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Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the
establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging
parasite of livestock with many aspects of its underpinning biology yet to be resolved. This
research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were
successfully isolated using both differential centrifugation and size exclusion
chromatography (SEC), and morphologically characterized though transmission
electron microscopy (TEM). EV protein components were characterized using a GeLC
approach allowing the elucidation of comprehensive proteomic profiles for both their
soluble protein cargo and surface membrane bound proteins yielding a total of 378
soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and
B proteases, which have previously been described in immune modulation and successful
establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were
observed to modulate rumen bacterial populations by likely increasing microbial species
diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi
have a role in establishment within the rumen through the regulation of microbial
populations offering new routes to control rumen fluke infection and to develop
molecular strategies to improve rumen efficiency.

Keywords: Calicophoron daubneyi, extracellular vesicle, proteomics, rumen microbiome, mass spectrometry
INTRODUCTION

Paramphistomes, commonly known as rumen fluke, have been found to infect ruminant animals
worldwide (Huson et al., 2017; Huson et al., 2018). Within tropical and sub-tropical regions, rumen
fluke infections cause significant production losses; yet only in recent years have rumen fluke
infections been observed throughout Europe with the major species responsible confirmed as
Calicophoron daubneyi (Sanabria and Romero, 2008; Jones et al., 2017). Clinical disease via adult
rumen fluke is rarely reported in temperate areas, but mortality to large burdens of immature
parasites has been observed in adolescent sheep and cattle (Mason et al., 2012; Millar et al., 2012).
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Parasitic helminths establish long-term infections by
manipulating the immune system in order to create an anti-
inflammatory environment within the host (Coakley et al., 2016;
Maizels and McSorley, 2016). In recent years parasite extracellular
vesicles (EVs) have been recognized as key components of this
strategy by transporting immunomodulatory cargo molecules
(Marcilla et al., 2012). To date, there is fragmented
understanding of the mechanisms underpinning EV activity with
respect to immune-modulation and successful establishment of
infection (Coakley et al., 2016). EVs appear the major route for
macromolecule exportation from parasitic helminths, with some
EVs even containing host mimicking components (Marcilla et al.,
2012). EVs released by several helminth parasites have been found
to deliver bioactive molecules and miRNA to host cells where they
modulate host gene expression and suppress cytokine formation
(Buck et al., 2014). The packaged cargo is developmentally
regulated likely allowing parasite migration and establishment
within the definitive host (Marcilla et al., 2012; Montaner et al.,
2014; Cwiklinski et al., 2015). EVs from parasitic flatworms
contain a number of established immune modulating proteins,
such as FhGST-S1, the Sigma class GST (Prostaglandin synthase)
from F. hepatica (LaCourse et al., 2012; Davis et al., 2019).

EVs have been confirmed to be released from the rumen fluke
C. daubneyi (Huson et al., 2018). However, these EVs are yet to be
studied at a molecular level or in relation to their effects on
rumenal microbes. Previous studies of helminth parasites have
shown they interact with their hosts gut microbiota in order to
successfully establish infection whilst interrupting the ‘healthy’
microbiome that ultimately promotes the hosts health (Jenkins
et al., 2018). With this in mind it is notable that relationships
between gut microbiota and parasites are not fully resolved.
However, evidence suggests the microbiotas involvement in
regulation of the immune system ensuring appropriate
responses to pathogenic organisms. However, evidence suggests
the microbiotas involvement in regulation of the immune system
ensuring appropriate responses to pathogenic organisms
(Gensollen et al., 2016). Currently, studies into domestic
livestock’s microbiota in response to helminth infections
remain limited and inconsistent (Peachey et al., 2019).
Specifically, the rumen microbiota has been extensively studied
due to the importance of rumen microbes in the nutrition and
health of the animal (Petri et al., 2013; Chaucheyras-Durand and
Ossa, 2014). Growing evidence suggest the rumen microbiome is
involved in a complex and intimate dialogue with the immune
and metabolic functions of the host (Zaiss and Harris, 2016).
Owing to the links between rumen microbiota and animal health,
disturbances in the rumen ecosystem may hinder rumen
functionality and lead to disease in the host (Zaiss and Harris,
2016), with studies showing a causal link between natural and
experimental infections of parasitic helminths with qualitative
and quantitative alterations to the intestinal microbiota in a
variety of animal species (Walk et al., 2010; Broadhurst et al.,
2012; Li et al., 2012; Cantacessi et al., 2014; Lee et al., 2014). Here
we unravel the proteomic profile of adult C. daubneyi EVs and
explore the EV impact on the complex microbial environment
contributing to their successful establishment within the host.
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METHODS

Calicophoron daubneyi Collection
and In Vitro Maintenance
Adult C. daubneyi were retrieved from naturally infected bovine
rumens post-slaughter in a local abattoir (mid-Wales, UK).
Following collection, C. daubneyi were washed in phosphate
buffered saline (PBS), pH 7.4, at 39°C to remove contaminating
materials. Flukes were divided into batches of 30 adults and
placed in 1 ml/fluke DME culture media (supplemented with 2.2
mM Ca, 2.7 mM MgSO4, 61.1 mM glucose, 1 µM serotonin and
gentamycin (5 µg/ml), 15 mM HEPES), 39°C for 6 hours.
Subsequently, both flukes and DME media were snap frozen in
liquid nitrogen and stored at -80°C.

EV Purification
Prior to differential centrifugation and size exclusion
chromatography EV purification, media was submitted to
centrifugation at 300 × g for 10 minutes at 4°C, followed by
centrifugation at 700 × g for 30 minutes at 4°C to remove
residual debris.

