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The RNA component of mitochondrial RNA-processing endoribonuclease (RMRP) was
recently shown to play a role in cancer development. However, the function and
mechanism of RMRP during cancer progression remain incompletely understood. Here,
we report that RMRP is amplified and highly expressed in various malignant cancers,
and the high level of RMRP is significantly associated with their poor prognosis, including
breast cancer. Consistent with this, ectopic RMRP promotes proliferation and migration
of TP53-mutated breast cancer cells, whereas depletion of RMRP leads to inhibition of
their proliferation and migration. RNA-seq analysis reveals AKT as a downstream target
of RMRP. Interestingly, RMRP indirectly elevates AKT expression by preventing AKT
mRNA from miR-206-mediated targeting via a competitive sequestering mechanism.
Remarkably, RMRP endorses breast cancer progression in an AKT-dependent fashion,
as knockdown of AKT completely abolishes RMRP-induced cancer cell growth and
migration. Altogether, our results unveil a novel role of the RMRP-miR-206-AKT axis
in breast cancer development, providing a potential new target for developing an
anti-breast cancer therapy.
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INTRODUCTION

The past decade has witnessed the growing importance of the non-coding RNAs (ncRNA) as critical
regulators of almost all biological aspects of human cancer (Esteller, 2011; Wolin and Maquat,
2019). Long non-coding RNAs (lncRNA) and microRNAs (miRNA) constitute the majority of
ncRNA (Garzon et al., 2009; Gibb et al., 2011). LncRNAs are a group of ncRNAs with >200
nucleotides (Schmitt and Chang, 2016), while miRNAs represent a group of small regulatory RNAs
with 18-23 nucleotides in length (Garneau et al., 2007; Fabian et al., 2010). Three modes of action
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have been proposed to illustrate how lncRNAs might function
in cancer (Schmitt and Chang, 2016; He et al., 2019). First, the
nuclear lncRNAs can modulate gene expression by controlling
local chromatin remodeling or directing the recruitment of
regulatory factors to specific promoter regions on chromosomes.
One prominent example is the p53-inducible large intergenic
non-coding RNA (lincRNA)-p21 that recruits hnRNP-K to the
proper genomic locations to globally repress gene transcription
(Huarte et al., 2010). Also, lncRNAs can interact with multiple
proteins to facilitate the formation of functional complexes or
perturb molecule interactions. For instance, lncRNA-ROR was
shown to inhibit p53 translation by binding to hnRNP-I and
preventing the interaction of the latter with p53 mRNA (Zhang
et al., 2013). Moreover, lncRNAs can associate with different
RNA molecules, such as mRNAs and microRNAs, to regulate
mRNA turnover and translation. It has been shown that a number
of highly expressed lncRNAs are able to act as competitive
endogenous RNAs (ceRNAs) to sequester microRNAs (miRNAs)
away from their mRNA targets (Tay et al., 2014). Because
of the increasingly complex network with the addition of
ncRNAs in cancer, more efforts are needed to thoroughly
dissect the molecular basis underlying the role of lncRNAs in
disease development.

The PI3K/AKT signaling pathway plays an important role in
cell fate decisions, including growth and proliferation, survival,
angiogenesis, metabolic remodeling, and chemoresistance
(Hoxhaj and Manning, 2020; Liu et al., 2020). Recently, lncRNAs
have been shown to play a critical role in the AKT pathway
(Peng et al., 2017; Revathidevi and Munirajan, 2019). LncRNA
AK023948 was found to functionally interact with DHX9
and the regulatory subunit of PI3K, p85, leading to AKT
activation (Koirala et al., 2017). LINK-A could facilitate AKT
and Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3]
interaction and, as thus, induce enzymatic activation of AKT by
forming a trimeric complex (Lin et al., 2017). PCAT1 interacted
directly with FKBP51, thus perturbing the PHLPP/FKBP51
complex that is required for dephosphorylation of AKT at
Ser-473 (Shang et al., 2019). In this study, we identified a
lncRNA, the RNA component of mitochondrial RNA-processing
endoribonuclease (RMRP), as an additional regulator of the AKT
pathway as described below.

