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SUMMARY

Recentadvancements in single-cell RNAsequencing (scRNA-seq) have facilitated theclassificationof thou-

sands of cells through transcriptomeprofiling,wherein accurate cell type identification is critical formech-

anistic studies. Inmostcurrentanalysisprotocols, cell type-basedclusterannotation ismanuallyperformed

and heavily relies on prior knowledge, resulting in poor replicability of cell type annotation. This study

aimed to introduce a single-cell Cluster-based Automatic Annotation Toolkit for Cellular Heterogeneity

(scCATCH, https://github.com/ZJUFanLab/scCATCH). Using three benchmark datasets, the feasibility

of evidence-based scoring and tissue-specific cellular annotation strategies were demonstrated by high

concordance among cell types, and scCATCH outperformed Seurat, a popular method for marker genes

identification, and cell-based annotation methods. Furthermore, scCATCH accurately annotated 67%–

100% (average, 83%) clusters in six published scRNA-seq datasets originating from various tissues. The

present results show that scCATCH accurately revealed cell identities with high reproducibility, thus

potentially providing insights into mechanisms underlying disease pathogenesis and progression.

INTRODUCTION

Recent advancements in single-cell RNA sequencing (scRNA-seq) have furthered the understanding of hetero-

geneous cell compositions in complex tissues through the characterization of different cell types based on gene

expression levels, thus facilitating our understanding on spatiotemporal biological phenomena or disease path-

ogeneses, cellular lineages or differentiation trajectories, or cell-cell communication (Haque et al., 2017; Ma-

cosko et al., 2015; Potter, 2018; Regev et al., 2017). In the data processing protocols of scRNA-seq experiments,

cell type identification is a vital step for subsequent analysis, and two types of strategies have been reported,

e.g., cell-based and cluster-based annotation (Abdelaal et al., 2019). For cell-based strategy, the similarities be-

tween cell-based data and reference cell databases are taken to determine potential cellular identities. Several

methods including SingleR (Aran et al., 2019), CellAssign (Zhang et al., 2019a), Garnett (Pliner et al., 2019), scMap

(Kiselev et al., 2018), and CHETAH (de Kanter et al., 2019) belong to this category. Cluster-based strategies

perform cell type identification usingdifferentially expressedmarkergenes at the level of pre-computed clusters.

Experimentally validated cell markers through fluorescence-activated cell sorting (FACS), in situ hybridization,

and immunohistochemistry (IHC) are often used as reference.

The major challenge of cell-based strategy lies in the determination of cell types on each cluster as multiple

cells with different types are present in one cluster. As shown in Figure S1, cellular composition in each clus-

ter could vary a lot. According to cell type annotation by SingleR, cluster 3 of Chen dataset was composed

of 31.6% proximal tubule cells, 36.8% intercalated cells, and 31.6% principle cells. In this case, it is rather

difficult to assign an accurate cell label to this cluster. For cluster-based analysis, the selection of cluster

marker genes is critical for the sensitivity and selectivity of cell type determination. In Seurat (Butler

et al., 2018), a widely used data processing pipeline of scRNA-seq studies, one-against-all methods are

used to derive cluster marker genes. Inevitably, in this list, a bunch of pseudo marker genes (significantly

upregulated in at least two clusters rather than in one cluster) may occur, which would lead to incorrect

cell type annotation. Furthermore, prior knowledge on known cell markers is needed during manual match

with cluster marker genes derived in previous step. Another level of uncertainty is introduced by the fact

that one cell type is commonly associated with multiple cell markers and one cell marker can be linked

with multiple cell types (Zhang et al., 2019b). Replicability of this cell annotation protocol could be further

reduced with increased number of clusters and multiple selections of cluster marker genes.

To address these issues, a single-cell Cluster-based automatic Annotation Toolkit for Cellular Heterogene-

ity (scCATCH) is introduced here, in which cell types are annotated through the tissue-specific cellular tax-

onomy reference database (CellMatch) and the evidence-based scoring (ES) protocol (workflow presented
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in Figure 1). The performance of scCATCH was evaluated by cell identity benchmark datasets originating

from three different tissues. We further validated the accuracy of scCATCH with six independent scRNA-

seq datasets. Results indicated that scCATCH facilitates analysis on scRNA-seq data and provides novel

insights into the mechanisms underlying disease pathogenesis and progression.

RESULTS

Validation of scCATCH Using the Benchmark scRNA-Seq Datasets

Knowledge in CellMatch reference database was derived from various resources, such as CellMarker

(Zhang et al., 2019b), MCA (Han et al., 2018), CancerSEA (Yuan et al., 2019), and the CD Marker Handbook.