Differential Centrifugation (DC)
C. daubneyi maintenance media was utilized in order to purify
EV populations through differential centrifugation (DC) as
previously described (Davis et al., 2019). Media was
centrifuged at 120,000 × g for 80 min at 4°C in an Optima L-
100 XP ultracentrifuge (Beckmann Coulter, High Wycombe,
UK). The resulting pellet was washed in 5 ml PBS, pH 7.4 and
submitted to 0.2 µm syringe filtering before the centrifugation
step being repeated. The resulting pellet was suspended in 500 µl
PBS and stored at -20°C.

Size Exclusion Chromatography (SEC)
C. daubneyi maintenance media was utilized in order to purify
EV populations through size exclusion chromatography (SEC) as
previously described (Davis et al., 2019). Media was concentrated
using Amicon ultra-15 centrifugal filters (Merk, Millipore), with
a 10 kDa MW cut off. Samples were added to the centrifugal unit
and centrifuged at 4000 × g for 20 min at 4°C until an
approximately 500 µl EV enriched sample remained. EV
enriched samples were 0.2 µm filtered and a maximum of 500
µl passed through qEVoriginal SEC columns (IZON science,
U.K) following the manufacturers protocol. Briefly, columns
were equilibrated with a minimum of 10 ml of PBS prior to
addition of the sample. The initial 2.5 ml flow through was
discarded with the following 2.5 ml EV enriched fraction
retained and stored at -20°C.

Quantification Using Tunable Resistive
Pulse Sensing
A Nanopore NP200 (IZON Science) was utilized in the
quantification of SEC purified EV samples. The Nanopore was
calibrated using calibration particles (CPC200, 1:1000 filtered
PBS). EV samples were measured at 47 mm nanopore stretch at a
100 nA voltage under 7 mbar pressure. Particles were detected
April 2021 | Volume 11 | Article 661830
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through short pulses of current and the resulting data analyzed
using qNano particle analysis software (IZON, version 3.2).

Transmission Electron Microscopy (TEM)
DC and SEC purified EVs were fixed onto formvar/carbon
coated copper grids (Agar Scientific) for TEM analysis
following the manufacturer’s instructions. Briefly, 10 µl of EV-
enriched sample was added to each grid and incubated for
45 min on ice. Grids were placed on the meniscus of 4% w/v
uranyl acetate for 5 min on ice. Grids were then stored for a
minimum of 24 hours at room temperature prior to visualization
on the TEM (Jeol JEM1010 microscope at 80 kV), with EV
presence confirmed through size selective criteria (30 – 200nm).

EV Proteomic Analysis
EV proteins were determined through sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) following the
method of Laemmli (1970). Protein concentration was first
determined using a Qubit protein assay following the
manufacturer’s instructions (Thermo Scientific, UK). Loading
concentrations of 10 µg were aliquoted and centrifuged at
100,000 × g at 4°C for 30 minutes (S55-S rotor, Sorval MX120
centrifuge, Thermo scientific) with the resulting supernatant
discarded. The EV pellet was suspended in 10 µl loading buffer
and heated for 10 min at 95°C before loading into hand-cast
7 cm x 7 cm 12.5% polyacrylamide Tris/glyceine gels and subject
to electrophoresis on a Protean III system (Bio-Rad, UK). Tris/
Glycine/SDS buffer (25 mMTris, 192 mMGlycine, 0.1% w/v SDS
pH 8.3) (BioRad, U.K) was utilized for electrophoresis, with gels
run at 70 V through the stacking gel and 150 V until completion.
Gels were fixed (40% v/v ethanol and 10% v/v acetic acid) for one
hour prior to overnight staining with colloidal Coomassie
Brilliant Blue (Sigma, UK) at room temperature with gentle
agitation. De-staining was achieved using 30% (v/v) methanol,
10% v/v acetic acid and gels were subsequently visualized on a
GS-800 calibrated densitometer (Bio-Rad, UK) and stored in 1%
acetic acid prior to trypsin digestion for mass spectrometry
analysis following the protocol of Davis et al. (2019).

EV Surface Trypsin Hydrolysis
SEC purified EVs were concentrated to a final concentration of
200 µg in 250 µl. Sequencing grade trypsin (Roche, U.K) was
diluted to 100 µg/ml and added to the EVs resulting in a final
concentration of 50 µg/ml. Samples were incubated for 5 minutes
at 37°C followed by centrifugation for 1 hour at 100,000 × g at 4°C
(S55-S rotor, Sorval MX120 centrifuge, Thermo Scientific). The
resulting supernatant was divided into 20 µl fractions and subject
to LC MSMS with an injection volume of 1 µl.

Mass Spectrometry
Trypsin digested protein samples were suspended in 20 µl 0.1%
formic acid and loaded into an Agilent 6550 iFunnel Q-TOF mass
spectrometer combined with a Dual AJS ESI source 1290 series
HPLC system (Agilent, Cheshire, U.K). A Zorbax Eclipse Plus C18
column (2.1 x 50 mm 1.8 micron) was utilized with each sample
injected into an enrichment column within the system at a flow
rate of 2.5 µl/min using an automated micro sampler with an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
injection volume of 2 µl in the resuspension buffer 0.1% v/v formic
acid and allowed to separate at 300 nl/min. Enrichment and
separation were carried out on a polaris chip (G4240-62030,
Agilent Technologies, U.K). A system of solvents was utilized
over the process, solvent A (milliQ water containing 0.1% formic
acid) and solvent B (90% v/v acetonitrile containing 0.1% v/v
formic acid). Chromatography was achieved using a linear-
gradient of 3-8% solvent B over 6 seconds, 8-35% solvent B over
15 minutes, 35-90% solvent B over five minutes and finally 90%
solvent B for two minutes. Resulting peak spectra data was loaded
onto Agilent Qualitative analysis software (Agilent technologies
LDA UK Limited, UK). Each file had compounds found by
molecular feature and were saved to MGF. MASCOT (www.
matrixofscience.com) was used for analysis by carrying out an
MS/MS ion search, settings were set for the enzyme trypsin –
allowing 2 missed cleavages, with a fixed modification of
carbamidomethyl (C) and a variable modification of oxidation
(M) with a peptide charge of 2+, 3+ and 4+. Each sample was then
searched against an in-house database composed of a transcript
for C. daubneyi (Huson et al., 2018) available to search at https://
sequenceserver.ibers.aber.ac.uk/. Each of the contigs returned were
then searched within an in-house copy of the transcript and the
nucleotide sequence recorded. All of the contigs were then
translated using ExPasy (www.expasy.com) and the sequences
submitted to BLASTp analysis and subsequently searched in the
Interpro database.

