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ABSTRACT

Gene-editing experiments commonly elicit the error-
prone non-homologous end joining for DNA double-
strand break (DSB) repair. Microhomology-mediated
end joining (MMEJ) can generate more predictable
outcomes for functional genomic and somatic ther-
apeutic applications. We compared three DSB repair
prediction algorithms – MENTHU, inDelphi, and Lin-
del – in identifying MMEJ-repaired, homogeneous
genotypes (PreMAs) in an independent dataset of
5,885 distinct Cas9-mediated mouse embryonic stem
cell DSB repair events. MENTHU correctly identified
46% of all PreMAs available, a ∼2- and ∼60-fold sen-
sitivity increase compared to inDelphi and Lindel,
respectively. In contrast, only Lindel correctly pre-
dicted predominant single-base insertions. We re-
port the new algorithm MENdel, a combination of
MENTHU and Lindel, that achieves the most predic-
tive coverage of homogeneous out-of-frame muta-
tions in this large dataset. We then estimated the fre-
quency of Cas9-targetable homogeneous frameshift-
inducing DSBs in vertebrate coding regions for gene
discovery using MENdel. 47 out of 54 genes (87%)
contained at least one early frameshift-inducing DSB
and 49 out of 54 (91%) did so when also consider-
ing Cas12a-mediated deletions. We suggest that the
use of MENdel helps researchers use MMEJ at scale
for reverse genetics screenings and with sufficient
intra-gene density rates to be viable for nearly all
loss-of-function based gene editing therapeutic ap-
plications.

INTRODUCTION

Precision in gene editing is currently limited by the high
variability in genotypic outcomes of the commonly de-
ployed NHEJ repair pathway or the low efficiency of the
more precise homologous recombination pathway (for re-
views, see (1–4)). These shortcomings often result in com-
plicated and labor-intensive selection processes for identify-
ing gene edits of interest, particularly if pursuing bi-allelic
editing of vertebrate cells (5,6). When modifying cell lines,
for instance, even a high efficiency gene editor can result in
one-third of the individual alleles remaining in-frame from
NHEJ-based repairs; as a result, knockout cells where all
copies contain frameshift alleles represent a minority of
outcomes (2,4). Additionally, such molecular heterogene-
ity makes genotype/phenotype correlation in F0 founders
of model organisms like zebrafish difficult to interpret, fre-
quently requiring complicated and multi-generational mat-
ing schemes to create genotypically homogeneous animals
before any direct physiological assays can be performed
(5,6). These limitations of NHEJ-based gene editing also
potentially reduce its utility in somatic applications such
as gene therapy or gene discovery. To address this techni-
cal gap in the field, we have developed alternative gene edit-
ing approaches that aim to elicit MMEJ (Microhomology-
Mediated End Joining) instead of NHEJ and are precise, ef-
ficient, and suitable for reverse genetics applications.

Following a DNA double-strand break (DSB), MMEJ
is thought to bridge the resulting DNA gap by: anneal-
ing a pair of short stretches (3–12 bases) of single-stranded
homologies (microhomologies: �Hs) exposed by the 5′-
resection of the DSB ends (7), trimming the resulting 3′-
flap overhangs (8,9), and finally repairing the backbone by
DNA ligation (10,11). This process results in a character-
istic deletion where the sequence between the pair of �Hs
used for repair and one of the repeats itself is lost (12) (see
(13) for a review). This deletion pattern is useful as a heuris-

*To whom correspondence should be addressed. Tel: +1 507 284 5530; Fax: +1 507 293 1058; Email: stephen.ekker@mayo.edu

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-4392-2596
http://orcid.org/0000-0002-1789-8000
http://orcid.org/0000-0003-0726-4212


68 Nucleic Acids Research, 2021, Vol. 49, No. 1

tic to identify probable MMEJ-based repairs from a mixed-
repair pool. The ability to generate predictable genotypes
(14), sometimes even resulting in a single majority outcome
(an identical allele in over half of the editing outcomes) (15),
makes MMEJ an attractive alternative to NHEJ for preci-
sion genome engineering (16–19).

We and others (15,16,19) have shown that DSBs directed
at sites likely to be repaired via MMEJ significantly in-
crease the homogeneity of the resulting repair outcomes
in zebrafish. Despite there being no known clear biochem-
ical mechanism as to how MMEJ repairs DSBs, we and
others (20–23) have published software tools that predict
the occurrence of MMEJ based only on the sequence con-
text surrounding any given targetable DSB site. In partic-
ular, we published MENTHU (22), which screens genetic
sequences for DSBs likely to generate single majority out-
comes as a result of MMEJ, aka PreMAs (predominant
MMEJ alleles) (Figure 1A and B). Opposed to conventional
targeting designs, the use of MENTHU-recommended Sp-
Cas9 and TALEN cut sites resulted in PreMAs more of-
ten, facilitating subsequent zebrafish mutant screenings by
decreasing the sequence variability of the resulting allele
pool (15). In parallel, the tools ForeCasT (20) and inDel-
phi (23) were simultaneously and independently developed
to predict the probability of occurrence of individual re-
pair outcomes after Cas9-mediated DSBs on mammalian
cells, and were shortly followed by Lindel (21). Here, we pro-
vide an out-of-sample validation of the PreMA prediction
performance of MENTHU in the mouse embryonic stem
cell (mESC) dataset used to train ForeCasT, compare it to
that of inDelphi and Lindel, and suggest improvements to
MENTHU. Additionally, we assess the ability of inDelphi
and Lindel to predict single majority frameshifts through
1 bp insertions and consequently propose MENdel, a com-
bination between MENTHU and Lindel to predict DSBs
likely to result in frameshift-inducing single majority out-
comes. Finally, we assess the practicality of MENdel in a
common use-case scenario: the generation of gene knock-
outs via frameshift mutations. For this, we screened a test
set of 54 vertebrate genes (human and zebrafish) of vary-
ing sizes for early Cas9 and Cas12a targetable sites likely to
result in a single majority frameshift. This would provide
an initial estimate on the usefulness of DNA repair predic-
tion tools like MENdel to identify reproducible DSB repair
sites based on their frequency and distribution within the
coding sequence of genes. We report how MENTHU and
inDelphi perform comparably better than Lindel at predict-
ing PreMAs, how Lindel provides the best predictive perfor-
mance at predicting 1bp insertions, and how MENdel dis-
played the largest coverage for frameshift predictions across
all tools analysed. Thus, we encourage genome engineers to
deploy MENdel to design their gene editing experiments for
functional genomics or gene therapy, supported by our es-
timates that ∼90% of vertebrate genes will have at least one
early targetable DSB site likely to result in a single majority
frameshift.