In this reference database, cells were classified into three levels of subtypes in accordance with histological

origin, expression of specific markers, or degrees of differentiation. Accordingly, a panel of 353 cell types

and related 686 subtypes associated with 184 tissue types, 20,792 cell-specific marker genes, and 2,097 ref-

erences of humans and mice were introduced into scCATCH as the reference database.

To validate the results of scCATCH, three independent scRNA-seq datasets, which were not recorded in the

CellMatch database, were used, and cell types in these three datasets were identified or validated via FACS,

in situ hybridization, or IHC. In particular, the Chen dataset (Chen et al., 2017) includes 203 mouse kidney cells

and 3 cell types, namely intercalated cells, principal cells, and proximal tubule cells. The Xin dataset (Xin et al.,

2016) includes 1,600 human pancreatic islet cells and 4 cell types, namely beta cells, alpha cells, delta cells, and

pancreatic polypeptide (PP)-secreting cells. The Gierahn dataset (Gierahn et al., 2017) includes 3,694 human pe-

ripheral blood cells, namely B cells, T cells, dendritic cells (DCs), natural killer (NK) cells, and monocytes.

The cell types annotated by scCATCHwere highly concordant with those verified from the literature for kid-

ney cells, pancreatic islet cells, and peripheral blood cells (Figure 2). For the Chen dataset, scCATCH anal-

ysis identified intercalated cells and principal cells as collecting duct intercalated cells and collecting duct

principal cells (Figure 2A), respectively, which is consistent with the organ origin of Chen dataset as renal

collecting duct. For pancreatic islet cells in the Xin dataset, scCATCH accurately assigned cell identities for

alpha cells, beta cells, delta cells, and PP cells (Figure 2B). scCATCH not only annotated the actual cell type

but also identified the potential subtype of cells in each cluster, which are concordantly present among pe-

ripheral blood cells in the Gierahn dataset (Figure 2C). For example, scCATCH analysis annotated DCs as

Figure 1. Automatic Annotation on Cell Types of Clusters from scRNA-Seq Data Using scCATCH

(A) Paired comparison of clusters to identify the potential marker genes for each cluster. Compared with every other

cluster, genes significantly upregulated in only one cluster (log10 fold change R0.25, p < 0.05) and expressed in more

than a quarter of cells (R25%) would be considered marker genes. p values were obtained through the Wilcoxon test. *

indicates p < 0.05.

(B) Construction of tissue-specific cell taxonomy reference databases (CellMatch) with tissue-specific cell markers

reported in the literature from humans or mice.

(C) Evidence-based score and annotation. For each cluster, cell types were scored on the basis of validated marker genes

and their supporting literature, and the cell type with the highest score (top 1) was determined for the cluster.
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Figure 2. Validation of scCATCH

(A) Validation of scCATCH and identification of cluster marker genes upon Seurat in combination with evidence-based scoring in scCATCH (Seurat +

scCATCH) for 203 mouse kidney cells from the Chen dataset.
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plasmacytoid DCs owing to significant upregulation of plasmacytoid DC marker genes including GPR183,

SEC61B, and TBC1D4 (Villani et al., 2017) when compared with other clusters (Figure 2D). Moreover, our

results marked T cells in the Gierahn dataset as regulatory T cells according to highly expressed IL7R

and CD52 in this cluster (Figure 2E). These two genes were proposed as marker genes for regulatory

T cells (Haase et al., 2015; Sinha et al., 2018; Wang et al., 2013). In addition, the performance of scCATCH

on annotation remains stable with varied number of total cells and clusters.

Potential marker gene selection by scCATCH is indeed interesting. Seurat, a widely used software package

for scRNA-seq analysis, was applied herein to identify potential marker genes in the cluster, and the ES pro-

tocol was determined for annotation. Interestingly, cell types in the Chen and Xin datasets were still accu-

rately labeled, whereas those in the Gierahn dataset were only partially concurrent with the results of

scCATCH analysis (Figure 2A), indicating that the ES protocol is a robust identifier of cell identity.