EV Rumen Microbe Interactions
Rumen contents were collected from rumen-fistulated steers at
Trawsgoed experimental farm (Aberystwyth, Wales) complying
with the authorities of the UK Animal (Scientific Procedures)
Act (1986). Rumen contents was squeezed through a sieve
allowing retention of strained ruminal fluid (SRF) that was
immediately incubated at 39°C. Rumen fluid was added to
anaerobic incubation medium following the protocol of
Goering and Van Soest (1970), to create a 10% v/v solution.
PBS was removed from SEC purified EV samples (5.52E+10
particles/ml) through centrifugation using Amicon ultra-15
centrifugal filters (Merk, Millipore) 10 kDa MWCO, with EVs
resuspended in an equal volume of modified Van Soest digestion
buffer. 1 ml EV solution was added to 9 ml rumen fluid/
anaerobic incubation medium (n =3) and allowed to incubate
for 24 hrs. For controls, EV solution was replaced with modified
Van Soest digestion buffer. Rumen fluid sampling was carried
out at 5 time points during the incubation period (0 h, 2 h, 4 h,
6 h, and 24 h) and stored for downstream qPCR analysis.

Rumen Fluid DNA Extraction
DNA extractions were carried out on 1 ml rumen fluid from each
of the aforementioned time points (0 hrs, 2 hrs, 4 hrs, 6 hrs and
24 hrs). Extractions were carried out using a FastDNA spin kit
for soil (MP Biomedicals, USA) according to the manufacturers
protocol, as described by Huws et al. (2010). Extracted DNA
was quantified using the Biotech Epoch Microplate
Spectrophotometer (Biotek Instruments Inc, USA). The Epoch
Microplate Spectrophotometer was calibrated prior to
quantification using 1.25 µl DNase/pyrogen free water.
April 2021 | Volume 11 | Article 661830
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Following quantification samples were stored at -20°C for
qPCR analysis.

Bacterial qPCR Analysis
qPCR of 16S rDNA was undertaken to determine the effects of
incubation of EVs with rumen fluid on total bacteria population as
well as specifically Ruminococcus albus, Fibrobacter succinogenes,
and Prevotella spp. Extracted DNAwas diluted 10-fold with ddH2O.
The reaction mixture (1215 µl) for each qPCR run was prepared
with 1 x SYBR Geen I master mix (Applied Biosystems), 5.4 µl of
each primer (Table 1) and ddH20. 10 µl of reaction mixture was
added to 1 µl of each DNA sample analyzed using a Roche
lightcycler 480 II (Roche diagnostics Ltd.) on a 384 well qPCR
plate. A bacterial standard was prepared with equal amounts of
genomic DNA as outlined by Huws et al. (2010). For each qPCR,
with the exception of Prevotella spp., amplification was performed
at 95°C for 10minutes, followed by 35 cycles of 95°C for 15 seconds,
58°C for 15 seconds, and 72°C for 15 seconds, and then an extension
step of 72°C for 5 minutes. For the Prevotella spp. qPCR
amplification was performed at 95°C for 10 minutes followed by
35 cycles of 95°C for 15 seconds, 55°C for 15 seconds, and 72°C for
15 seconds, and then an extension step of 72°C for five minutes. All
qPCR reactions were performed in triplicate and assay qPCR
efficiency was calculated as: efficiency=10(- 1/slope) x100. The
bacterial standards were used to create a standard curve to allow
for quantification of the samples. Statistical analysis of the qPCR
values was undertaken in Microsoft Excel, and using repeated
measures ANOVA to test for significant differences in IBM SPSS
Statistics 23.0.
RESULTS