RMRP was found to be involved in the cleavage of the
RNA primer for mitochondrial DNA replication (Chang and
Clayton, 1987) and the precursor of ribosomal RNA (rRNA)
(Goldfarb and Cech, 2017). Mutation of RMRP was identified in
patients with cartilage-hair hypoplasia, a human ribosomopathy
characterized by metaphyseal dysplasia, anemia, and immune
dysregulation (Ridanpaa et al., 2001; Narla and Ebert, 2010).
RMRP also plays a role in cancer development. Mutations
in the RMRP promoter led to enhanced nuclear protein
binding to the promoter, consequently elevating transcription
of RMRP, which might be associated with cancer progression
(Rheinbay et al., 2017; Son et al., 2019). Moreover, RMRP
has been shown to act as a sponge for microRNAs and
promote gastric and lung cancer development (Meng et al.,
2016; Shao et al., 2016; Hussen et al., 2021). We recently
found that RMRP interacts with and sequesters SNRPA1 in

the nucleus, where the latter binds to wild type p53 (wt p53)
and promotes MDM2-mediated proteasomal degradation of wt
p53 in colorectal cancer (Chen et al., 2021). In breast cancer,
upregulation of RMRP partially resulted from its promoter
mutation (Rheinbay et al., 2017) or Wnt/Hippo activation
(Park and Jeong, 2015), but its biological function and the
underlying mechanism in this cancer remain unclear. Herein,
we report the wt p53-independent tumor-promoting function
of RMRP. We found that the RMRP gene is amplified and
overexpressed in a variety of human cancers, and the high
level of RMRP is significantly associated with poor prognosis of
multiple cancers, including breast cancer. Remarkably, RMRP
promoted proliferation and migration of TP53-mutated breast
cancer cells by activating the AKT signaling pathway. It did
so by preventing miRNA-206 from binding to its target AKT
mRNA. Our study establishes a role of the RMRP-miR-206-
AKT axis in breast cancer development, and provides these
molecules as potential biomarkers and therapeutic targets for
future developing treatments of the disease.

MATERIALS AND METHODS

Cell Culture and Transient Transfection
Human breast cancer cell lines JIMT-1 and BT549 were cultured
in Dulbecco’s modified Eagle’s medium supplemented with
10% fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml
streptomycin. All cells were cultured at 37◦C in an incubator
containing 5% carbon dioxide. Cells were seeded on the dish
at appropriate density one day before transfection, and then
transfected plasmids, siRNAs or the miRNA mimic/inhibitor
according to the manufacturer’s protocol of the Hieff Trans
liposomal transfection reagent (Yeasen, shanghai, China). Cells
were harvested at 24–48 h post transfection for immunoblotting
or RT-quantitative PCR (qPCR) analyses.

Plasmids, siRNAs, and miRNA Mimics
and Inhibitor
The plasmid expressing RMRP was purchased from Shanghai
Genechem (Shanghai, China). The pcDNA3-luc-mcs Dual-
Luciferase miRNA Target Expression Vector was a gift from
Shenglin Huang. pcDNA3-luc-mcs-AKT-3′UTR reporter
plasmids were generated by inserting the AKT 3′UTR
amplified by PCR into the pcDNA3-luc-mcs vector. SiRNAs
targeting RMRP and AKT were designed by the BLOCK-
iTTM RNAi Designer1 and synthesized by Genepharma
(Shanghai, China). The siRNA sequences are as follows,
siNC: UUCUCCGAACGUGUCACGU, siRMRP-1: CCUAG
GCUACACACUGAGGACU, siRMRP-2: GUUCGUGCUGAA
GGCCUGUAU, siAKT-1: GCACCUUCAUUGGCUACAA,
siAKT-2: GCGUGACCAUGAACGAGUU. The miRNA
mimics and inhibitors were designed and synthesized by
Genepharma. The sequences are as follows, double-stranded
hsa-miR-206 mimics: UGGAAUGUAAGGAAGUGUGUGG

1http://rnaidesigner.thermofisher.com/rnaiexpress/design.do
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and ACACACUUCCUUACAUUCCAUU; and hsa-miR-206
inhibitor: CCACACACUUCCUUACAUUCCA.