MATERIALS AND METHODS

Sequence data acquisition, inclusion, and classification

Due to the lack of a comprehensive database for deep se-
quencing results of DSB repair events, the mESC subset

of the data generated by Allen et al. (20) to develop Fore-
CasT was chosen to assess the predictive performance of
MENTHU and compare it to inDelphi and Lindel predic-
tions. ForeCasT (20) was excluded from these comparisons
to avoid training bias. This dataset is ideal for an unbi-
ased comparison between MENTHU, inDelphi, and Lin-
del since it is the largest available source of DSB repair data
not used to train any of the tools being compared. A total of
41,388 different Cas9-mediated DSB repair events in mESC
cells were downloaded from https://figshare.com/articles/
processed mutational profiles/7312067. For each event, all
resulting repair sequences from all experimental replicates
were combined into a single pool, consolidated by sequence,
and rank ordered by number of reads. Subsequently, the
most frequently observed read was aligned to its corre-
sponding WT sequence (obtained from the Supplementary
Data 1 at (20)) using the pairwiseAlignment function from
the Bioconductor Biostrings package (version 2.54.0) with
a substitution matrix that heavily penalized mismatches
(match = 1, mismatch = –50). Since MENTHU and both
inDelphi and Lindel were trained to predict, respectively,
single-deletion and single-indel (insertion or deletion) re-
pairs exclusively, only those alignments that could be ex-
plained by a single, simple indel were included in the analy-
sis. Each alignment was classified into one of four different
groups based on the nature of the observed indel: a 1 bp
or >1 bp insertion, or an MMEJ or non-MMEJ deletion.
MMEJ deletions were defined as those that displayed, in
the WT sequence, two �Hs of at least 3 bp in length at each
side of the expected DSB, which later collapsed into one in
the repaired read deleting any intervening nucleotides. Dele-
tions that did not follow this pattern were considered non-
MMEJ deletions. Lastly, to ensure that the results of this
study are representative of genome-targeting experiments,
any DSB event that employed a gRNAs targeting an arti-
ficially manufactured sequence was excluded from the any
downstream analyses. This process culminated in a total of
5,885 Cas9-mediated edits, each with its WT sequence, most
frequent repair sequence, and corresponding observed fre-
quency (Figure 2A).

Comparison between PreMA predictive performance of
MENTHU, inDelphi and Lindel

For each for the 5,885 Cas9-mediated DSB repair events,
a 52bp sequence window centered at the Cas9 expected
DSB location (i.e. 3 bases upstream of NGG PAM) was
extracted. These short sequences served as inputs for
the command-line versions of MENTHU (R) and inDel-
phi (Python 2.7) to generate PreMA predictions. Lindel
(Python 3.7) requires 60 bp of sequence context for predic-
tions so the sequence window was adjusted accordingly. For
every input, MENTHU outputs a data frame with all possi-
ble MMEJ-based deletions within the 52bp sequence (Fig-
ure 1B’ and B”) and rank orders them by MENTHU score,
as described in Mann et al. (22). We classified MENTHU
predictions as recommended by Ata et al. (15), labelling as
PreMA any site displaying (a) a MENTHU score of 1.50
or above and (b) a distance of 5bp or less in the WT se-
quence between the �Hs utilized for MMEJ of the most fre-
quent predicted repair outcome (Figure 1B”’). On the other
hand, inDelphi and Lindel output the probability of occur-
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Figure 1. MENTHU predicts which DNA double-strand breaks likely result in single majority deletions. (A) Different DNA double-strand breaks (DSBs)
can generate indel profiles with dissimilar distributions. Being able to discern the genotype heterogeneity level between targetable DSBs prior to experimental
applications would be beneficial for reverse genetics and gene therapy applications. (B) MENTHU (22) is a software tool that analyzes the DNA sequence
surrounding any given DSB and predicts whether it will result in a PreMA: an MMEJ-mediated repaired sequence where half or more of the repair
outcomes share the same genotype. B’. MENTHU identifies every possible �H pair (with homology arms �H1 to �Hn of length �1 to �n) and calculates
the corresponding distance between the �Hs of each pair (∂1 to ∂n). B”. Based on the expected MMEJ deletion pattern, ∂ i and �i are used to calculate
the expected deletion length �i. Pattern scores �i for every possible MMEJ deletion are calculated as described by Bae et al. (16). The MMEJ deletions
are then rank ordered by descending pattern score and a MENTHU Score for the DSB is calculated by taking the ratio between the largest �max and the
second largest pattern score �max-1. B”’. MENTHU utilizes two criteria that need to be concomitantly true for a DSB to be labeled as a PreMA. The ∂

of the MMEJ-deletion with the highest pattern score �max and the MENTHU Score for the DSB need to be less than or equal to 5 bp and more than or
equal to 1.50, respectively, for a positive PreMA prediction.
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Figure 2. Workflow of the independent assessment of the ability of MENTHU to predict PreMAs. (A) A large gene editing dataset was filtered to only
include genomic DSB repair outcomes that resulted in simple indels (i.e. resulting in single deletions or insertions). (B) This dataset was used to assess the
viability of MENTHU PreMA predictions in a mammalian cell system (mouse ESC cells [mESCs]), since MENTHU was originally validated in zebrafish
embryos. To contextualize any MENTHU claims, the same dataset was used to generate PreMA predictions using inDelphi and Lindel, similar-purpose
software tools in the recent literature. (C) Lindel predictions resulted in less than 1% sensitivity and were therefore excluded from downstream PreMA
analyses. (D) Receiver Operating Characteristic (ROC) curves were used to compare the ability to predict PreMAs by MENTHU and inDelphi. (E) To
investigate whether the MENTHU prediction scheme maximizes the predictive capacity of the features it uses for classification, the large dataset described
in (A) was split into 75% for the training of machine learning models for PreMA predictions and 25% for the out-of-sample evaluation of these models.
(F) The training set in (E) was used to train Moon Rover (a logistic regression classifier) and Moon Walker (a gradient boosting machine classifier). ROC
curves for Moon Rover and Moon Walker were generated based on their predictive performance on the testing set in (E), and were plotted together with
ROC curves of MENTHU and inDelphi on the same testing set for reference.

