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Abstract

Mosquito-borne diseases are increasingly being recognized as global threats, with

increased air travel accelerating their occurrence in travelers and their spread to new loca-

tions. Since the early days of aviation, concern over the possible transportation of infected

mosquitoes has led to recommendations to disinsect aircraft. Despite rare reports of mos-

quitoes, most likely transported on aircraft, infecting people far from endemics areas, it is

unclear how important the role of incidentally transported mosquitoes is compared to the

role of traveling humans. We used data for Plasmodium falciparum and dengue viruses to

estimate the probability of introduction of these pathogens by mosquitoes and by humans

via aircraft under ideal conditions. The probability of introduction of either pathogen by mos-

quitoes is low due to few mosquitoes being found on aircraft, low infection prevalence

among mosquitoes, and high mortality. Even without disinsection, introduction via infected

human travelers was far more likely than introduction by infected mosquitoes; more than

1000 times more likely for P. falciparum and more than 200 times more likely for dengue

viruses. Even in the absence of disinsection and under the most favorable conditions, intro-

duction of mosquito-borne pathogens via air travel is far more likely to occur as a result of an

infected human travelling rather than the incidental transportation of infected mosquitoes.

Thus, while disinsection may serve a role in preventing the spread of vector species and

other invasive insects, it is unlikely to impact the spread of mosquito-borne pathogens.

Author summary

Vector-borne diseases such as malaria, dengue, yellow fever, and Zika are global chal-

lenges to public health. International policies, such as the International Health Regula-

tions, call for controlling mosquitoes on aircraft to prevent the introduction of mosquito-

borne pathogens and invasive mosquito species. The research presented here used malaria

and dengue data to estimate the likelihood of introduction of both pathogens via humans

and mosquitoes travelling on airplanes. We found that the probability of introduction of
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either pathogen by mosquitoes is low due to few mosquitoes being found on aircraft, low

infection prevalence among mosquitoes, and a short lifespan. Humans were hundreds of

times more likely to spread pathogens via air travel, even in the absence of any mosquito

control. Therefore, policies designed to prevent the transportation of infected mosquitoes

on airplanes are unlikely to prevent the spread of vector-borne diseases.

Introduction

Mosquito-borne diseases such as malaria [1] and dengue [2] are major causes of morbidity

and mortality globally. While these pathogens are endemic only in tropical and subtropical

environments, modern air travel has broken down traditional geographic barriers to the extent

that infected humans and mosquitoes may quickly travel anywhere in the world [3, 4]. Infected

travelers of either variety pose a risk of introducing pathogens to areas where the environment

is suitable but the pathogen is not present, leading to local outbreaks. Furthermore, in areas

where the pathogen does exist, introductions may result in the replacement of a local strain

with a newly introduced one, perhaps with different pathogenicity or drug resistance profiles.

Despite the recognized and realized risk that travelling humans and mosquitoes acciden-

tally transported on aircraft present for the spread of vector-borne diseases [3], there remains a

great deal of uncertainty about how best to minimize the spread of pathogens via these two

hosts. One option is disinsection, “the procedure whereby health measures are taken to control

or kill the insect vectors of human diseases present in baggage, cargo, containers, conveyances,

goods and postal parcels.”[5] The broad implementation of such measures has been in place

for many decades [6] and is specifically spelled out in the International Health Regulations [5],

which state that, “Every conveyance leaving a point of entry situated in an area where vector

control is recommended should be disinsected and kept free of vectors.” Effective disinsection

could reduce the risk of spread of both specific mosquito species and pathogens [3]. However,

specifically for pathogen introduction, it is unclear how important the role of incidentally

transported mosquitoes is compared to the role of traveling humans.

Introduction of a pathogen by either a human or a mosquito depends on a sequence of sto-

chastic events. Starting in the source location, there is a probability that a human or mosquito

is infected by the pathogen and a probability that a human or mosquito travels to another loca-

tion. Upon arrival, there is some probability of transmission. For the infected human, this

depends on being found by a competent mosquito, being fed upon during the infectious

period, having that mosquito first survive the extrinsic incubation period and then transmit

the pathogen to another person. For a transported infected mosquito, only the latter part of

this sequence is required; the mosquito must survive the extrinsic incubation period and trans-

mit the pathogen to a person before dying.