Generation of Lentiviral Particles
The PWPXL-RMRP plasmid was generated by inserting the
full-length sequence of RMRP into the lentivirus-based PWPXL
vector. HEK293T cells were transfected with PWPXL-vector or
PWPXL-RMRP, along with the packaging plasmid psPAX2 and
the envelope plasmid pMD2.G. The virus particles were collected
48 h after transfection. The supernatant of 2-4 ml containing
virus particles was added to breast cancer cells, JIMT-1 and
BT549, for 24-36 h.

CRISPR/Cas9-Mediated Gene Editing
The CRISPR/Cas9 targeting vector lentiCRISPR v2 was
purchased from Addgene (Cambridge, MA, United States).
The sgRNA for RMRP was designed at http://crispr.mit.edu/,
and was cloned into the lentiCRISPR v2 vector at the BsmBI
site. The combination of sgRNAs was used to achieve the
best efficiency as previously described (Chen et al., 2021), and
two different clones, RMRP-KO#1 and RMRP-KO#2, were
selected for future experiments. The cells were infected with
the lentiviruses encoding the sgRNAs and selected by 1 µg/ml
puromycin for a week.

Reverse Transcription and Quantitative
PCR Analysis
Total RNAs were isolated from cells using RNAiso Plus (Takara,
Dalian, China) following the manufacturer’s protocol. Total
RNAs of 0.5 to 1 µg were used as templates for reverse
transcription using the PrimeScriptTM RT reagent Kit with
gDNA Eraser (Takara, Dalian, China). Quantitative RT-PCR
(RT-qPCR) was conducted using TB GreenTM Premix according
to the manufacturer’s protocol (Takara, Dalian, China). The
RT-qPCR primers GAPDH, U6, RMRP and AKT are as
follows, GAPDH: 5′-GGAGCGAGATCCCTCCAAAAT-3′ and
5-′GGCTGTTGTCATACTTCTCATGG-3′, U6: 5′-GCTTCGG
CAGCACATATACTAAAAT-3′ and 5′-CGCTTCACGAATTTG
CGTGTCAT-3′, RMRP: 5′-TGCTGAAGGCCTGTATCCT-3′
and 5′-TGAGAATGAGCCCCGTGT-3′, and AKT: 5′- AGCGA
CGTGGCTATTGTGAAG -3′ and 5′- GCCATCATTCTTGAG
GAGGAAGT-3′.

Immunoblotting
Cells were harvested and lysed in lysis buffer consisting of
50 mM Tris/HCl (pH7.5), 0.5% Nonidet P-40 (NP-40), 1 mM
EDTA, 150 mM NaCl, 1 mM dithiothreitol (DTT), 0.2 mM
phenylmethylsulfonyl fluoride (PMSF), 10 µM pepstatin A and
1 µg/ml leupeptin. Equal amounts of clear cell lysate (20–
80 µg) were used for immunoblotting (IB) analysis as described
previously (Zhou et al., 2013). anti-GAPDH (Catalog No. 60004-
1, Proteintech), anti-AKT (Catalog No. #9272, Cell Signaling
Technology, Danvers, MA, United States), anti-pAKT (Thr-308)
(Catalog No. #4056, Cell Signaling Technology, Danvers, MA,
United States), and the secondary antibodies for rabbit (Catalog
No. ARG65351, Arigo) and mouse (Catalog No. ARG65350,
Arigo) were commercially purchased.

Cell Viability Assay
To detect cell proliferation, the Cell Counting Kit-8 (CCK-8)
(Dojindo Molecular Technologies, Japan) was used according to
the manufacturer’s instructions. Cells (2000–5000) were seeded
per well in 96-well culture plates at 12 h post transfection.
Cell viability was determined by adding WST-8 at a final
concentration of 10% to each well, and the absorbance of the
samples was measured at 450 nm using a Microplate Reader every
24 h for 4–5 days.

Transwell Invasion Assay
The assay was performed using the transwell chamber inserts
in a 24-well plate. Briefly, 5 × 104 cells suspended in 200 µl
of serum-free medium were added to the upper chamber after
12 h post transfection. The lower chambers were filled with the
culture medium with 20% fetal bovine serum. After culture for
24–36 h at 37◦C, the cells on the upper surface were scraped
and washed away, while the cells on the lower surface were fixed
with methanol and stained with 0.1% crystal violet. The number
of invasive cells was counted in at least three randomly selected
fields under an optical microscope by image J software.