rence of the list of potential repair outcomes for every input.
Consequently, any inDelphi or Lindel prediction where the
most likely sequence outcome has a probability of 0.50 or
more and displays the MMEJ deletion pattern was classi-
fied as a PreMA. PreMA predictions from MENTHU, in-
Delphi, and Lindel were compared to their corresponding
ground truth sequencing data (Figure 2B) and classified as
true positives (TP, when a PreMA prediction matched the
data), true negatives (TN, when a non-PreMA prediction
matched the data), false positives (FP, when a PreMA pre-
diction did not match the data), and false negatives (FN,
when a non-PreMA prediction did not match the data).
Sensitivity ( T P

T P+F N : the percentage of actual PreMAs cor-
rectly classified as such), specificity ( TN

TN+F P : the percentage
of actual non-PreMAs correctly classified as such), and pos-
itive predictive value ( T P

T P+F P : PPV, percentage of correct
positive PreMA predictions) were calculated for all tools.
Of note, Lindel was excluded from further PreMA analy-
ses because of its poor sensitivity when compared to MEN-
THU and inDelphi. (Figure 2C). Additionally, the possibil-
ity of utilizing MENTHU and inDelphi synergistically was
assessed by calculating sensitivity, specificity, and PPV of
the predictions generated by (a) labelling a DSB repair event
as a PreMA either when they both did (AND), or (b) when
either one of them predicted a PreMA individually (OR).

Generation of Receiver Operating Characteristic curves for
MENTHU and inDelphi

Receiver Operating Characteristic (ROC) curves are a stan-
dard technique for evaluating binary classifiers (24), and are

plots of TP rate (sensitivity) versus FP rate (1 – specificity,
also known as the significance level �) as a function of vary-
ing classification thresholds. ROC curves were generated
for MENTHU and inDelphi (Figure 2D) to evaluate their
predictive performance independent of any specific predic-
tion threshold values (i.e. MENTHU score and inDelphi
probability). The MENTHU ROC curve was generated by
varying the MENTHU score classification threshold from
0 to infinity while leaving the �H distance requirement (less
than or equal to 5bp) constant. ROC curves for inDelphi
were generated by varying the predicted probability thresh-
old used for PreMA classifications from 0 to 1 (originally
0.50).

Development of MENTHU-based PreMA prediction models

The original MENTHU, as described by Ata et al. (15), is
a threshold-based, two-feature PreMA prediction scheme
(Figure 1B”’). To investigate the impact of the distance
threshold component and complement the ROC curve anal-
ysis described above, we calculated the sensitivity, speci-
ficity, and PPV values of PreMA predictions at 3 other
threshold values (less than or equal to 3, 4, and 6bp:
MENTHU@3, MENTHU@4, and MENTHU@6, respec-
tively) while keeping the MENTHU score threshold con-
stant. Additionally, we examined the impact of combining
the prediction outcomes of the original MENTHU, MEN-
THU@4, and inDelphi.

The dataset from Allen et al. (20) was also used to train
and test two machine learning models, Moon Rover and
Moon Walker, that employ the same features MENTHU



Nucleic Acids Research, 2021, Vol. 49, No. 1 71

does to predict PreMAs (i.e. the MENTHU score and the
distance between the �H pair for the top predicted MMEJ-
based outcome). Significant improvements of either of these
models over the original MENTHU would suggest a bet-
ter way to utilize these two features to improve predic-
tive performance. The 5,885 DSB repair events from Allen
et al. (20) were divided into a training set and a test set
in a 70–30% split (4,120 and 1,765 respectively), with the
PreMA to non-PreMA ratio remaining constant in both
sets (Figure 2E). Moon Rover, a logistic regression model,
and Moon Walker, a gradient boosting model (25) were
both trained with the same training set to output a binary
response (PreMA or no PreMA). Moon Walker used a 10-
fold cross validation scheme to choose the set of model hy-
perparameters that displayed the highest ROC curve area
under the curve. Each hyperparameter set was defined by a
grid-search of the number of boosting iterations (decision
trees), maximum tree depth, minimum amount of obser-
vations per node, and shrinkage level (regularization con-
stant). The model performance was assessed by making out-
of-sample predictions on the test set. MENTHU and inDel-
phi ROC curves on the test set were also calculated for com-
parison (Figure 2E and F). Both models were trained and
evaluated using the R-based package caret (26).

Evaluation of insertion-based single majority outcomes using
inDelphi and Lindel and the development of an algorithmic
workflow to predict single majority frameshifts

The prediction of single majority outcomes that result from
insertions are outside of the design scope of MENTHU.
Nonetheless, DSB repair likely to result in insertions, such
as 1bp insertions, could be a valuable source of frameshift
mutations as an alternative to PreMAs. Consequently, we
determined the amount of out-of-frame single majority in-
sertions in the Allen et al. DSB repair dataset (20), and
proceeded to evaluate the ability of inDelphi and Lindel
to predict them. We compared the predicted and observed
insertion-based single majority repairs by inDelphi and
Lindel and calculated their respective sensitivity, specificity,
and PPV as described above for the PreMA predictions.
Based on the observed PreMA and 1bp-insertion predictive
performances by MENTHU, inDelphi and Lindel, we de-
signed a workflow between these that maximized our abil-
ity to predict the single majority frameshifts present in the
Allen et al. (20) dataset.