Here we developed branching process models to compare the risk associated with traveling

mosquitoes and traveling humans. Branching process models can be used to explicitly formu-

late chains of discrete random events such as those described above [7, 8]. In this framework,

each stochastic step is first characterized individually and then the sequential series of events is

analyzed using well-developed mathematical methods. Here, we are interested in a single out-

come, introduced autochthonous transmission, which could result from two alternative path-

ways, introduction by an infected human or by an infected mosquito.

We focused on two mosquito-borne pathogens of global importance, the malaria parasite P.

falciparum and dengue viruses. These pathogens differ in important ways, they are transmitted

by different vectors (Anopheles and Aedes mosquitoes, respectively) and have different
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human infection dynamics (multi-stage, long-term infection or single stage acute infection,

respectively). To assess the worst-case scenario for potential introduction, we focused on

highly endemic areas where transmission of each pathogen is near optimal and formulated a

stochastic description of each step of the composite process using published literature to esti-

mate the key parameters. We then estimated probabilities of introduction via each pathway

and assessed the sensitivity of those outcomes to assumptions incorporated into the model.

Materials and methods

We used a branching process framework to model P. falciparum and dengue virus introduc-

tion via air travel by either infected mosquitoes or humans. In brief, a branching process is

composed of a sequence of stochastic steps, each one taking discrete input from the preceding

step and producing discrete stochastic output [7, 8]. The pathogen introduction pathway via

mosquitoes included the following steps:

1. There must be at least one mosquito on the aircraft. We modeled the number of mosquitoes

as a Poisson process with mean λM, the average number of mosquitoes found on an aircraft.

2. There must be at least one infected mosquito. We modeled this step as a Bernoulli process

where each mosquito has probability pIM of being infected with the pathogen.

3. An infected mosquito must transmit the pathogen to at least one human. We modeled this

step as a Poisson process, with a mean of R0MH, the average number of humans infected per

infected mosquito.

Introduction via humans includes the following steps:

1. There must be at least one human on the aircraft. We modeled this step as a Poisson process

with mean λH, the average number of humans found on an aircraft.

2. There must be at least one infected human. We modeled this step as a Bernoulli process

where each human has a probability pIH of being infected with a pathogen.

3. An infected human must arrive and transmit the pathogen to at least one mosquito. We

modeled this step as a Poisson process, with a mean of R0HM, the average number of mos-

quitoes infected per infected human.

4. An infected mosquito must transmit the pathogen to at least one human. We modeled this

step as a Poisson process, with a mean of R0MH, the average number of humans infected per

infected mosquito. This step is identical to the final step for introduction by a mosquito as

the key outcome in both pathways is a human infection.

To capture the full sequence of events in each pathway, we sequentially combined the prob-

ability generating functions for each individual step to build a generating function for each

complete sequence of events (S1 Text). With these composite functions, we calculated the

probability that at least one human transmission event occurred at the destination. This

approach enabled the robust consideration of uncertainty and variability in the Poisson and

Bernoulli parameters described above; each parameter is considered as a distribution of possi-

ble values rather than a fixed value. The key data and assumptions are described below, while

further detail is presented in the Supporting Information (S1 Text). Lastly, we assessed the sen-

sitivity of the branching process model results to parameter assumptions for each individual

step by estimating the relative change in introduction probabilities per unit relative change in

each parameter (S1 Text).
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Travel

The average number of human passengers on flights globally was 104 in 2015 according to the

International Civil Aviation Organization, which we assumed to be Poisson distributed (Fig

1A) (http://www.icao.int/annual-report-2015/Documents/Appendix_1_en.pdf). Approxi-

mately 0.91 mosquitoes (95%CI: 0.00009–5.3) were found per aircraft on average across 17

studies of 559,579 aircraft from 1931 to 1999 [9–25] (Fig 1B). Because of the variety of aircraft,

time periods, locations, objectives, methods, and data reported in these studies, we made the

conservative assumption that all mosquitoes were competent vectors, female, and alive, and

therefore capable of being infected and transmitting each pathogen. This scenario should

therefore overestimate vector mosquito transportation by aircraft.