Luciferase Reporter Assay
HEK293T cells were seeded at 5 × 103 cells per well in
96 well plates. The cells were then co-transfected with the
combinations of the Renilla plasmid, the pcDNA3-luc-mcs-AKT-
3′UTR reporter plasmid, PWPXL or PWPXL-RMRP plasmid,
and the control or miR-206 mimics as indicated in the figure.
At 48 h post transfection, cells were lysed using passive lysis
buffer, and the Firefly and Renilla luciferase activities were
measured by the dual-luciferase assay kit (Promega, Madison,
WI, United States).

Databases of Cancer Patients
The ciBioPortal website was used for analyzing the mutation and
copy number variations of RMRP based on the TCGA database
(Cerami et al., 2012; Gao et al., 2013). The raw data of gene
expression were available in Gene Expression Omnibus database
(GSE76250) (Jiang et al., 2016). Cancer patient survival was
analyzed by the Kaplan-Meier Plotter website (Nagy et al., 2021).

Statistics
Statistical analyses were performed using GraphPad Prism 6
software or SPSS 19.0 software. Data of experiments are expressed
as mean ± standard deviation (SD) of at least three independent
experiments. The Student’s t test or one-way analysis of variance
was performed to evaluate the differences between two groups
or more than two groups. The Kaplan–Meier statistics were used
to analyze the significant difference of patient survival. p < 0.05
was considered statistically significant, and the asterisks represent
significance in the following way: ∗p < 0.05, ∗∗p < 0.01, and
∗∗∗p < 0.001.
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FIGURE 1 | RMRP is associated with poor survival of breast cancer patients. (A) The genomic alterations of the RMRP gene in various human cancers from the
TCGA database. (B) RMRP is expressed at a higher level in breast cancer compared to normal tissues from the GEO database. (C) The Kaplan-Meier analysis
shows that high expression of RMRP is correlated with unfavorable overall survival of breast cancer.

RESULTS

RNA Component of Mitochondrial
RNA-Processing Endoribonuclease Is
Associated With Unfavorable Prognosis
in Different Cancers
To explore the clinical relevance of RMRP in human cancers,
we analyzed the TCGA database and found that the RMRP
gene is amplified in multiple cancers (Figure 1A). Consistently,
the expression of RMRP was preferentially upregulated in
cancerous tissues compared to normal tissues (Figure 1B and
Supplementary Figure 1A) by mining the Gene Expression
Omnibus (GEO) and UALCAN databases (Chandrashekar et al.,
2017). In addition, the Kaplan–Meier analysis revealed that
the increased expression of RMRP is significantly associated
with unfavorable prognosis of various human cancers, including
breast cancer, head-neck carcinoma, lung adenocarcinoma,
pancreatic ductal adenocarcinoma, stomach adenocarcinoma,
and uterine corpus endometrial carcinoma (Figure 1C and
Supplementary Figure 1B). Therefore, these findings suggest
that RMRP may play an oncogenic role in cancer.

RNA Component of Mitochondrial
RNA-Processing Endoribonuclease
Promotes Proliferation and Migration of
Breast Cancer Cells
Since we previously showed that RMRP endorses cancer cell
growth by inhibiting the wt p53 pathway (Chen et al., 2021),
we wanted to determine if RMRP can function independently
of wt p53 or not. To do so, we selected the TP53-mutated
breast cancer cell lines, JIMT-1 and BT549, as the model
systems here by generating RMRP-stably overexpressing cell
lines (Figure 2A). Interestingly, ectopic RMRP still significantly
promoted the survival of these breast cancer cells (Figure 2C).

Conversely, using RMRP-knockout or -knockdown JIMT-
1 and BT549 cells (Figure 2B), we found that depletion
of RMRP significantly suppresses the growth of these cells
(Figure 2D). Of note, knockout of RMRP via CRISPR-Cas9
achieved a more profound inhibitory effect on cancer cell
growth (Figure 2D), because RMRP expression was more
markedly depleted in JIMT-1 cells (Figure 2B). Furthermore,
we found that ectopic expression of RMRP dramatically
promotes, while depletion of RMRP prohibits, breast cancer
cell migration (Figures 2E,F). Finally, we examined RMRP’s
function in wt p53-harboring breast cancer cells. As shown in
Supplementary Figure 2, overexpression of RMRP significantly
boosted, while knockdown of RMRP repressed, growth and
migration of MCF-7 (Supplementary Figures 2A,B) and
CAL-51 cells (Supplementary Figures 2C,D). Together, these
results demonstrate that RMRP can promote proliferation and
migration of breast cancer cells independently of wt p53.

