the summation of the estimated error is 
calculated to verify if both the estimated models are true.

On reaching the termination criterion of RANSAC, XPh and 
X I m  w e r e  d e f i n e d  a s  X P PPh m m= { }' ,..., '

, ,1 5
a n d 

X p pIm m m= { }' ,..., '
, ,1 5

. XPh and XIm were substituted into 

Equation 1 such that Im
Pr T�  and S can be determined via the 

calibration method.

Calibration method
To calculate the 4 × 4 matrix Im

Pr T� , the closed-form solution 
for mapping two 3D point sets using the SVD given by Arun 
et al.[16] was used. The two-point sets were XPh and XIm acquired 
from the last section. The closed-form solution is described 
using the SVD of the point sets’ covariance matrix to determine 
the 3 × 3 rotation matrix Im

Ph R�  and the 3 × 1 position vector 

� �
Ph

Imt between the two sets. Although most of the closed-form 
solutions[16-18] have a drawback in determining nonuniform 
scaling on US images, several US calibration works overlooked 
the issue and acquired decent efficiency.[10,11,25-27]

The rotation, translation, and scale factors were derived 
as follows. Given K the covariance matrix of ˆ

PhX and 
ˆ

ImX  which are normalized and about their centroids, 

( )( ), ,
1

ˆ ˆ
N T

Ph i Im i
i

K X X
=

= ∑ , SVD of K was calculated by the 

following formula:

K U VT= Λ � (13)
The rotation matrix Im

Ph R�  was determined by

Im
Ph TR UDV� = � (14)

Figure 5: Two estimated models for the Random Sample Consensus 
algorithm (a) the two-dimensional model where red dots represent the 
position of the data extracted via initial image processing technique 
and (b) the three-dimensional plane model where red dots represent 
three-dimensional positions from N shape geometry

ba
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where

D
I i U d V
diag i U d V

=
( ) ( ) =

… −( ) ( ) ( ) = −




fdet et

fdet et

1

1 1 1 1 1, , , ,

The translation between the two sets was

� �� �Ph
Im

Ph
Im Im Pht R X X= + � (15)

where X Im  and XPh  are the centroids of X Im  and XPh , 
respectively.

Acquiring Im
Ph R�  and � �

Ph
Imt gives Ph IT m  according to the 

following equation:

Ph
Im

I I
Ph Ph

T
R t

=



















m m

0 0 0 1

� (16)

� �
Pr

ImT  was identified by solving the equation,

PrT T T TIm
W

Pr
Ph

W
Ph

Im= ⋅ ⋅− −( ) ( )1 1 � (17)

The scalar factor λ where S = λI is estimated according to 
Dosse and Ten Berge[28] as:

( )
2ˆ

Im

tr
X


Λ

= � (18)

Acquisition system
The acquisition system consisted of a US scanner (iU22 
xMatrix Ultrasound system, L12-5/50mm Linear Probe), 
an optical tracking system (Polaris Vicra®, Northern Digital 
Inc., Canada), a 2.40 GHz, Intel(R) Core(TM) i5 CPU 
computer with MATLAB 2017 (The MathWorks, Inc., Natick, 
Massachusetts, United States) image acquisition through a 
frame grabber, and our developed US calibration phantom. The 
optical tracking system was composed of a tracking camera, 

which was the world coordinate reference throughout the 
study. One tracking sensor was also attached to the phantom, 
and another sensor was attached to the US probe. The overall 
scenario of the experiment is shown in Figure 6a-c.

A linear probe at 40-mm scanning depth was calibrated and 
evaluated in this study. During the calibration, the calibration 
phantom and two evaluation phantoms were filled with 
cooking gelatin and distilled water at a ratio of 1:5 (w/v). The 
ratio was previously calibrated for isotropic scaling in the US 
image acquired from the probe. With the default US machine 
correctness of resolution, the gelatin solution should provide 
a sound speed of approximately 1540 m/s.

Evaluations
Simulation result
Fifty scanning planes were simulated giving the corresponding 
3D coplanar point set, where the N-fiducials intersect with 
the plane. The 3D coplanar points were then transformed into 
the 2D image frame giving a random homogeneous scale: 
λ ∈ [0.5, 1]. Note that we synthesized the position data and 
inputted them to RANSAC extraction directly. The isotropic 
Gaussian noise with zero mean and variance (σ ∈ [0, 10]) 
was added to distort the 2D simulated data. Twenty percent of 
outliers were randomly added to contaminate the data. For each 
noise variance, the 2D data were extracted with the automatic 
RANSAC algorithm, and the calibration matrixes with the 
SVD solutions were calculated. The following were evaluated:
1.	 The reduction in noise variance after extraction
2.	 Errors in rotation estimation using extracted data. The 

deviation from the identity matrix[29] to measure the 
relative error between the estimated rotation matrix and 
the synthetic one was evaluated. Let R̂  be the synthetic 
rotation matrix while R being the estimated rotation 
matrix. 1ˆ

FI RR −= −‖ ‖ . is the relative error between the 
true rotation and the estimated rotation. F•‖‖  denotes the 
Frobenius norm of the matrix.