Plasmodium falciparum

Estimates of the prevalence in humans were based on over 3,000 surveys of 2–10 year olds

[26]. The prevalence of P. falciparum reported in these surveys ranged from 0% to almost

100%, with a mean of 23% (Fig 2A). Fewer data were available for mosquito populations, but

the estimated prevalence of sporozoites in mosquitoes across 41 studies ranged from 0.01% to

7.6% with a mean of 2.3% [27] (Fig 2B). Because our focus was the relative probability of intro-

duction by each pathway, we reduced extreme variability by sampling only from the interquar-

tile range of the distributions of pIH and pIM. Finally, to account for correlation between

human and mosquito prevalence when comparing the two pathways, the samples were split

into deciles and randomly paired within each decile, such that samples with relatively high

human infection prevalence also had relatively high vector infection prevalence.

R0HM was calculated as the product of the mosquito density r (mean: 31 mosquitoes per per-

son [27]), mosquito biting rate b (above), the human-to-mosquito transmissibility pHM (mean:

0.16 [1]), and the duration of infectiousness D (mean: 205 days [28]) (Fig 2E):

R0HM ¼ rbpHMD:

R0MH was calculated using the classic formulation [29]:

R0MH ¼
bpMH

m
e� m�EIP;

accounting for the mosquito biting rate b (mean: 0.4 bites per day [27]), the mosquito-to-

human transmissibility pMH (mean: 0.55 [1], the mosquito mortality rate μ (mean: 0.13 per day

[27]), and the length of the extrinsic incubation period, EIP (mean: 10.9 days [27]) (Fig 2F).

Fig 1. Distributions of the parameters for the average number of humans (A) and mosquitoes (B) on aircraft. The dark shaded areas

in each distribution indicate the interquartile range. The median and interquartile range (IQR) of each distribution is shown in the

corresponding panel.

https://doi.org/10.1371/journal.pntd.0005683.g001
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Dengue virus

Estimates of the prevalence of DENV infection in humans were based on twenty seropreva-

lence studies (primarily in children) in hyperendemic locations across the globe [30–49]. The

mean yearly infection rate ranged from 2% to 90%, averaging approximately 23%. To estimate

the average daily prevalence of incubating and infectious humans, we sampled the duration

of infection as the sum of the intrinsic incubation period (IIP, mean: 5.9 days [50]) and the

adjusted infectious period (D, mean: 5.0 days, see below) discounted by the overlap (O,

approximately 1 day [51]), and multiplied yearly incidence by (IIP + D–O)/365. The mean

prevalence of DENV infection in humans was approximately 0.08% (Fig 2C). Mosquito infec-

tion rates were estimated from 13 studies in areas with ongoing dengue outbreaks that pro-

vided either direct measurements of infection rates, minimum infection rates through pooled

samples or indirect measurements of infection rates via maximum likelihood estimates of

pooled samples [52–64]. The mean prevalence of DENV infection in mosquitoes was 3% (Fig

2D). As for malaria, we sampled from the interquartile ranges of each distribution and strati-

fied sampled human and vector prevalence by deciles.