RNA Component of Mitochondrial
RNA-Processing Endoribonuclease
Activates the AKT Pathway by
Upregulating Its Expression
To explore the molecular mechanism underlying the wt p53-
independent oncogenic effects of RMRP, we re-analyzed the
RNA-seq results from HCT116 cells as reported in our previous
study (Chen et al., 2021) and found that a myriad of genes are
dysregulated in response to RMRP knockout (Figure 3A). The
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
revealed the AKT signaling pathway as the most significantly
downregulated in RMRP-depleted cells (Figure 3B). To validate
this result, we determined if RMRP regulates the mRNA
expression of AKT by RT-qPCR in breast cancer cells. Indeed,
as shown in Figure 3C, overexpression of RMRP increased
the level of AKT mRNA. Consistently, depletion of RMRP
reduced the AKT mRNA level (Figure 3D). Consistently, ectopic
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FIGURE 2 | RMRP promotes proliferation and migration of breast cancer cells. (A) Efficiency of RMRP-PWPXL overexpression in JIMT-1 and BT549 cells was
evaluated by RT-qPCR. (B) Efficiency of CRISPR-Cas9-mediated knockout or RNAi-mediated knockdown of RMRP in JIMT-1 and BT549 cells was evaluated by
RT-qPCR. (C) Overexpression of RMRP prompts JIMT-1 and BT549 cell proliferation determined by the CCK-8 assay. (D) Depletion of RMRP represses JIMT-1 and
BT549 cell proliferation determined by the CCK-8 assay. (E) Overexpression of RMRP prompts JIMT-1 and BT549 cell migration determined by the Transwell assay.
(F) Depletion of RMRP prompts JIMT-1 and BT549 cell migration determined by the Transwell assay. **p < 0.01, ***p < 0.001.

RMRP dramatically increased the level of AKT protein as
well as its phosphorylated form in JIMT-1 and BT549 cells
(Figure 3E), while knockout or knockdown of RMRP resulted
in the significant reduction of AKT and phosphorylated AKT
in both breast cancer cell lines (Figure 3F). Collectively, these
results demonstrate that RMRP can activate the AKT signaling
pathway, which might account for its tumor-promoting functions
in breast cancer cells.

RNA Component of Mitochondrial
RNA-Processing Endoribonuclease
Induces AKT Expression by
Sequestering miR-206
Next, we wanted to determine how RMRP promotes AKT
expression. Since miRNAs have been documented to target
mRNAs for degradation and/or inhibit their translation (Bartel,
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FIGURE 3 | RMRP upregulates AKT expression. (A) Differentially expressed gene profile in response to RMRP knockout revealed by the volcano-map.
(B) Downregulated cancer-related pathways in response to RMRP knockout revealed by KEGG enrichment. (C) Overexpression of RMRP elevates AKT mRNA
expression in JIMT-1 and BT549 cells. (D) Depletion of RMRP reduces AKT mRNA expression in JIMT-1 and BT549 cells. (E) Overexpression of RMRP elevates AKT
protein expression and phosphorylated AKT in JIMT-1 and BT549 cells. (F) Depletion of RMRP reduces AKT protein expression and phosphorylated AKT in JIMT-1
and BT549 cells. *p < 0.05, **p < 0.01, ***p < 0.001.

2009), and also, lncRNAs can derepress mRNA expression by
sequestering these inhibitory miRNAs (Tay et al., 2014), we
decided to test if RMRP might also utilize this mechanism to
activate the expression of AKT. By searching the microRNA-
target interaction database, miRTarBase (Huang et al., 2020),
we identified miR-206 as a potential binder for both RMRP
and AKT (Figure 4A). To test this, we ectopically expressed
miR-206 mimics in JIMT-1 cells, and found that the levels of
AKT and phosphorylated AKT are indeed reduced (Figure 4B).