Confirmation of EVs in Adult C. daubneyi
Maintenance Media
The presence of extracellular vesicles in both DC and SEC
purified adult C. daubneyi samples was confirmed by the
identification of membrane bound vesicles ~30-100 nm in size
through transmission electron microscopy (TEM). TEM imaging
demonstrated EVs present to have diverse morphologies with
ruptured vesicles only identified in DC purified samples. A large
number of aggregated vesicles were also observed in DC samples
(Figure 1A) whilst reduced aggregation was observed in the
samples isolated through SEC (Figure 1B) and, despite the
inclusion of 0.2 µm filtering, background contamination was
visibly present following both purification methods.
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Adult C. daubneyi Whole EV Proteome
DC purified EVs were utilized to resolve the C. daubneyi whole
lysed EV proteome. A GelC strategy was exploited to identify lysed
EV proteins with proteins resolved on a 12.5% one-dimensional
sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) followed
by LC-MSMS analysis with the mass spectrometry proteomics data
deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD024182.
Replication of lysed EV proteomic profiles confirmed
reproducibility (Figure 2A). A total of 378 proteins were found to
be consistent across three biological replicates (n = 3) following LC-
MSMS analysis (Supplementary Material 1). EV protein
abundance was quantified by the number of unique peptides
present, with only protein hits above the significance threshold
(>47) included as a positive identification. Quantification by the
number of unique peptides elucidated the top 50 protein hits (Table
2). Further analysis of the returned proteome identified a number of
common EV markers through comparison with the Exocarta
database (http://exocarta.org). All 378 sequences resolved in the
EV proteome were further characterized by their functionality
through use of the Interpro database and sorted into 9 distinct
categories: Cytoskeleton, Proteases, Enzymes, Chaperones,
Metabolism, Transporters, Carrier, Exosome Biogenesis and
Others as previously described by (Cwiklinski et al., 2015) (Figure
2B). Interestingly, the category with the greatest number of
sequences assigned was ‘other’ encompassing all sequences with
no BLAST result or a BLAST result to a hypothetical or unassigned
protein accounting for 36% of the sequences. This was followed by
cytoskeletal proteins accounting for 24% of proteins. The category
representing the fewest number of proteins were carriers accounting
for 1% of the total proteome.
Trypsin Hydrolysis of External Surface
Proteins on Adult C. daubneyi EVs
Following resolution of the whole EV proteomic profile, the proteins
present on the external surface of EVs were investigated through
trypsin cleavage from the membrane. Transcript IDs identified
through LC-MSMS were translated before submission to BLASTp
investigation allowing identification of protein IDs. In total, 89
proteins were identified as present upon the external surface of EVs
release by adult C. daubneyi (Table 3), including a variety of well-
known exosomal markers such as heat shock protein 70 and
members of the tetraspanin family as defined by the Exocarta
database (http://www.exocarta.com). Several membrane channel
and transporter proteins were identified including ATPase, V-type
H+- transporting ATPase, phospholipase and glucose transporters.
TABLE 1 | Forward and reverse primer sequences used to target 16S rDNA in qPCR analysis of total bacteria, Ruminococcus albus, Fibrobacter succinogenes and
Prevotella spp. DNA concentrations.

Target Forward primers (5’-3’) Reverse primers (3’-5’)

Total Bacteria GTGSTGCAYGGYTGTCGTCA GAGGAAGGTGKGGAYGACGT
Ruminococcus albus CCCTAAAAGCAGTCTTAGTTCG CCTCCTTGCGGTTAGAACA
Fibrobacter succinogenes GGTATGGGATGAGCTTGC GCCTGCCCCTGAACTATC
Prevotella spp. CACRGTAAACGATGGATGCC GGT CGG GTT GCA GAC C
April 202
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EV Interaction With the Rumen
Microbiome
The impact of adult C. daubneyi EVs on rumen microbial
populations was completed on three key ruminant bacterial
species, Fibrobacter succinogenes, Ruminococcus albus and
Prevotella spp, as well as on the total bacterial microbiome
using 16S rDNA analysis. Quantitative PCR was undertaken
on samples at five timepoints (0 hrs, 2 hrs, 4 hrs, 6 hrs and 24 hrs)
to assess the impact of EVs on the rumen microbiome (Figure 3).
Total Bacteria DNA concentrations ranged from 500.93 to
1236.95 ng/ml in cultures incubated in the presence of rumen
fluke EVs, and from 229.93 to 656.22 ng/ml in cultures with
absence of rumen fluke EVs. Fibrobacter succinogenes DNA
concentration ranged from 0.471 to 7.871 ng/ml with EVs and
from 0.207 to 5.384 ng/ml in the absence of EVs. Ruminococcus
albus DNA concentrations ranged from 0.175 to 0.509 ng/ml
with EVs, and from 0.049 to 0.526 ng/ml in the absence of rumen
fluke EVs. Finally, the DNA concentrations for Prevotella spp.
ranged from 70.60 to 298.03 ng/ml with EVs, and from 30.45 to
326.97 ng/ml in the absence of rumen fluke EVs.

In terms of overall treatment, EV presence or absence, a
significant effect of treatment with C. daubneyi EVs was only
observed for total bacteria (P = 0.002). Whereby, the incubation
of rumen fluid with EVs led to an increase in total bacterial
concentration, with no significant overall effect of treatment on
bacterial concentrations for F. succinogenes, R. albus, or
Prevotella spp. Analysis of overall treatment between time
points (0-24 hrs) showed significant interaction for total
bacteria (P=0.008), R. albus (P<0.05), and Prevotella spp.
(P<0.05). However, there was no significant interaction
between timepoint and treatment for F. succinogenes (P>0.05).
For total bacteria concentrations, there was a significant
difference between treatment means at the zero hours and six-
hour timepoints. For F. succinogenes, the only timepoint at which
there was a significant difference between treatment means was
at zero hours (P=0.001). There was a significant difference in the
mean concentration of R. albus DNA between treatments at all
except the four-hour timepoint. Prevotella spp. had a significant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
difference between treatment means at the two and six hour
timepoints (P >0.01).
DISCUSSION

Utilization of the recently reported adult C. daubneyi
transcr iptome (Huson et a l . , 2018) has al lowed a
comprehensive proteomic characterization of the adult
helminth’s membrane bound vesicle secretions, leading to
identification of 378 proteins consistent across biological
replicates. Comparison with resolved eukaryote EV proteomes
highlighted a number of common proteins including,
tetraspanins (TR20913|c0_g1_i1, TR22166|c0_g1_i1, TR22094|
c0_g1_i1 and TR22869|c0_g1_i12), Heat shock proteins
(TR17741|c0_g1_i1 and TR20530|c0_g1_i1) and Annexins
(TR22803|c1_g1_i2, TR20643|c0_g1_i1 and TR17648|
c0_g1_i1). This is in addition to EV associated cytoskeletal
proteins such as Actin (TR9358|c0_g1_i1, TR17779|c0_g1_i1
and TR28482|c0_g1_i1) and Ezrin (TR19715|c0_g1_i1) as well
as proteins involved in metabolic processes such as enolase
(TR17367|c0_g1_i1, TR24268|c0_g1_i1, TR24268|c0_g2_i1 and
TR19628|c0_g2_i1), Peroxidases (TR17193|c0_g1_i1 and
TR12513|c0_g1_i1) and pyruvate kinases (TR21788|c0_g1_i1)
(Choi et al., 2013; Nowacki et al., 2015). The consistency in
proteins with established EV proteomes further supports the
identification of the membrane bound vesicles by TEM imaging
as EVs, suggesting the C. daubneyi secretome is more complex
than previously demonstrated (Huson et al., 2018).