R0MH and R0HM for DENV (Fig 2G and 2H) were estimated as for malaria (above) under

the assumption that temperature was approximately 30˚C, i.e. conducive to efficient dengue

transmission [65]. The mean mosquito biting rate b was 0.7 bites per day [66], the mean mos-

quito-to-human transmissibility pMH was 0.5, the mean mosquito mortality rate μ was 0.21 per

day [67], and the mean length of the extrinsic incubation period, EIP was 6.5 days [50], and

the mean mosquito density r was 2 mosquitoes per person [68]. To obtain the dengue parame-

ter R0HM, we do not estimate the parameters pHM and D independently, as was done for

Fig 2. Distributions of parameters in the branching process for P. falciparum and dengue virus

introduction. The prevalence of infection in humans and mosquitoes is characterized by Bernoulli

distributions with parameters pIH (A and C) and pIM (B and D), respectively. Transmissibility for humans to

mosquitoes and mosquitoes to humans are characterized by Poisson distributions with parameters R0HM (E

and G) and R0MH (F and H), respectively. The dark shaded areas in each distribution indicate the interquartile

range. Each panel provides the median and the interquartile range (IQR) of the corresponding distribution.

https://doi.org/10.1371/journal.pntd.0005683.g002
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malaria. Rather, we obtain them in aggregate as the ‘Human Total Infectiousness’ (HTI), by

integrating a logistic function of the human-to-mosquito transmissibility over the course of

infection [69].

Results

The stepwise probabilities of P. falciparum or dengue virus introduction were quantitatively

nearly identical for the mosquito pathway (Fig 3A). The probability of a mosquito being on an

aircraft was generally low but variable (median: 0.25, 95% Credible Interval (CI): 9×10−5–

0.995). The median probability of at least one mosquito on board being infected was much

lower, less than 0.005 for both pathogens and the median probability for an infected mosquito

traveling and subsequently transmitting to a human was less than 0.002. Humans, in contrast,

were always present on aircraft and had high probabilities of completing each subsequent step

of the introduction pathway: at least one traveler being infected, at least one instance of trans-

mission to a mosquito, and at least one instance of transmission to a human (Fig 3B). For trav-

eling humans, the median probability of a local transmission event was approximately 1.0 and

0.4 for P. falciparum and dengue viruses, respectively.

Overall, the median probability that a single aircraft traveling from an endemic area to

another highly suitable area would lead to autochthonous human transmission of P. falciparum
due to incidental transportation of mosquitoes was 0.001 (95% CI: 0.000–0.041). In contrast,

the median probability of introduction by infected human travelers was 1.00 (95% CI: 0.84–

1.00). For dengue viruses, the probabilities were 0.002 (95% CI: 0.00–0.04) for mosquitoes and

0.41 (95% CI: 0.17–0.69) for humans (Fig 4). The average odds of introduction by humans ver-

sus mosquitoes was 1,000:1 (95% CI: 500:1–1,800:1) for malaria and 240:1 (95% CI: 150:1–

370:1) for dengue. For details on how these were obtained, see S1 Text.

The difference in introduction probabilities between the mosquito and human pathways

starts with different probabilities of travel; multiple humans are found on most aircraft, while

mosquitoes are relatively rare. For malaria, infection was more prevalent in humans (mean:

0.15) than in mosquitoes (mean: 0.02), so that the median estimated numbers of malaria

infected humans and mosquitoes on an aircraft were 12 (95% CI: 2–40) and 0.005 (95% CI:

~1.4×10−6–0.1), respectively. The estimated probability of having an infected human onboard

was approximately 200 (95% CI: 10–1×106) times higher than the probability of an infected

Fig 3. Step by step probabilities of success for each introduction pathway. For each sequential step in the mosquito (A)

and human (B) introduction processes, we calculated the median (points) and 95% Credible Interval (vertical lines) for the

probability of at least one event occurring. For example, the median probability that at least one human is on an aircraft is

approximately 1.0 while the median probability that there is at least one human on an aircraft AND who is infected with a dengue

virus is approximately 0.5. Note that for the introduction pathway via infected mosquitoes, the probabilities of success at each

step (as well as the 95% CI) are nearly identical for both malaria and dengue.

https://doi.org/10.1371/journal.pntd.0005683.g003
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mosquito being onboard. For dengue, the probability of being infected was higher for mosqui-

toes in the midst of an outbreak (mean: 0.03) compared to average human prevalence over time

periods encompassing outbreaks (mean: 0.007). Nevertheless, the difference in frequency of

travel still translates to the probability of infected human travelers being approximately 93 (95%

CI: 5–4.0×105) times higher than the probability of infected mosquitoes being on an aircraft.