Assessment of PreMA targeting for out-of-frame mutations

Accurate prediction of PreMAs would be of limited value if
their frequency or general localization within a gene were
not useful experimentally. Therefore, we investigated the
intragenic density and localization of PreMAs in 28 hu-
man and 26 zebrafish genes (Supplemental Table S1) that
were likely to result in early out-of-frame mutations. Us-
ing MENTHU, we screened the first 30% of the cDNA se-
quence of each gene for potential frameshift-resulting Cas9
and Cas12a-mediated PreMAs. To ensure screening of at
least 150 bp per cDNA, the first 182bp were screened for
shorter coding sequences (150 + 32 bp upstream of DSB
site to ensure sufficient sequence context for prediction).

RESULTS

Data inclusion

Following the inclusion/exclusion criteria described in the
methods section, we extracted a set of 5,885 Cas9-mediated
DSB repair events from the Allen et al. data (20). Briefly, all
of these were required to utilize gRNAs that target known
human genomic sequences and have their most frequent ob-
served mutation outcome be a simple indel (Figure 2A).
The alignments between the WT sequence and the most fre-
quently observed indel at each individual DSB repair event,
constituted ∼54% non-MMEJ deletions, 31% MMEJ dele-
tions, 14% 1 bp insertions, and 0.2% + 1 bp insertions.

Comparison between PreMA predictive performance of
MENTHU, inDelphi and Lindel

Sensitivity, specificity, and positive predictive value (PPV)
were calculated for the PreMA predictions of MENTHU,
inDelphi, and Lindel at each of the 5,885 Cas9-mediated
DSBs. The corresponding confusion matrices are shown in
Figure 3A. Of the 614 PreMAs in the data, MENTHU cor-
rectly identified twice the total number as inDelphi (with
sensitivities of 46% and 23%, respectively), although with
a lower correct classification-rate of PreMA-positive events
(55% to 76% PPV, respectively) and slightly lower specificity
(96% and 99%, respectively). Lindel was excluded from fur-
ther PreMA deletion analyses because of its relatively poor
sensitivity (0.8%). In terms of PreMA coverage, 27.0% of all
available PreMAs were uniquely predicted by MENTHU,
4.6% by inDelphi only, and 18.9% by both (166, 28, and 116
out of 614, respectively). In contrast, the majority (95.3%)
of the 5271 non-PreMAs in the data were correctly classi-
fied by both tools. Further analysis into these differences re-
vealed that 10/28 of the PreMAs found by inDelphi but not
MENTHU failed the MENTHU �H proximity criterion
(see ∂ at Figure 1B’ and ‘Sequence data acquisition, inclu-
sion, and classification’ and ‘Sequence data acquisition, in-
clusion, and classification’ in Materials and Methods), and
the remaining 18/28 failed the MENTHU Score 1.50 cutoff
(four of them by 0.01 or less).

PreMAs, by definition, appear at a frequency of at
least 50% in the mixed repair pool following a DSB re-
pair event. Breaking down the MENTHU false-positive
PreMA predictions revealed that over 60% of them failed
to reach the ≥50% frequency requirement, albeit display-
ing the characteristic MMEJ deletion pattern. Over half
this subset had >40% frequency, with most displaying a fre-
quency >46%. Importantly, the vast majority of these false-
positives MMEJ outcomes (97%) still displayed the exact
sequence changes predicted by MENTHU. This finding was
consistent across true positives by both MENTHU and in-
Delphi where, respectively, 100% and 99% of the sequence
predictions matched the observed predominant sequence.

Receiver Operating Characteristic (ROC) curves for MEN-
THU and inDelphi predictions

ROC curves allow for the comparison between predictive al-
gorithms regardless of the thresholds ultimately chosen for
prediction. In general, the point in the curve closest to the
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Figure 3. Comparison of the performance of the published versions of MENTHU and inDelphi in predicting PreMAs in a large, out-of-sample dataset. (A)
Confusion matrices for PreMA predictions by MENTHU (top) and inDelphi (bottom). Rows indicate the PreMA status of 5,885 Cas9 generated mutation
profiles in mESC cells taken from Allen et al. (20). Columns denote the PreMA predictions by MENTHU and inDelphi. Sensitivity is the proportion of
positive-PreMAs correctly predicted as such. Specificity is the proportion of negative-PreMAs correctly predicted as such. PPV is the proportion of correct
predictions of positive-PreMAs. (B) Receiver Operating Characteristic (ROC) curves comparing MENTHU and inDelphi PreMA predictions. Here, sensi-
tivity is plotted against 1 – specificity (or the probability of a type I error: �) as a function of varying prediction thresholds. The two plotted points represent
the published thresholds for both tools. The MENTHU ROC curve was generated by varying the MENTHU score threshold for PreMA classification. In
the inDelphi ROC curve, the minimum threshold probability of the most frequent predicted read was varied. The MENTHU curve is truncated because
its second classification criterion regarding the maximum distance between �Hs allowed for MMEJ classification does not allow for a higher sensitivity.
The inset is a blowup of the region where MENTHU is present.

top-left coordinate (1,0) represents the prediction threshold
that maximizes sensitivity and specificity. However, the pre-
diction threshold to use should ultimately be decided on a
case-by-case basis. The ROC curves for MENTHU and in-
Delphi are shown in Figure 3B. The MENTHU ROC curve
is truncated because MENTHU classifies any MMEJ pre-
diction that does not comply with the maximum of 5bp dis-
tance between �Hs as a non-PreMA. Hence, the maximum
achievable sensitivity (the top-left most point of the ROC
curve) was 83.39%.