Protein cargo packaged into EVs prior to their release is
dependent upon cellular source and release cell associated activity
(Simons and Raposo, 2009). Similar to the closely related trematode
F. hepatica and in contrast to several trematode species such as
E. caproni, S. mansoni and D. dendriticum, rumen fluke EVs
returned a large quantity of proteases and peptidases including
Xaa-pro peptidase, cathepsins and metalloproteases (Marcilla et al.,
2012; Bernal et al., 2014; Sotillo et al., 2016). Differences observed in
protein cargo packaged between species could be due to their
FIGURE 1 | Representative developed TEM micrographs identifying extracellular vesicles secreted by C. daubneyi in vitro through DC and SEC isolation. (A) DC
purified samples with visible aggregation of vesicles (circled) (B) SEC purified samples demonstrating a reduction in EV aggregation.
April 2021 | Volume 11 | Article 661830
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residency within the definitive host but could also be attributed to
conditions during time of release (Nowacki et al., 2015). Hits to
hypothetical proteins and proteins with ‘no confirmed identity’
highlighted the variability in proteins packaged and their likely
roles in parasite establishment that are likely unique to the rumen
fluke. In total, 14.2% of the proteins identified represented these
undefined proteins and their further investigation could allow
insight into infection, migration and successful establishment of
infection (Dalton et al., 2003). Consistent to studies in F. hepatica a
plethora of molecules including fatty-acid binding proteins, sigma-
class glutathione transferases and cathepsin B were identified which
are known to be internalized by host cells with their
immunomodulation activity leading to a TH2-mediated
environment that is favorable for parasite establishment (Dalton
et al., 2003; Donnelly et al., 2010; Dowling et al., 2010). As with
previous trematode studies, the presence of uncharacterized proteins
allows the hypothesis that they could contain a plethora of novel
sequences with potential roles in parasite pathogenesis. Investigation
of uncharacterized proteins with no homology to resolved sequences
provides an assortment of possible research avenues into future
control and intervention of infection (Mulvenna et al., 2010).

Proteins present upon the surface of parasite derived EVs
have been found critical to EV function as they interact directly
with cells mediating cellular uptake and affecting immune
recognition whilst also allowing identification, isolation and
classification of EV subpopulations (Buzás et al., 2018).
Trypsin hydrolysis of the surface of C. daubneyi EVs identified
a total of 86 proteins including a variety of well-known exosomal
markers such as heat shock protein 70 and members of the
tetraspanin family as defined by the Exocarta database (http://
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
www.exocarta.com). As expected, a trematode specific
tetraspanin (CD63) was identified within the proteome, as
common EV markers, members of the tetraspanin family have
been widely investigated with studies on O. viverrini highlighting
the potential use of EV derived tetraspanins as vaccine
candidates due to their ability to prevent EV uptake and
internalization into host cells (Chaiyadet et al., 2015). As with
studies into closely related trematode F. hepatica EVs, many of
the surface proteins resolved represented metabolic enzymes
such as enolase, Glyceraldehyde-3-dehydrogenase and annexins
with primary roles as adhesion molecules interacting directly
with the surface of host cells and so represent possible targets in
preventing C. daubneyi successful establishment through
interruption of EVs internalization by target cells (Bernal et al.,
2004; Lama et al., 2009; de la Torre-Escudero et al., 2012).

Following resolution of both the cargo and membrane bound
proteome, the potential of C. daubneyi EVs to modulate the
microbiome were investigated on a range of ruminant bacterial
species. Both helminths and bacterial species residing within the
gut have been found to have strong immunomodulatory effects on
the mammalian host, with a variety of studies showing helminths
effect on the microbiota correlating to the helminths successful
establishment (Reynolds et al., 2015). Helminths ability to regulate
gut microbiota is important due to the ability of certain species to
elicit the host immune response favorable for survival (Reynolds
et al., 2015), with several previous helminth studies highlighting
their ability to regulate bacterial populations within the gut (Su
et al., 2018). Here, the effect of EVs on bacterial species
encompassed three bacterial species found within the rumen as
well as the total bacterial counts within the rumen microbiome.
A B

FIGURE 2 | (A) EV proteome arrays of lysed C. daubneyi EVs (n=3). EVs released in vitro were lysed and subjected to 12.5% 1D polyacrylamide gel analysis and
colloidal Coomassie blue stained. All biological replicates produced a highly reproducible profile. (B) Categorization of all sequences returned from the C. daubneyi
EV proteome. Proteins consistent across three replicates were submitted to Interpro and GeneOntology searches and assigned to 9 functional categories as defined
by Cwiklinski et al. (2015). Proteins that did not fit any of the nine categories were placed into a final category classified as ‘other’. Cytoskeleton associated proteins
accounted for 13% of the sequences resolved, Proteases 14%, Enzymes 8%, Chaperones 7%, Transporters 4%, Exosome biogenesis 3%, Metabolism 5%, Carriers
1% with Others filling the remaining 36%.
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TABLE 2 | Top 50 proteins resolved in C. daubneyi extracellular vesicles following BLAST analysis of transcript identifiers.