Remarkably, overexpression of RMRP completely abrogated
miR-206-mediated AKT inhibition (Figure 4B). Moreover,
miR-206 mimics significantly repressed the expression of
the luciferase reporter gene harboring the AKT 3′-UTR
(Figure 4C). Consistently, overexpression of RMRP abolished
miR-206 inhibition of the luciferase activity (Figure 4C).
Taken together, these results demonstrate that RMRP induces
AKT protein levels by overcoming miR-206’s inhibition
of its expression.
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FIGURE 4 | RMRP upregulates AKT expression by sponging miR-206. (A) Both RMRP and AKT are potentially targeted by miR-206 through the miRTarBase.
(B) miR-206 mimics-induced inhibition of AKT can be completely restored by RMRP overexpression. (C) The luciferase reporter assay was performed to show that
RMRP overexpression completely abrogates miR-206 mimics-induced inhibition of the reporter gene fused with the AKT 3′-UTR. **p < 0.01.

RNA Component of Mitochondrial
RNA-Processing Endoribonuclease
Negates miR-206-Mediated Repression
of Breast Cancer Cell Growth and
Migration
Given that miR-206 inhibits AKT expression (Figures 4B,C),
we next tested if miR-206 suppresses breast cancer cell
growth and migration. Delivery of the miR-206 inhibitor into
JIMT-1 and BT549 cells significantly triggered their proliferation
(Figure 5A). Consistently, the miR-206 inhibitor promoted
JIMT-1 and BT549 cell migration (Figure 5B). Also, miR-
206 mimics significantly reduced JIMT-1 and BT549 cell
proliferation and migration (Figures 5C,D), indicating that miR-
206 plays a tumor suppressive role in breast cancer. Importantly,
RMRP overexpression completely abolished miR-206’s tumor
suppressive activity (Figures 5C,D). These results demonstrate
that RMRP endorses breast cancer development by counteracting
the tumor suppression function of miR-206.

RNA Component of Mitochondrial
RNA-Processing Endoribonuclease
Promotes Breast Cancer Cell Survival
and Migration in an AKT-Dependent
Fashion
Finally, we determined if RMRP promotes breast cancer cell
growth and migration through activation of the AKT pathway.

The cell viability assay revealed that ectopic RMRP significantly
increases cancer cell growth, while knockdown of AKT by two
independent siRNAs blocks the tumor-promoting function of
RMRP in JIMT-1 and BT549 cells (Figures 6A,B). In addition,
the migratory potential of cancer cells was also evaluated through
the transwell assay. Consistently, ectopic RMRP dramatically
enhanced spread of JIMT-1 and BT549 cells, whereas depletion of
AKT completely abrogated RMRP-induced cancer cell migration
(Figures 6C,D). Taken together, these results demonstrate that
activation of the AKT pathway is required for RMRP-mediated
breast cancer survival and migration independently of wt p53.

DISCUSSION

RMRP has been shown to promote progression of various
cancers, including colorectal cancer (Chen et al., 2021), gastric
cancer (Shao et al., 2016), lung cancer (Meng et al., 2016),
and cholangiocarcinoma (Tang et al., 2019). Recently, it was
reported that recurrent mutations in the RMRP promoter are
associated with higher expression level of RMRP in breast
cancer, suggesting that this lncRNA may play a role in breast
carcinogenesis (Rheinbay et al., 2017). In this study, we found
that RMRP is amplified and overexpressed in numerous human
cancers including breast cancer, and its high expression level
is significantly associated with unfavorable cancer prognosis
(Figure 1 and Supplementary Figure 1). We then verified RMRP
as an oncogenic lncRNA, because it could drive breast cancer cell
growth and migration (Figure 2 and Supplementary Figure 2).
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FIGURE 5 | RMRP negates the tumor suppressive function of miR-206. (A) Inhibition of miR-206 promotes JIMT-1 and BT549 cell proliferation determined by the
CCK-8 assay. (B) Inhibition of miR-206 promotes JIMT-1 and BT549 cell migration determined by the Transwell assay. (C) RMRP overexpression abrogates miR-206
inhibition of cell proliferation determined by the CCK-8 assay. (D) RMRP overexpression abrogates miR-206 inhibition of cell migration determined by the Transwell
assay. **p < 0.01, ***p < 0.001.