Refinement of MENTHU-based PreMA prediction models

As evidenced by the ROC curves described above, choosing
different MENTHU score thresholds results in trade-offs
between sensitivity and specificity. Since MENTHU clas-
sifications rely on two different thresholds (Figure 1B”’),
we looked at varying the distance threshold (∂) while keep-
ing the MENTHU score threshold constant to observe
changes in the PreMA predictive performance (Table 1).
Figure 4A shows how all 1844 MMEJ repaired events in
the data, PreMA and not PreMA, are distributed as a
function of ∂. Figure 4B displays the distribution of Pre-
MAs across each bin of Figure 4A. We found that, on
this data set, MENTHU increased its PPV and specificity
to ∼65% and 97% (∼10% and a ∼1.5% increase, respec-
tively) by decreasing the ∂ by 1bp (to 4 bp) in exchange for
a ∼4.5% sensitivity loss (MENTHU@4). We also looked
at whether combining the MENTHUs and/or inDelphi
PreMA predictions resulted in a better performance (Ta-

Table 1. Summary of the PreMA predictive performance of MENTHU at
different �H distance thresholds in bp (@x bp)

Model Sensitivity Specificity PPV

MENTHU@3 36.64% 97.99% 67.98%
MENTHU@4 41.53% 97.36% 64.72%
*MENTHU@5 45.93% 95.64% 55.08%
MENTHU@6 48.70% 93.54% 47.16%

*MENTHU@5 represents the performance metrics by the original MEN-
THU. PPV: Positive predictive value, the percentage of correct positive
PreMA predictions.

Table 2. Summary of the PreMA predictive performance of different com-
binations between MENTHU and inDelphi

Model combination Sensitivity Specificity PPV

MENTHU alone 45.93% 95.64% 55.08%
MENTHU@4 alone 41.53% 97.36% 64.72%
inDelphi alone 23.45% 99.15% 76.19%
MENTHU or inDelphi 50.49% 95.28% 55.46%
MENTHU and inDelphi 18.89% 99.51% 81.69%
MENTHU@4 or inDelphi 46.91% 96.95% 64.14%
MENTHU@4 and inDelphi 18.08% 99.56% 82.84%

PPV: positive predictive value, the percentage of correct positive PreMA
predictions.

ble 2). The best combination was MENTHU@4 or inDel-
phi (i.e. predict a PreMA if either algorithm makes this
prediction), achieving a 64% PPV and a ∼1% increase in
both sensitivity and specificity in comparison to the original
MENTHU.
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Figure 4. PreMA distribution of MMEJ events as a function of the distance between the microhomologies employed for repair. (A) Stacked (left) and
staggered (right) distributions of the number of MMEJ repair events in a large gene editing data set (20) and their PreMA status were plotted as a function
of the distance between the microhomologies (�Hs) used for repair (∂). The amount of MMEJ events increases after a ∂ of 1 bp and then decreases
consistently as a function of ∂ after 5 bp. (B) The fraction of PreMAs across each ∂ bin in A is plotted as a function of ∂. The PreMA fraction decreases in
an exponential-like fashion as a function of ∂. The dotted lines in both A and B represent the classification threshold employed by MENTHU for PreMA
predictions. Everything to the left of the dotted line is predicted as PreMA as long as the corresponding MENTHU score is ≥1.50.

To investigate whether the two features that MENTHU
utilizes for PreMA predictions can be numerically opti-
mized, two machine learning algorithms (Moon Rover and
Moon Walker) were developed using the same inputs and
outputs as MENTHU.

• Moon Rover. A logistic regression model with MENTHU
score and ∂ as inputs and a binary PreMA/non-PreMA
classification as the output.

• Moon Walker. A gradient boosting model (25) based
on decision trees (27) was trained on the same dataset
as Moon Rover using the same input/output scheme.
The hyperparameter combination that yielded maximum
ROC area under the curve (AUC) utilized 450 trees with
six levels of interaction depth, a minimum of 10 observa-
tions per node and a 0.01 shrinkage. ROC curves for the
PreMA prediction performance on the test set by MEN-
THU, inDelphi, Moon Rover, and Moon Walker were
generated (Figure 5). Moon Rover and Moon Walker
each showed small AUC improvements over MENTHU,
similar to inDelphi.

Estimation of PreMA frequency and distribution in verte-
brate genomes

To assess the usefulness of PreMA targeting for reverse ge-
netics applications, we investigated the frequency and local-
ization of MENTHU-predicted PreMAs across 54 (28 hu-
man, 26 zebrafish) genes. The estimated PreMA frequency
was consistent with previous reports (15,23), amounting to
∼10% of all targetable sites for both human and zebrafish.
As expected, Cas12a, a nuclease with more targeting con-
straints than Cas9 (TTTV vs NGG) (28), displayed fewer
potential knockout-inducing PreMAs. We also found that,
when considering Cas9 alone (i.e. NGG PAMs), 81% of
the genes screened (44 out of 54) have at least one pre-
dicted PreMA site in the first 30% of their coding sequences.
This number increases to 87% (47/54) when also consider-
ing Cas12a.

Evaluation of insertion-based predominant sites and their pre-
diction by inDelphi and Lindel

To estimate the need for insertion-based single majority out-
come predictions, which MENTHU is unable to generate,
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Figure 5. Receiver Operating Characteristic (ROC) curves comparing the
prediction performance of MENTHU and inDelphi to that of the novel
MENTHU-based tools Moon Rover and Moon Walker. Moon Walker
and Moon Rover are two machine-learning-based tools that utilize the
same two features for PreMA predictions that MENTHU uses: the MEN-
THU Score and the distance between the microhomologies used for most
expected MMEJ repair outcome. The ROC curves displayed represent the
PreMA prediction performance of MENTHU, inDelphi, Moon Rover,
and Moon Walker on the out-of-sample validation set described on Figure
2E. Here, sensitivity is plotted against 1 – specificity (or the probability of
a type I error: �) as a function of varying prediction thresholds. See Figure
3 legend for explanation on MENTHU and inDelphi thresholds. The inset
is a blowup of the region where MENTHU is present. The area under the
curve for inDelphi, Moon Rover, and Moon Walker are 0.918, 0.916 and
0.916, respectively.

we determined the amount of insertions in the Allen et al.
data (20) relative to PreMAs. More specifically, we were in-
terested in assessing the added benefit of using inDelphi or
Lindel to predict single majority insertions that would cause
frameshift mutations. Out of the 5,885 observed DSB re-
pair events, 839 (∼14%) resulted in insertions. Of these, 826
(∼98%) were 1bp insertions, of which only 186 resulted in
single majority outcomes. While inDelphi failed to predict
any insertion-based single majority outcomes, Lindel cor-
rectly identified 62 out of the 186, amounting to a sensitivity
of 33%, a specificity of 99%, and a 60% PPV by incurring
in 42 false positives.