Transcript ID Isoform Unique peptides Blast description Organism NCBI accession

TR26097|
c0_g1

i1 76 ATPase family protein Opisthorchis viverrini OON14744.1

TR18968|
c0_g1

i1 58 Tubulin beta-3 Fasciola hepatica CAP72051.1

TR17099|
c2_g1

i1 57 Tubulin beta Clonorchis sinensis GAA51682.1

TR21569|
c0_g5

i1 44 No hit No hit No hit

TR9358|c0_g1 i1 39 Actin Gossypium arboreum XP_017626052.1
TR19715|
c0_g1

i1 36 Radixin Carlito syrichta XP_008054748.1

TR21569|
c0_g5

i2 36 No hit No hit No hit

TR17877|
c2_g2

i1 31 Alpha-tubulin Fasciola hepatica CAO79602.1

TR18958|
c0_g1

i1 28 Alpha tubulin Schistosoma japonicum AAW27478.1

TR19159|
c0_g1

i1 26 Alpha tubulin Clonorchis sinensis GAA56421.1

TR23254|
c0_g1

i1 24 Leucyl aminopeptidase Clonorchis sinensis ABL11479.1

TR24554|
c0_g1

i1 23 alpha-glucosidase Schistosoma mansoni XP_018647945.1

TR18070|
c0_g1

i1 22 Acid sphingomyelinase phosphodiesterase Clonorchis sinensis GAA33847.2

TR23757|
c0_g1

i1 22 Alpha tubulin Clonorchis sinensis GAA38337.2

TR24153|
c0_g1

i1 22 Hypothetical protein Opisthorchis viverrini OON14506.1

TR23969|
c0_g1

i1 21 Tektin Clonorchis sinensis GAA33438.1

TR23279|
c0_g1

i1 21 Alpha tubulin Fasciola hepatica CAO79606.1

TR18525|
c0_g1

i1 20 14-3-3 epsilon Opisthorchis viverrini OON22058.1

TR21014|
c0_g1

i1 20 SNaK1 Schistosoma mansoni AAL09322.1

TR20466|
c0_g1

i1 19 Calpain Schistosoma mansoni CCD74981.1

TR20643|
c0_g1

i1 18 annexin a7 Schistosoma
haematobium

KGB33756.1

TR18939|
c0_g1

i1 18 No hit No hit No hit

TR22034|
c1_g4

i3 18 Aldolase Opisthorchis viverrini OON20700.1

TR25036|
c3_g1

i13 17 Cathepsin D Fasciola gigantica AEE69372.1

TR25036|
c3_g1

i2 17 Cathepsin D Fasciola gigantica AEE69372.1

TR23288|
c0_g1

i1 16 EF-hand domain Schistosoma mansoni CCD76447.1

TR19073|
c1_g2

i1 16 Hypothetical protein Opisthorchis viverrini OON16570.1

TR18454|
c0_g1

i1 16 Hypothetical protein Opisthorchis viverrini OON20759.1

TR25036|
c3_g1

i1 16 eukaryotic aspartyl protease Opisthorchis viverrini OON23093.1

TR21569|
c0_g5

i7 16 No hit No hit No hit

TR25036|
c3_g1

i14 14 Cathepsin D Clonorchis sinensis GAA56870.1

TR23782|
c0_g2

i1 14 Leukotriene-A4 hydrolase Clonorchis sinensis GAA49617.1

(Continued)
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F. succinogenes, R. albus, and Prevotella spp. were chosen for
quantification using qPCR to investigate the effect of EVs on the
rumen microbiome and any subsequent effects on metabolism. Of
these three species, F. succinogenes and R. albus are considered to
be the main cellulolytic bacteria in the rumen (Forsberg et al.,
1997), with these species extensively studied using a combination
of pure culture and molecular techniques (Minato and Suto, 1978;
Mosoni et al., 1997; Koike et al., 2003; Shinkai and Kobayashi,
2007; Zeng et al., 2015). The third species utilized, Prevotella spp.
represent non-cellulolytic bacteria that play a vital role in ruminal
protein degradation (Wallace, 1996; Alauzet et al., 2010).

Exposure of C. daubneyi EVs to ruminant bacterial
populations showed no significant effect between EV treatment
and controls, suggesting there is no significant effect of C.
daubneyi EVs on rumen microbial facilitated metabolism, or in
particular fiber and protein digestion. As expected, given the
absence of a feed source, a drop in bacterial DNA concentrations
at the 24-hour time point was common across all samples, as feed
associated bacteria comprise 70-80% of the ruminal microbial
matter (McAllister et al., 1994). The only timepoint found to
have a significant difference between treatment means for F.
succinogenes was timepoint zero. This could be due to the use of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
rumen fluid inoculum which is deemed as the largest source of
variation in in vitro rumen studies, due to variations that can
occur due to its microbial activity, the preparation method, the
concentration of the rumen fluid used, the donor animal from
which it is derived and their diet, and even variances within the
day have been reported (Cone et al., 1996; Jessop and Herrero,
1998; Rymer et al., 1999; Mould, 2003; Váradyová et al., 2005).
For R. albus the only timepoint at which there was no significant
difference between treatments was the 4-hour timepoint. Whilst,
not large enough to be significant the inclusion of EVs appears to
slow the decrease in the concentration of R. albus over time. A
similar effect of EV inclusion was observed for Prevotella spp.
although again this was not significant.