3.	 Errors in translation estimation using extracted data
4.	 Errors in scale estimation using extracted data

Figure 6: Experiment setup (a) experimental scenario, (b) probe’s sensor attachment and breast phantom, (c) ultrasound calibration phantom, and 
(d) A series of ultrasound image displaying a target lesions
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(2) to (4) were compared to the results using the data without 
model estimation.

Real data
The automatic extraction algorithm is evaluated by its ability of 
the algorithm to extract the features in US images accurately. 
Since the true locations of the feature were unknown, the 
current extraction ground was the extraction by humans. Five 
operators extracted the same set of 10 random US images. 
The extraction procedure included identifying the location of 
the dots with reference to the fiducials. The accuracy of the 
automatic extraction algorithms was validated using RMS 
errors between the locations extracted by the algorithm and by 
humans. On the other hand, the precision was measured using 
the standard deviation of the extracted features and compared 
between the algorithm and the manual method.

The data extracted by the proposed algorithm were used 
to determine the calibration results and compared with the 
manually extracted data. The accuracy of the calibration results 
was tested with a cross-wire phantom where the center of the 
cross was the verifying position. A tracking sensor was attached 
to the cross-wire phantom, and the tracking pointer was used 
to localize the related phantom geometry. The accuracy was 
evaluated by ensuring whether the 3D freehand US using 
results from calibration could localize the position where two 
wires crossed with respect to the tracker.

The precision of the calibration was verified using calibration 
reproducibility, which is the standard method to assess the 
precision.[30] Four corners of the US image and the center of 
the image were transformed into their 3D positions according 
to the tracker usage,

  m, m
1

1   
N

Ph Ph
I i I

i
CR X T SX

N =

= −∑‖ ‖� (19)

Other than point accuracy, the reconstruction accuracy was 
also taken into account. A half-sphere phantom made of gelatin 
was used as a test phantom to evaluate the US reconstruction. 
Five rubber balls embedded within the gelatin [Figure 7a] were 
used as the scan targets.

The balls were rigidly fixed to the plate and covered with a 
gelatinous medium with the ratio as described in the previous 
section. The operators used the freehand US to scan each 
knob until sufficient amounts of images were acquired. The 
US scans of the knob are shown in Figure 6d. The image and 
corresponding tracking data were recorded and calculated 
offline for reconstruction accuracy. The reconstruction accuracy 
for the sphere phantom was the estimate of reconstructed 
sphere diameter and the centroid location [Figure 7a and b].

Results

Simulation data
The simulated positions as mentioned previously were 
evaluated for the process with and without the model-based 
extraction algorithm at different noise levels. The ability of the 

extraction algorithm to reduce the noise in the data is shown in 
Figure 8a. The solid line represents the position data extracted 
by our RANSAC model. The noise contaminated in the data 
(σ input) decreases after the extraction (σ output). The dotted 
line represents the data without extraction which will be used 
as the baseline for the computation of calibration results. 

After the extraction, the output data were used to calculate 
the calibration result with the SVD closed-form solution. 
Figure 8b-d shows how the automatic extraction method 
could reduce errors in estimating the rotation, translation, 
and scale factors compared with the data contaminated by 
synthetic noise.

Experimental data
The extraction, precision, and accuracy are depicted in Table 1, 
where comparison was made between the automatic extraction 
and the manual extraction. The manual extraction was the 
ground truth for accuracy; therefore, no accuracy is provided 
for itself. After calculation with the SVD closed-form solution, 
the precision and accuracy of calibration results, with the 
amount of input in the US image, are shown in Figure 9a and b.

The overall precision and accuracy (root mean square error) 
report for the proposed automatic calibration is shown in 
Table 2.

The outcome of the reconstruction had the error of diameter 
estimation at 2.34%, resulting in 5.48% of volume estimation. 

Table 1: Comparison between the accuracies of automatic 
and manual extraction methods

Accuracy (pixel) Deviation (pixel)
Automatic extraction 2.34 0
Manual extraction ‑ 4.36

Table 2: The precision and accuracy of the proposed 
automatic calibration at a number of ultrasound image 
input  (n=3)

Precision (mm) at n=3 Accuracy (mm) at n=3
Automatic 
calibration

2.67 0.94

Figure 7: (a) The computer-aided design of the test phantom and (b) the 
reconstruction of ultrasound images acquired when scanning the test 
phantom
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The accuracy of estimating the reconstruction location was 
1.04 mm.