Mechanistically, RMRP can activate the AKT signaling pathway
as demonstrated by RNA-seq, RT-qPCR and immunoblotting
analyses (Figure 3). Remarkably, RMRP induces AKT level
and activity by preventing miR-206-mediated inhibition of AKT
mRNA expression (Figure 4). Hence, our study as presented

above unveils a critical role of the RMRP-miR-206-AKT cascade
in breast cancer cell growth and migration (Figures 5–7).

Activation of the PI3K/AKT pathway is crucial to tumor
growth and propagation. In response to insulin, growth factors
or cytokines, the lipid kinase PI3K can be recruited to the plasma
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FIGURE 6 | Ectopic RMRP promotes breast cancer cell growth and migration dependently of AKT. (A) Knockdown of AKT restores RMRP-induced JIMT-1 cell
proliferation determined by the CCK-8 assay. (B) Knockdown of AKT restores RMRP-induced BT549 cell proliferation determined by the CCK-8 assay.
(C) Knockdown of AKT abolishes RMRP-induced JIMT-1 cell migration determined by the Transwell assay. (D) Knockdown of AKT abolishes RMRP-induced BT549
cell migration determined by the Transwell assay. ***p < 0.001.

membrane. PI3K then phosphorylates phosphatidylinositol 4,5-
bisphosphate [PtdIns(4,5)P2] to produce PtdIns(3,4,5)P3 that
serves as a second messenger to recruit AKT to the membrane,
where it is fully activated through phosphorylation at Thr-308
and Ser-473 (Alessi et al., 1996, 1997). In general, activated
AKT promotes cancer development via phosphorylation and
inhibition of the three key downstream effectors, GSK3
(Cross et al., 1995), TSC2 (Menon et al., 2014), and FOXO

(Brunet et al., 1999). The first identified AKT substrate, GSK3,
was found to mediate phosphorylation of c-MYC, SREBP,
NRF2, and HIF1α, leading to proteasomal degradation of these
oncoproteins. GSK3 is inactivated through phosphorylation
by AKT, which leads to derepression of these oncogenic
transcription factors and consequent cancer growth and
progression (Hoxhaj and Manning, 2020). Phosphorylation of
TSC2 by AKT activated the mTORC1-S6K/4E-BP pathway that
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FIGURE 7 | A schematic for RMRP induces AKT expression by inhibiting miR-206 in breast cancer. Under the physiological condition, miR-206 targets AKT mRNA
for rapid turnover or translational inhibition, leading to reduced cell proliferation and migration (left panel). In the context of RMRP overexpression, RMRP sequesters
miR-206 to unleash AKT activity, leading to enhanced breast cancer cell proliferation and migration (right panel).

is regarded as an energy-sensor to monitor metabolic changes
and support cancer cell growth (Valvezan and Manning, 2019),
while phosphorylation of FOXO transcription factors enhanced
tumorigenesis by influencing glycolysis, redox homeostasis, and
many other cell growth-associated pathways (Hornsveld et al.,
2018). Thus, our finding has emphasized the important role of
RMRP by activating AKT in breast cancer.

RMRP was originally identified as a causative gene for
cartilage-hair hypoplasia, because numerous mutations in the
RMRP gene caused the disease by affecting multiple organ
systems (Ridanpaa et al., 2001, 2002; Bonafe et al., 2002).
Later studies revealed that mutation or loss of expression of
RMRP results in the impairment of ribosome biogenesis and
deregulation of the cyclin-dependent cell cycle progression,
eventually leading to growth inhibition of the chondrocytic
and lymphocytic cell lineages (Hermanns et al., 2005; Thiel
et al., 2005). Indeed, genetic mouse models further verified the
essential role of RMRP during early embryonic development, as
homozygous inactivation of RMRP caused embryonic lethality
(Rosenbluh et al., 2011). Additionally, it was found that human
telomerase reverse transcriptase (hTERT) associates with RMRP
to form a distinct ribonucleoprotein complex that has RNA-
dependent RNA polymerase (RdRP) activity (Maida et al., 2009).
RMRP could be thus processed into a double-stranded RNA
with a hairpin structure and consequently endogenous siRNAs
that are important for proper development and differentiation
of skeletal, hair, and hematopoietic cells (Maida et al., 2013;
Rogler et al., 2014). Recently, RMRP was also found to be
involved in cancer development. The oncogenic transcription
factors, such as β-catenin, YAP, and c-MYC, can activate the
transcription of RMRP (Park and Jeong, 2015; Xiao et al.,
2019) that promotes tumor cell survival and propagation by
regulating the expression of, for example, Cyclin D2 and
KRAS (Meng et al., 2016; Shao et al., 2016). Importantly,
the existence of RMRP in the blood plasma exhibits a
diagnostic value for detection of lung cancer (Leng et al.,