However, a significant difference was observed for total
bacteria DNA concentrations between EV treatment and
controls. An increase observed in total bacteria populations
alongside no significant differences between treatment and
controls for F. Succinogenes, R. albus, and Prevotella spp. may
indicate that addition of EVs leads to an increase in total bacterial
diversity. This increase in diversity could be due to rumen fluke
EVs promoting the survival of several bacterial species in the
rumen with previous whole parasite studies reporting increases in
TABLE 2 | Continued

Transcript ID Isoform Unique peptides Blast description Organism NCBI accession

TR17046|
c0_g1

i1 15 14-3-3 epsilon Clonorchis sinensis AEO89649.1

TR9216|c0_g1 i1 15 14-3-3 protein Opisthorchis viverrini OON14987.1
TR25395|
c0_g2

i2 15 Hypothetical protein Opisthorchis viverrini XP_009165006.1

TR17779|
c0_g1

i1 15 Actin Opisthorchis viverrini XP_009173847.1

TR25395|
c0_g1

i1 15 Hypothetical protein Opisthorchis viverrini XP_009165006.1

TR22003|
c1_g5

i1 14 Tubulin beta Cricetulus griseus XP_007606483.1

TR19892|
c0_g1

i1 14 Hypothetical protein Opisthorchis viverrini OON16605.1

TR18374|
c0_g1

i1 14 Triose phosphate isomerase Fasciola hepatica AGJ83762.1

TR25036|
c3_g1

i12 14 Cathepsin E-A Apaloderma vittatum KFP91951.1

TR17173|
c0_g1

i1 14 leishmanolysin peptidase Clonorchis sinensis GAA54636.1

TR17164|
c0_g1

i1 13 glyceraldehyde 3- phosphate
dehydrogenase

Clonorchis sinensis GAA28380.1

TR15297|
c0_g1

i1 13 Chloride intracellular channel Clonorchis sinensis GAA38512.2

TR19675|
c0_g1

i1 13 JF-2 Schistosoma japonicum AAB49033.1

TR25036|
c3_g1

i8 13 Cathepsin D Clonorchis sinensis GAA56870.1

TR23072|
c0_g1

i1 13 EF-hand calcium-binding domain Clonorchis sinensis GAA51832.1

TR24199|
c0_g4

i1 12 Plastin-1 Clonorchis sinensis GAA29911.1

TR21252|
c0_g1

i1 12 33kDa inner dynein arm light chain Schistosoma japonicum CAX73643.1

TR25837|
c0_g3

i3 12 EF-hand domain-containing family member Clonorchis sinensis GAA35263.2
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certain bacterial species in response to infection. Walk et al.
(2010) and Reynolds et al. (2015) observed an increase in
members of the lactobacillaceae family in the ileum of mice
infected with H. polygyrus, despite the mice having different
microbiotas present at the outset of the experiment. Similarly,
the administration of a single dose of Trichuris suis led to a
reduction in the abundance of Fibrobacter and Ruminococcus,
accompanied by an increase of campylobacter in gastrointestinal
microbiota of pigs (Wu et al., 2012). Alternatively, rumen fluke
EVs could be promoting an increase in overall ruminal bacterial
diversity as has been observed in gastrointestinal helminth
infections in humans (Sepehri et al., 2007; Monira et al., 2012;
Lee et al., 2014). Due to the absence of significant differences
between treatments and the observed change in total bacteria
concentrations the effects of C. daubneyi EVs on further ruminal
bacterial species would allow a more in-depth understanding of C.
daubneyi regulation of the microbiota.

Currently, studies into the effects of parasitic helminths on the
gut microbiota of their ruminant hosts remain inconsistent, with
investigations showing conflicting results (Li et al., 2011; Li et al.,
2016). It is thought these inconsistencies are due to the
composition and abundance of gut microbial taxa associated
with the parasitic helminths being specific to each species
(Kreisinger et al., 2015). A higher species richness may benefit
the host, as higher species richness of the gut microbiota has been
associated with ‘healthier’ gut homeostasis (Sepehri et al., 2007;
Monira et al., 2012; Lin et al., 2013; Lee et al., 2014; Kreisinger et al.,
2015). However, this study was designed to simulate a high, close
proximity infection of adult rumen fluke, and so the changes in the
microbiome seen here may be indicative of a more local effect on
the microbiome. It is likely the effects observed may not be seen
across the whole rumen. Additionally, EVs derived from rumen
TABLE 3 | Putative proteins identified in SEC purified C. daubneyi EVs surface
trypsin shave (n = 3).

Transcript ID Blast ID

TR19715|c0_g1_i1 Moesin ezrin radixin homolog 1 isoform X1
TR18070|c0_g1_i1 Acid sphingomyelinase-like phosphodiesterase 3a
TR20146|c0_g1_i2 No hit
TR9358|c0_g1_i1 Actin-7
TR17099|c2_g1_i1 Tubulin beta chain
TR18542|c0_g1_i1 Tubulin beta chain
TR22003|c1_g6_i1 Tubulin beta-2C chain
TR22003|c1_g4_i3 Tubulin beta chain isoform X1
TR23322|c0_g3_i1 Tubulin beta-2C chain
TR22003|c1_g2_i1 Beta tubulin
TR22003|c0_g1_i1 Tubulin beta chain
TR21569|c0_g5_i1 No hit
TR21569|c0_g5_i2 No hit
TR25036|c3_g1_i12 Cathepsin E-
TR25036|c3_g1_i14 Lysosomal aspartic protease
TR3846|c0_g1_i1 Cathepsin D (lysosomal aspartyl protease)
TR6048|c0_g1_i1 Asparticase oryzasin-1-like
TR25036|c3_g1_i1 Cathepsin E-A-like
TR25036|c5_g1_i1 Renin
TR25036|c0_g1_i1 Lysosomal aspartic protease-like
TR25036|c3_g1_i2 Cathepsin D (lysosomal aspartyl protease)
TR25036|c3_g1_i8 Lysosomal aspartic protease-like
TR55450|c0_g1_i1 No hit
TR16856|c0_g1_i1 DM9 domain-containing
TR18939|c0_g1_i1 No hit
TR17640|c0_g1_i1 No hit
TR20530|c0_g1_i1 Heat shock 90
TR21065|c0_g1_i1 Heat shock 75 mitochondrial
TR24356|c0_g1_i3 Program cell death 6-interacting
TR15792|c0_g1_i1 Golgi-associated plant pathogenesis-related 1
TR23254|c0_g1_i1 Leucyl aminopeptidase
TR17173|c0_g1_i1 Leishmanolysin-like peptidase
TR19239|c0_g1_i1 No hit
TR12225|c0_g1_i1 Erythrocyte band 7 integral membrane
TR16040|c0_g1_i1 Lysosomal Pro-X carboxypeptidase precursor
TR18162|c0_g1_i1 Liver basic fatty acid binding
TR26002|c2_g1_i1 Cytoplasmin type 5
TR33621|c0_g1_i1 No hit
TR29071|c0_g1_i1 Actin
TR4440|c0_g1_i1 No hit
TR23598|c0_g2_i1 Adenylate kinase 9
TR17877|c2_g2_i1 Tubulin alpha-1A chain-like
TR19159|c0_g1_i1 Tubulin alpha-1A chain
TR18958|c0_g1_i1 Tubulin alpha-1A chain-like
TR12612|c0_g1_i1 Alpha tubulin
TR21082|c0_g1_i1 Tubulin GTPase domain
TR17328|c0_g1_i1 Na(+) H(+) exchange regulatory cofactor NHE-RF1
TR20466|c0_g1_i1 Leucine-rich repeat-containing 23
TR9216|c0_g1_i1 Tyrosine 3-monooxygenase tryptophan 5-monooxygenase
TR16536|c0_g1_i1 14-3-3 beta alpha-1
TR17046|c0_g1_i1 14-3-3 epsilon
TR20794|c0_g1_i1 Phosphoglycerate kinase 1
TR23598|c0_g1_i1 Adenylate kinase 9-like
TR20586|c0_g1_i2 Regulator of microtubular dynamics 1-like
TR13665|c0_g1_i1 Calcyphosin isoform X5
TR19675|c0_g1_i1 Radixin isoform X1
TR20928|c0_g1_i1 Cathepsin B-like cysteine ase precursor
TR11284|c0_g1_i1 Histone H4
TR16097|c0_g1_i1 Chloride intracellular channel 4
TR16168|c0_g1_i1 Actin depolymerizing factor
TR15827|c0_g1_i1 Lysosomal protective
TR17138|c0_g1_i1 Fatty acid binding brain