We assessed the importance of each pathway-specific sub-component by estimating sensi-

tivity coefficients (Fig 5). Sensitivity related to the prevalence of infection is intrinsically linked

Fig 4. Distributions for the probability of introduction by each pathway. The density (log scale) for the probability of

introduction via each pathway across 1 million simulations for P. falciparum (left column) and dengue virus (right column) and for

the two pathways of introduction: infected mosquitoes (top row) and infected humans (bottom row). Each panel provides the

median and 95% credible interval.

https://doi.org/10.1371/journal.pntd.0005683.g004

Fig 5. Sensitivity of introduction pathways to each individual step. Sensitivity coefficients indicate the percent change in

the probability of introduction given a 1% change in each individual parameter (S1 Text). The probability of travel and the

prevalence of infection are combined in the parameters λITM and λITH.

https://doi.org/10.1371/journal.pntd.0005683.g005
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to the number of mosquitoes or humans on an aircraft because both contribute to the mean

number of infected individuals onboard, λITM and λITH, respectively. The mosquito pathway

was highly sensitive to λITM for both pathogens, a 1% change in either the number of mosqui-

toes or the prevalence of infection in mosquitoes resulted in a change of approximately 1% in

the probability of introduction. The importance of R0MH was lower, with a mean change of

approximately 0.8% in introduction probability per 1% change in R0MH. Sensitivity for the

human introduction pathway varied between malaria and dengue: P. falciparum introduction

was mostly insensitive to parameter changes as introduction was highly probable across the

parameter space while dengue showed some sensitivity, especially to the number of humans

on an aircraft and the prevalence of infection (combined in λITH).

Discussion

Mosquito-borne diseases such as malaria, dengue, yellow fever, chikungunya, and Zika are all

endemic in tropical or subtropical areas. These diseases have also been documented among

travelers and pose a transmission risk in areas where the pathogen is absent but the relevant

mosquito vector is present, as has seen with chikungunya and Zika viruses in recent years.

This risk is also a serious concern for areas where interventions are being targeted to prevent

the invasion of drug resistant pathogens or to eliminate a pathogen altogether, such as current

efforts to curb malaria [70, 71]. We assessed the relative risk of vector-borne pathogen intro-

duction by infected humans and infected mosquitoes aboard aircraft, specifically estimating

the probability of introduction of P. falciparum and dengue viruses. To clarify the relative risks

of the two alternative pathways we focused on a situation that would favor introduction, in

which the origin of air travel was assumed to be a highly endemic location and the destination

was assumed to be equally suitable for transmission but nevertheless free of the pathogen.

Introduction via infected human travelers was far more likely than introduction via infected

mosquitoes; more than 1000 times more likely for P. falciparum and more than 200 times

more likely for dengue viruses.

The low probability of introduction by mosquitoes stems from three key components. First,

mosquitoes are rarely found on aircraft; the majority of aircraft from the 17 surveys had no

mosquitoes on them and the highest number of vector species reported on a single aircraft was

17 Anopheles gambiae mosquitoes (possibly including both males and females) [13]. Second, if

mosquitoes do make it onto aircraft, they are unlikely to be infected; the estimated infection

prevalence of infection in mosquitoes was generally well below 5% even under the optimal

conditions assessed here. The importation of P. falciparum or dengue virus via mosquitoes

only becomes likely in the event that both of these rare conditions occur together. Finally, for a

human to become infected at the destination, an imported, infected mosquito must survive

long enough to complete the incubation period and feed on another human. Even in the highly

endemic settings considered here, most infected mosquitoes do not survive long enough to

transmit the pathogen.