MENdel: deploying MENTHU and Lindel together provides
the most predictive coverage for out-of-frame mutations

In short, while MENTHU and inDelphi possess distinct ad-
vantages over each other for PreMA prediction (where Lin-
del performed comparably poorly), MENTHU offers more
prediction flexibility by allowing users to accommodate pre-
diction thresholds. In contrast, Lindel outperformed in-
Delphi at identifying single majority insertions, something
MENTHU was not designed to do. Consequently, we con-
structed MENdel, a workflow that combines MENTHU
and Lindel to predict DSB sites likely to result in out-of-
frame single majority outcomes either by MMEJ deletions
or 1 bp insertions (Figure 6). MENTHU alone was able
to correctly identify 135 out of the 329 frameshift PreMAs
in the data. This corresponds to 44%, 98% and 51% sensi-
tivity, specificity, and PPV, respectively; consistent statistics
to the overall MENTHU PreMA predictive performance.
Like before, the inDelphi sensitivity to frameshift PreMAs
(17%) was lower than that of MENTHU. By ignoring any
Lindel PreMA predictions and focusing only on its inser-

tion predictions, MENdel adds these out-of-frame insertion
predictions on top of the MENTHU frameshift PreMA
predictions, correctly identifying 197 of 318 total out-of-
frame MMEJ- or insertion-based frameshifts in the data
(169 false positives). Thus, MENdel provides a larger pre-
dictive coverage of frameshift mutations without any signif-
icant performance sacrifices, displaying similar prediction
metrics to MENTHU alone (41% sensitivity, 97% speci-
ficity, 54% PPV). MENdel was also used to screen the first
30% of the coding sequences of 54 vertebrate genes for DSB
sites likely to result in single majority frameshifts via Pre-
MAs or 1bp insertions. MENdel found that 47 out of the
54 genes (87%) screened possess at least one frameshift-
inducing Cas9-targetable site likely to result in a single ma-
jority outcome.

DISCUSSION

The success of gene editing applications from gene dis-
covery to gene therapy is critically dependent on the spe-
cific sequence changes made at each genetic locus. For ex-
ample, different outcomes due to as little as a single base
difference have the potential to substantially alter the ob-
served phenotype in gene therapy uses (e.g. in-frame ver-
sus frameshift alleles). Similarly, a failure to generate a true
loss-of-function allele could yield a false negative result
for gene discovery testing. Gene editing today largely un-
derappreciates the inherent limitations of using NHEJ for
the generation of diploid knockouts. Even with 100% effi-
ciency cutting, NHEJ will produce a frameshift two thirds
of the time by random chance. Assuming that the repair of
both chromosomal copies of the target side are independent
events, dual-allele knockouts would occur at an expected
frequency <50% ( 2

3 × 2
3 = 4

9 ). This represents an upper ef-
ficiency limit for the generation of loss-of-function alleles
where a gene editing outcome cannot be selectively enriched
for (clonal expansion of a cell or germline propagation of an
animal). Conversely, for somatic genetic therapeutics or for
somatic loss of function science in animal models, MMEJ
has the potential to result in up to 100% of dual loss-of-
function alleles. In addition, MMEJ alleles provide editing
reproducibility to the nucleotide level, which NHEJ alle-
les cannot. This is beneficial for the reproducibility of gene
editing applications able to be clonally expanded or prop-
agated. The goal of this study was to validate MENTHU
as an MMEJ-based gene editing tool on an independent
dataset and to utilize gene editing outcome data to generate
a new prediction tool MENdel for improvements in gene
editing precision applications (Figure 7).

We have highlighted how biasing DNA repair mecha-
nisms towards MMEJ reduces the heterogeneity of gene
editing outcomes resulting from the more common NHEJ
repair pathway, thus offering important advantages for re-
verse genetics and therapeutic applications. Here we esti-
mated the usefulness of computational tools MENTHU, in-
Delphi, and Lindel to identify DSBs likely to preferentially
undergo MMEJ repair (PreMAs; Figure 1B) in a large in-
dependent dataset. To assess the generalizability of MEN-
THU results beyond the in vivo work in zebrafish (15), we
measured the ability of MENTHU to predict PreMAs in
a vertebrate cell type with multipotency by using the large
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Figure 6. MENdel predicts which DNA double-strand breaks likely result in single majority deletions and insertions for likely frameshift loss of function
alleles. The confusion matrices display the performance of the prediction of (A) frameshift-inducing PreMAs by MENTHU and (B) insertion frameshifts
by Lindel across all 5,885 Cas9-mediated edits from Allen et al. (20). (C) MENdel takes 60bp of sequence context centered at a SpCas9-targetable DSB
site to predict single majority deletions (PreMAs) using MENTHU and single majority insertions using Lindel. MENdel offers ∼46% more true-positives
of frameshift alleles (197) than MENTHU alone (135).

Figure 7. MMEJ-targeting of double-strand break sites for functional genomics and gene therapies. MENdel provides genome engineers with the largest
prediction coverage of single majority frameshifts for loss-of-function experiment design (boxed). We sampled 54 vertebrate genes for knockout-generating
PreMAs using MENTHU and MENdel, and estimated that the majority (∼90%) of vertebrate genes should possess at least one early out-of-frame single
majority outcome. MENTHU (right) is the only double-strand break repair prediction algorithm that allows DNA targeting with nucleases different to
SpCas9 and offers scientists with customizable prediction thresholds to best accommodate user needs.
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out-of-sample mESC cell gene editing dataset (20). In paral-
lel, we also compared the mechanistically informed MEN-
THU algorithm against inDelphi (23) and Lindel (21), two
machine learning-based tools trained to predict DSB repair.
As shown on Figure 3A, MENTHU and inDelphi offer
distinct advantages over one another, at least on this large
data set. MENTHU was able to identify close to twice as
many PreMAs as inDelphi, amounting to around half of
all available PreMAs in the dataset, though at a higher false
positive rate. Even so, most of these false positives came
from a slight overestimation of outcome frequencies (i.e.
the observed repair outcome not reaching the required 50%
minimum frequency for PreMA classification), and still dis-
played the predicted outcome sequence. This was also the
case for the predicted true positives. This study shows how
MENTHU performs satisfactorily in a different vertebrate
cell type than zebrafish, and assuming this trend general-
izes over multiple cell types, these results suggest that MEN-
THU could be a valuable tool for genome-wide gene discov-
ery applications. The less sensitive inDelphi, on the other
hand, does provide users with a ∼20% increase in PPV. This
suggests that inDelphi could be useful as a PreMA confir-
mation tool for highly desirable DSBs. In contrast, Lindel
correctly identified less than 1% of the available PreMAs in
the data and therefore was not considered for the remaining
PreMA comparative analyses.