Discussion

The design of the arranged N-fiducial phantom facilitates 
automatic extraction by providing a specific pattern for the left 
and right lateral boundaries. This pattern could easily recognize 
and exclude outliers, which might have been produced from 
US speckle noise, dust, bubble, etc. The proposed conceptual 
design changes the height of the fiducials while retaining the 
width, thus creating the linear patterns in a US image. The 
design has advantages over Comeau et al.[9] since in that design 
only three points were used to define a line and local distortion 
could easily corrupt the estimation of the line. Furthermore, 
their designs are not space saving in forming a line from several 

dots and would be difficult to use in a limited field-of-view 
linear array probe. For Lasso et al.,[21] Świa̧tek-Najwer et al.,[22] 
Rao et al.’s[23] designs, and Plus toolkit,[21] the stack of same-
sized N-fiducials and mirrored fiducials would cause near 
linearity of point sets in the center of the design where it should 
be the most scanned area. The data acquired from that region 
would be rank deficient for estimating a transformation matrix. 
Our design places the origin of individual N-fiducials outside 
the phantom and interchanges the width of the N-fiducials. 
Therefore, nonlinearity in the phantom is guaranteed.

Using the proposed design with automatic extraction based 
on the RANSAC algorithm, the pattern provides a predictable 
model, both as a 2D model (array of rectangles) and a 3D plane 
model (scanning plane estimation). After the estimation of the 
model’s parameters from the input US image, the outlier of 
datasets such as those from shadow or debris was excluded and 
the projection of the inlier dots was used instead of using the 
intersection of line models. This constraint extraction process 
ensures that the distorted data and outlier data would have less 
effect on the accuracy of the calibration. This facilitates data 
recovery, thereby reducing the noise level to approximately 
22%, as shown in the results obtained from the simulation 
technique.

The projection of the point set in the estimated plane was ideal 
for estimating the transformation matrix. Carbajal et al.[31] 

reported similar improved outcomes using the projection 
data (in-plane error) instead of using raw data as the input of 
optimization for the transformation matrix.

Figure 8: The ability of the extraction algorithm to withstand the noised data. (a) The reduction of noise after extraction, (b) the ability to estimate the 
rotation matrix, (c) the ability to estimate the scale factor, and (d) the ability to estimate the translation

dc

ba

Figure 9: Precision (a) and accuracy as verified by the cross-wire 
phantom (b) of the algorithm versus the number of input scanned 
ultrasound images
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Chen’s extraction algorithm[7] relies on the FRE as feedback 
to exclude the outlier. The algorithm requires multiple input 
frames of an image to calculate the calibration result and then 
group the calibration results to exclude the outlier. As a result, 
the algorithm would use about 12.5 s per calibration and more 
than 60 s to accomplish the calibration of all US depth options. 
Plus toolkit[21] provides an automatic extraction algorithm for 
the designed N-fiducial phantom. Their algorithm uses the 
constraint of linearity for the lateral strand feature. To conserve 
the noncollinearity of the scanned data, the middle strands 
could not form a linear pattern in a US image. The algorithm 
of Plus toolkit has no constraint on the middle strands and 
could lead to extraction error. Our extraction, on the other 
hand, adds the 3D constraint (plane estimation) as the guide 
to extract the middle strands.

The automatic extraction technique and model-based extraction 
algorithm were devised using the new phantom design 
which introduced notable improvements in the rotational and 
translational components acquired from SVD closed-form 
solutions.[16] The automatic method not only reduced the time 
of manual extraction but also improved the overall calibration 
accuracy.

In summary, the automatic calibration technique discussed 
in this article has an accuracy of 0.94 mm and a precision of 
2.67 mm using three-image input. The first US image input 
delivered accuracy comparable with that of the other proposed 
methods. Carbajal et al.[31] achieved mean accuracy at 1.02 mm 
with the iterative method. Pagoulatos et al.[10] used the same 
closed-form solution for calibrating a phase-array probe and 
obtained 1.54-mm mean accuracy at 9-cm US depth.

Since temporal calibration was not performed in this study, 
the efficiency provided is not final. However, the results are 
promising, and the proposed method seems to have potential 
for automatic and real-time calibration.

In this proposed design, the middle wires can move more 
toward the lateral direction compared to the co-aligned 
N-fiducial’s strands. The SVD closed-form solutions[16] have 
the constraint of homogenous scaling in 2D data. The US 
machine could provide anisotropic scaling. Improved accuracy 
was achieved by the algorithm, which provided nonconstrained 
scale homogeneity. Further studies aimed at improving the 
design and optimizing the calibration techniques for easier 
automatic extraction are currently in progress.

Note that the evaluation of probes other than linear array probe 
was not performed in this article since it is out of the focus of 
our aimed application. As a result, our prototype is designed 
to be suitable for small field-of-view probes and fit practical 
calibration with probe depth selection. However, there are two 
main concepts proposed in this article: first, alternative ways 
to align the multiple N-fiducials while changing either width, 
height, or shifting the placement of individual N-fiducial, and 
second, the RANSAC model estimation to fit both 2D designated 
patterns and 3D planar alignment of the scanned point set.

Conclusions

In this study, we have proposed a new design of the N-fiducial 
phantom and a corresponding extraction algorithm which 
facilitates an automatic and fast US calibration. Varying sizes 
of N-fiducials were used in this design so that, in US scan, 
they align in an obvious pattern for detection algorithms. The 
corresponding model-based automatic extraction algorithm 
was also developed to accurately extract the feature of the 
phantom in US images. The proposed design and algorithm 
enable automatic calibration with N-fiducial phantom with 
significant efficiency.
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