2018; Yuan et al., 2020). However, the role of RMRP in breast
cancer remains unclear. We previously found that RMRP can
moderately promote proliferation of p53-deficient HCT116 cells,
suggesting a p53-independent role of RMRP, but the underlying
mechanism was elusive. In this study, we demonstrate that
this role is executed by sequestering miR-206 from targeting
AKT mRNA for degradation, consequently leading to AKT-
dependent breast cancer cell growth and migration. Similarly,
RMRP can act as a sponge of miR-206 in other types of
cancer (Meng et al., 2016; Shao et al., 2016). Although recent
studies suggested a potential role of RMRP in regulating
AKT in the ischemic models (Kong et al., 2019; Li and
Sui, 2020), our study demonstrates for the first time that
RMRP can promote breast cancer cell growth and migration
via AKT activation.

miR-206 is a vertebrate-specific microRNA that is involved
in a variety of human diseases, including skeletal and muscular
developmental disorders, heart failure, chronic obstructive
pulmonary disease, Alzheimer’s disease, and numerous types
of cancer (Novak et al., 2014). Studies showed that miR-206
can target estrogen receptor α (ERα), leading to inhibition of
the estrogen signaling pathway and as thus cell growth and
proliferation in breast cancer (Adams et al., 2007, 2009). miR-
206 also suppresses stem-like and metastatic features of breast
cancer by regulating the TWF1- MKL1-IL11 pathway (Samaeekia
et al., 2017). In line with these findings, we also showed
that miR-206 mimics repress JIMT-1 and BT549 cell growth
and migration (Figures 5C,D), while the miR-206 inhibitor
drives proliferation and migration of these cells (Figures 5A,B).
Although a few studies suggested that miR-206 indirectly
regulates the PI3K/AKT pathway by targeting c-Met or HDAC6
(Liu et al., 2017; Tang et al., 2017; Dai et al., 2018), our study
identified AKT as a direct target gene of miR-206, because
miR-206 mimics via its seed region significantly reduced the
expression of AKT and the luciferase reporter gene fused with the
3′-UTR of AKT (Figures 4B,C). Therefore, these results reveal an
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uncharacterized tumor suppressive role of miR-206 by targeting
the AKT pathway.

Our results indicate that the oncogenic effect of RMRP
on JIMT-1 and BT549 cells largely relies on AKT activation.
Given the fact that the expression of miR-206 can be repressed
by ERα (Adams et al., 2007), both JIMT-1 and BT549 that
were derived from ER- or triple-negative breast cancer patients
(Tanner et al., 2004; Grigoriadis et al., 2012; Tian and Zhang,
2018) should have high expression level of miR-206. Also,
because the expression of ER is extremely low in both breast
cancer cell lines, miR-206 may preferentially target AKT for
rapid turnover, as evidenced by the immunoblotting analysis
above (Figure 4B). In this scenario, miR-206 thereby plays
a critical role in restricting the AKT activity. Remarkably,
our data clearly demonstrate that RMRP can overcome miR-
206 inhibition of AKT (Figures 4B,C, 5C,D) and, as thus,
trigger AKT-dependent growth and migration of breast cancer
cells (Figure 6).

CONCLUSION

RMRP was recently found to play a role in cancer development,
but its function and the underlying mechanism in breast cancer
are largely unknown. Our study uncovers the RMRP-miR-206-
AKT regulatory axis as a new pathway that plays a critical role in
promoting the growth and migration of aggressive breast cancer
cells, which could serve as a potential target pathway for future
development of prognostic biomarkers or therapeutic strategies
for this type of cancer.
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