Exploring the ROC curves for MENTHU and inDel-
phi (Figure 3B) provides a richer comparison between both
tools. First, the inDelphi results appear marginally better
overall (since curves closer to the upper left in an ROC plot
are better), but note that this comparison is potentially bi-
ased in favor of inDelphi since the test set comprised data
from the same type of mammalian mESC cells as the inDel-
phi training data (while MENTHU was trained on zebrafish
cells). Also, the curves suggest that the performance differ-
ences noted above are mostly due to the specific prediction
thresholds chosen for classification in the initial publica-
tions, since results for both models approximate each other
by choosing different thresholds. Unfortunately, due to the
nature of the inDelphi repair outcome predictions, choos-
ing a different prediction threshold in their case is counter-
intuitive. The reason is that inDelphi predicts the frequen-
cies of the different genetic outcomes per DSB directly. As
such, claiming that a threshold different to 50% should be
used to observe a single repair outcome 50% or more of the
time is contradictory. Additionally, inDelphi does not cur-
rently enable users to modify the prediction threshold that
gives rise to their predicted frequencies. In contrast, MEN-
THU provides the user the ability to filter out results below
a user-specified MENTHU score, enabling users to choose
this threshold to their liking (22). This paper aims to guide
MENTHU users so they can fully take advantage of the
ability to modulate sensitivity and specificity of their pre-
dictions.

Figure 4 suggests the existence of a 0–4 bp ∂ window to
maximize PreMA repair outcomes. While the proportion of
PreMAs decreases consistently within this window (Figure
4B), we observed a higher number of MMEJ events when ∂
≥ 2 bp. Shifting the MENTHU ∂ requirement down to only
include this 0–4 bp window (MENTHU@4) increased the
prediction PPV and specificity without a large sacrifice in

sensitivity. In our opinion, since PreMA targeting provides
genome engineers and gene therapists with a method to bet-
ter ensure experimental reproducibility, this small sensitiv-
ity trade-off is worth the 10% increase in PPV. The ROC
curves displayed in Figure 5 display the classification per-
formance of the original MENTHU (MENTHU@5), in-
Delphi, and the MENTHU-based Moon Rover and Moon
Walker on the same out-of-sample test set. For all levels
of specificity, Moon Rover and Moon Walker achieved a
higher sensitivity than MENTHU and displayed perfor-
mances virtually indistinguishable from each other (AUC,
area under the curve, of 0.916 for both) and from that of
inDelphi (AUC of 0.918). Moon Rover and Moon Walker,
therefore, provide alternatives to MENTHU with perfor-
mance levels comparable to inDelphi, without any of the
conceptual issues that arise when customizing the predic-
tion threshold.

Our results suggest that the addition of PreMA-targeting
schemes to experimental pipelines using MENTHU or
MENTHU-like tools is beneficial for both gene therapy and
genome-wide reverse genetics applications. More specifi-
cally, we have shown that MENTHU was able to identify
close to half of all available PreMAs in a large dataset. By
looking at the MENTHU-predicted PreMA distribution of
individual genes we also aimed to investigate if PreMA tar-
geting would be useful at an intragenic scale, particularly for
gene knockout experiments. It is worth noting that, in the
case of generating out-of-frame mutations, insertion-based
frameshifts may also provide alternative targeting options.
In the dataset analysed, single majority insertions consti-
tuted a non-trivial ∼36% of all frameshift mutations, the
rest being PreMAs. Therefore, we believe that there is sig-
nificant value to pursuing insertion-based single majority
outcomes, with inDelphi and Lindel providing two different
avenues for such predictions. While Lindel correctly identi-
fied ∼33% of all single majority insertion frameshifts, in-
Delphi did not predict any. Thus, we propose to combine
MENTHU PreMA predictions with Lindel insertion pre-
dictions (MENdel) to cover both deletion- and insertion-
based single majority frameshifts. MENdel provided the
largest coverage of single majority frameshifts without any
major trade-offs.

By prospectively screening 54 vertebrate genes for Pre-
MAs we estimated that, on average, four out of every five
genes display at least one SpCas9-targetable PreMA within
the first 30% of their coding sequences, (and close to nine
in ten genes when considering MENdel or Cas12a Pre-
MAs as well). Of note, these are likely underestimations,
since we did not account for any DSBs derived from splice
site targeting. Taken together, we believe that the system-
atic targeting of out-of-frame single majority outcomes to
decrease the heterogeneity of the genotypic pool that re-
sults from DSB repair should be a viable strategy for al-
most all genes for the generation of knockouts, potentially
accelerating gene discovery and gene therapy applications,
and that tools like MENTHU, inDelphi and MENdel cur-
rently empower genome engineers to do so. It is worth
noting that restricting frameshift analyses to single ma-
jority outcomes ignores the possibility of gene inactiva-
tion via the combination of all generated mutant alleles.
Since frameshifts at different positions within a gene can
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result in varying levels of inactivation, we focused on sin-
gle majority edits to enrich for experimental reproducibil-
ity. However, MENdel results output both the expected
MENTHU MMEJ deletions as a function of �H compe-
tition (MENTHU Score) and the Lindel-predicted inser-
tion frequencies, from which users can infer combined-allele
frameshifts.