(Continued)
TABLE 3 | Continued

Transcript ID Blast ID

TR17367|c0_g1_i1 Enolase
TR19538|c0_g1_i1 Charged multivesicular body 1a
TR22854|c0_g1_i4 Aquaporin-1
TR15761|c0_g1_i1 Lysosomal alpha-glucosidase
TR20893|c0_g1_i1 Methylthioadenosine phosphorylase
TR12782|c0_g1_i1 8 kDa calcium-binding
TR36972|c0_g1_i1 Histone H4-like
TR18466|c1_g2_i1 Globin-3
TR20091|c0_g1_i1 Glucose transport
TR17869|c0_g1_i1 Phospholipase D3
TR15896|c0_g1_i1 Calmodium 6
TR17164|c0_g1_i1 Glyceraldehyde 3-phosphate dehydrogenase
TR17741|c0_g1_i1 Heat shock 70
TR22803|c1_g1_i2 Annexin A11
TR3136|c0_g1_i1 No hit
TR20643|c0_g1_i1 Annexin A7
TR17762|c0_g1_i2 Lysosomal acid phosphatase
TR16407|c0_g1_i2 Cathepsin D (lysosomal aspartyl protease)
TR22152|c0_g1_i1 Hypothetical protein CLF_104825
TR16514|c0_g1_i1 No hit
TR23279|c0_g1_i1 Tubulin alpha testis-specific
TR18133|c0_g1_i3 CD63 antigen
Including transcript identifiers and BLAST description. The top BLAST hit was chosen
based on the lowest E-value and transcripts were ordered by number of unique peptides.
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fluke may have a greater effect on the bacterial species of the rumen
associated with the epithelium and liquid phases, as rumen fluke
affix themselves to the rumen epithelium via their posterior sucker
(McCowan et al., 1978; Michalet-Doreau et al., 2001; Fuertes et al.,
2015). EVs ability to regulate the hosts gut microbiota highlights
the potential of utilizing EVs in order to promote survival of key
bacterial species such as F. succinogenes that play a vital role in
degradation of plant biomass and so could lead to improved rumen
efficiency (Arntzen et al., 2017). A full antimicrobial analysis of all
EV proteins characterized would be beneficial as EVs are known to
bind to targets in order to become internalized and release their
contents and so these may also be influencing the EVs themselves
as well as elucidating mechanisms through which EVs released by
C. daubneyi manipulate the host microbiota leading to conditions
favorable for long term establishment.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: ProteomeXchange
Consortium via the PRIDE [1] partner repository with the
dataset identifier PXD024182.
ETHICS STATEMENT

The animal study was reviewed and approved by Aberystwyth
University ethics committee.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
AUTHOR CONTRIBUTIONS

NA: data collection, analysis, investigation, methodology, and writing
—original draft. AL: experimental design, data collection, and analysis.
TW: experimental design and formal analysis. SH: experimental
design and technical expertise. HP: technical expertise—LC-MSMS.
RM and PB—supervision, writing, review, and editing. All authors
contributed to the article and approved the submitted version.
FUNDING

This work was supported by the Biotechnology and Biological
Sciences Research Council through an IBERS PhD Scholarship
award and through Innovate UK (Grant Number: 102108).
ACKNOWLEDGMENTS

We would like to thank Prof. Andrew Devitt (Aston University,
England) and Dr. Ivana Milic (Aston University, England) for
the use of qNano particulate analyzer (IZON science), and
Randall Parker foods (Llanidloes, Wales) for allowing
collection of C. daubneyi from infected cattle.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fcimb.2021.
661830/full#supplementary-material
A B

DC
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(A) Total bacteria, (B) Fibrobacter succinogenes, (C) Ruminococcus albus and (D) Prevotella spp. *indicates a significant difference between treatment means.
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