The introduction probabilities differed between the two pathogens primarily because

of the difference in infectious period (approximately 205 days for P. falciparum versus

approximately 5 days for dengue viruses), which imparts increased human infection

prevalence and increased human to mosquito transmission. Despite this difference and

an estimate of higher prevalence in mosquitoes than humans, the relative risk for human

introduction was still 200 times higher than for introduction by mosquitoes. This

supports the generalizability of the finding that the frequency of travel and the differential

transmissibility (human-to-mosquito being higher than mosquito-to-human) drive the dif-

ference in introduction risk.
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The estimates provided here reflect a worst-case scenario in which prevalence is high in the

source location and transmission is highly likely in the destination location. This choice was

made to explicitly focus on the relative probability of introduction via human or mosquitoes as

opposed to the absolute probability. In more realistic situations, the risk of introduction by

either humans or mosquitoes is likely to be much smaller due to a number of factors influenc-

ing the association between infection risk and travel likelihood. For example, infection risk

may be lower among traveling humans compared to the general population because they may

have different exposure risk (e.g. if staying in an air-conditioned hotel) or different infection

risk (e.g. adults are more likely to be immune to DENV infection). To assess how this might

change the relative probability of introduction, we simulated a 90% reduction in human infec-

tion prevalence. Even under this condition, human travelers were more likely to introduce

both pathogens than accidentally transported mosquitoes (S1 Text). Moreover, airports are

often far from rural areas with high P. falciparum prevalence, so the prevalence of infection in

both humans and mosquitoes on aircraft is likely much lower than estimated here. And efforts

to limit transmission further reduce this risk [72]. The frequency of vector mosquitoes being

accidentally transported on aircraft was also likely overestimated as we used average numbers

of all mosquitoes regardless of species, sex, and viability (many were reported dead in the stud-

ies). These factors all suggest that we have overestimated the risk of introduction, especially by

mosquitoes. However, the differences in transmissibility and human travel likelihood would

change little, so the risk posed by travelling humans remains substantially higher than the risk

posed by the accidental transportation of mosquitoes.

Recommendations for disinsection targeted at mosquitoes of public health importance

focus on safety, effectiveness of the disinsection process, and the prevention of the introduc-

tion of invasive mosquito species and invasive pathogens via infected mosquitoes [3, 73]. The

safety of passengers, crew, and the physical aircraft are key challenges not addressed here [73].

Effectiveness of the disinsection process itself is an additional concern; methods and imple-

mentation of disinsection vary, few insecticides are approved for use on aircraft, and many

mosquitoes are resistant to some or all of those insecticides [73]. Safe and effective disinsection

may help reduce the threat of vector mosquito invasion via aircraft to areas where those mos-

quitoes do not already exist [73], though some key vector species (e.g. Ae. aegypti) are already

widely distributed and introduction has most often been attributed to shipping [74–76]. The

importation of vector mosquito species was not addressed further here as this work was lim-

ited to the risk of mosquito-borne pathogen introduction. This introduction can manifest as a

single transmission event (e.g. airport malaria or airport dengue) or the more problematic ini-

tiation of local transmission. Our results show that even in the absence of disinsection and

under the most favorable conditions, the probability of any transmission resulting from the

introduction of an infected mosquito by aircraft is very low. Moreover, the risk of introduced

transmission via human travelers is 2–3 orders of magnitude higher. Cases of reported airport

malaria or dengue number in the single digits per year [3, 77, 78], supporting the assertion that

while infected mosquitoes on aircraft may transmit pathogens, it is extremely rare. Meanwhile

hundreds to thousands of infections in human travelers are reported each year [79–84] each of

which provides a higher likelihood of initiating transmission where vectors are present.

Concern about the spread of vector-borne pathogens via mosquitoes on aircraft has existed

almost as long as aircraft themselves [9]. That concern continues to grow with the drastic

increase in air travel and the arbovirus pandemics of recent years. Vector-borne pathogens are

named as such for their dependence on insect vectors to complete the transmission cycle.

However, on an international scale, clearly vector-borne diseases spread via humans travelling

on aircraft, rather than insects. Even with perfect disinsection, which is far from guaranteed,
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the likely impact of disinsection on the spread of vector borne disease is negligible as that

spread is many times more likely to occur due to human travel.

Supporting information
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