Another feature of interest of MENTHU is the hypoth-
esis behind the algorithm. Firstly, MENTHU only predicts
PreMAs when the �Hs involved in repair are relatively
close. This is due to the assumption that the kinetics of
the DSB repair machinery would favor �H pairs that are
physically closer to each other. The exponential decrease in
PreMA fraction as a function of ∂ supports this assump-
tion (Figure 4B). Secondly, the MENTHU score was de-
signed as a measure of the competitiveness between the �H
options the repair machinery has to bridge at a given DSB.
Mathematically, the MENTHU score is the ratio between
the Bae et al. (16) �H pattern scores of the top two pre-
dicted outcomes repaired by MMEJ (Figure 1B”). These
pattern scores can be interpreted as the ‘strength’ of a �H
pair and were shown to correlate with the observed occur-
rence frequency of the corresponding MMEJ repair out-
come by the authors. In addition to the proximity between
the �Hs used for repair, MENTHU requires the ratio of
these ‘strengths’ to be 1.50 or above and interprets this sce-
nario as a low competition state. In this case, the ‘strongest’
�H pair is ‘stronger’ enough than the other, which results in
a higher propensity to be picked by the MMEJ machinery
for repair. The success of MENTHU as a PreMA predictor
supports this competition hypothesis, and potentially sheds
some light into the function of the underlying biochemi-
cal mechanism. This is in contrast to the machine-learning
based inDelphi which, albeit displaying comparable predic-
tion levels to MENTHU, is difficult to interpret in terms of
features or biological mechanisms, since the multiple hid-
den layers rapidly transform and integrate input features.
That said, inDelphi predictions are a result of an ensemble
of three machine learning models: two deep networks for
deletions and a k-nearest neighbor scheme for insertions,
and the authors include the result of the first two in the cal-
culation of the latter, hinting at competition between dele-
tions and insertions.

Inspired by the competition hypothesis, Moon Rover and
Moon Walker employ the same two features that MEN-
THU uses for PreMA predictions. In Moon Rover, only
the proximity criterion displayed a significant p value (p <
2 × 10−6)), meaning that it is unlikely to have observed the
results of the logistic regression by chance alone, while the
MENTHU score did not show a significant p value (p =
0.468). In Moon Walker, the relative influence of each vari-
able was calculated using the caret package in R by av-
eraging the accuracy improvement made by each individ-
ual predictor variable at each decision split across all deci-
sion trees. According to Moon Walker, the proximity cri-
terion was approximately 4 times more influential for ac-
curate PreMA classification (∼80% to ∼20%). Thus, both
Moon Rover and Moon Walker suggest that �H proximity
is an important factor for PreMA prediction, and probably
relevant to the underlying MMEJ repair biochemistry. Per-
haps not as influential as proximity, the MENTHU score

still improves predictions across all MENTHU-based clas-
sifiers, and future studies should investigate how to bet-
ter quantify and measure �H competitiveness. The pat-
tern scores that comprise the MENTHU score are met-
rics that aggregate �H length, GC content, and expected
deletion length, and we are agnostic as to whether the pat-
tern score is the best possible surrogate for �H ‘strength’.
It is also likely that the features described above are not
the only decisive factors in swaying the repair machinery to
MMEJ preferentially, and we expect that the biochemical
context surrounding the repair process to be heavily influen-
tial to factors such as cell cycle stage, DNA accessibility, and
more.

Precise genome engineering technology is functionally
a two-step process: the generation of a specific DSB and
its subsequent repair. Currently, the efficient generation of
consistent DSB repair outcomes remains an important bot-
tleneck for precision gene editing, with traditional nucle-
ase design yielding around a 10% chance for a PreMA
reagent (15,23) (for reference, 10.4% of Allen et al. (20)
gRNAs are PreMA reagents). MENTHU, inDelphi, and
Lindel offer genome engineers better control over the sec-
ond step, enabling researchers to generate more consistent
genotypes for their gene editing experiments. Here, we show
that MENTHU and inDelphi can identify large fractions
(46% and 23%, respectively) of all available PreMA sites
on an independent dataset with over 50% precision (PPV).
We also introduce the novel workflow MENdel that com-
bines MENTHU PreMA targeting with Lindel insertion
predictions, and used it to identify DSBs likely to result
in frameshift-inducing single majority outcomes for loss-
of-function experiments. According to MENdel screens of
54 vertebrate genes, we estimate that close to 90% of genes
(47/54) should possess at least one SpCas9-targetable single
majority frameshift site. Around 80% of these (44/54 genes)
are expected to be PreMAs (the remaining being due to
1bp insertions). Unlike inDelphi or Lindel, MENTHU al-
lows the PreMA prediction of DSBs generated by nucleases
other than SpCas9. According to our MENTHU estimates,
considering Cas12a-targetable sites (TTTV PAM) in addi-
tion to SpCas9 increases the gene coverage for frameshift-
inducible PreMAs to 87% (47/54). Taking the MENdel Sp-
Cas9 predictions together with the MENTHU Cas12a pre-
dictions showed brought the number of genes expected to
have at least one knockout generating single majority out-
come to over 90% (49/54). According to these estimates,
screening for single majority sites represents a novel pre-
cision gene editing approach that facilitates consistent and
reproducible outcomes for gene therapy and gene discovery
applications.

DATA AVAILABILITY

The DNA double-strand break repair data by Allen
and collaborators is available at https://figshare.com/
articles/processed mutational profiles/7312067. MEN-
THU is hosted at genesculpt.org/menthu. inDelphi is
hosted at indelphi.giffordlab.mit.edu. Lindel is hosted
at lindel.gs.washington.edu/Lindel/. MENdel is hosted
at github.com/FriedbergLab/MENdel-command-line.
ENSEMBL accession numbers for the CDS sequences

https://figshare.com/articles/processed_mutational_profiles/7312067
http://genesculpt.org/menthu
http://indelphi.giffordlab.mit.edu
https://lindel.gs.washington.edu/Lindel/
http://github.com/FriedbergLab/MENdel-command-line


78 Nucleic Acids Research, 2021, Vol. 49, No. 1

screened for early loss-of-function PreMAs are included in
Supplemental Table S1.
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Supplementary Data are available at NAR Online.
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