Comparison of scCATCH with Other Methods

Cluster potential marker genes markedly contributed to the accuracy of annotation in the cluster-based

method. For scCATCH analysis, we carried out paired comparisons to identify differentially expressed

genes in only one specific cluster to ensure accuracy in matching the CellMatch database. On the contrary,

Seurat uses a one-against-all approach, potentially generating a set of pseudo cluster potential marker

genes (highly expressed in at least two clusters). Under this condition, cluster potential marker genes iden-

tified through scCATCH analysis usually were a subset of genes determined via Seurat (Figure 3A). Howev-

er, an increased number of cluster potential marker genes did not benefit cell annotation. Although Seurat

accurately annotated cell types common between the Chen and Xin datasets upon scCATCH analysis,

Seurat accurately annotated the cell types of only two clusters (40% consistency, Figure 2C) in the Gierahn

dataset, namely cluster 2 (T cells) and cluster 5 (monocytes). Apparently, the method of identifying cluster

potential marker genes did not differ with a limited number of clusters. On increasing the total number of

clusters, scCATCH analysis displayed better performance than Seurat in the identification of actual cluster

potential marker genes present in the Gierahn dataset (Figure 2C). For example, CCL22, SWAP70, and

KLRF1 were identified as cluster potential marker genes via Seurat, with a maximal fold change among

the unshared marker genes between Seurat and scCATCH for clusters 1, 3, and 4, respectively. Evidently,

CCL22 and SWAP70 were upregulated in multiple clusters, whereas KLRF1 was expressed in some cells in

clusters 4 and 5, deterring the differentiation of actual cell types from other clusters (Figure 3B).

Furthermore, validation datasets were used to compare scCATCH with cell-based annotation methods

including CellAssign, Garnett, SingleR, scMap, and CHETAH. CellAssign, SingleR, and scMap were able

to assign the accurate cell label for most cells, especially pancreatic islet cells in Xin dataset, whereas Gar-

nett and CHETAH barely identified the actual identity of each cell (Figures 3C–3E; Table 1). The consistent

rate of Garnett and CHETAHwas as low as 0% on the Gierahn dataset, indicating that none of the cells were

accurately identified by these two methods.

Owing to cell heterogeneity in the clusters, cell-based strategies could assign multiple cell type labels to

one cluster. Our analysis indicated that only 31.6% of proximal tubule cells in cluster 3 of Chen dataset were

assigned as proximal tubule cells by SingleR, whereas 36.8% and 31.6% cells in this cluster were assigned as

intercalated cells and principle cells, respectively (Figure S1). Besides, for some clusters, most cells’ labels

(>50%) in the cluster were not consistent with the actual cell type, which presents in all clusters of three vali-

dation datasets annotated by Garnett and CHETAH; clusters 1 and 3 of Chen dataset and clusters 3, 4, and

5 of Gierahn dataset annotated by CellAssign; cluster 3 of Chen dataset and most clusters of Gierahn data-

set by SingleR; and clusters 3 and 4 of Xin dataset as well as clusters 2 and 4 of Gierahn dataset by scMap

(Figures 3C–3E; Table 1). Under this condition, it is hard to assign an accurate cell label to this cluster.

Reference dataset plays a key role in cell type annotation. We next tested the effect of CellMatch on the

performance of SingleR and CHETAH. For SingleR, the databases of the Immunological Genome Project

Figure 2. Continued

(B) Validation of scCATCH and Seurat + scCATCH for 1,600 human pancreatic islet cells from the Xin dataset.

(C) Validation of scCATCH and Seurat + scCATCH for 3,694 human peripheral blood cells from Gierahn dataset.

(D) The violin plot of expression levels (log10) for cluster 3 marker genes GPR183, SEC61B, and TBC1D4 identified through scCATCH on Gierahn dataset.

(E) The violin plot for the expression levels (log10) of cluster 2 marker genes IL7R and CD52 identified via scCATCH on Gierahn dataset. DC, dendritic cell. NK

cell, natural killer cell.
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Figure 3. Comparison of scCATCH with Other Methods

(A) Identification of cluster potential marker genes via Seurat (black number beside the circle) and scCATCH (red numbers beside the circle) in three

validation datasets in each cluster. The black number inside the circle represents the number of overlapped genes.

(B) The violin plot for the expression levels of cluster 1 marker gene CCL22, cluster 3 marker gene SWAP70, and cluster 4 marker gene KLRF1 across 5 clusters

identified in the Gierahn dataset via Seurat.
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(ImmGen) and the mouse RNA-seq were used as the reference list for mouse, whereas the databases HPCA

as well as Encode and Blueprint Epigenomics transcriptomes were used as the reference list for human. For

CHETAH, a dataset of head and neck was used as the reference. As shown in Tables S1 and S2, using Cell-

Match as the underlying reference, SingleR performed better on annotating the cells of three validation

datasets, especially on non-blood cells, compared with using the ImmGen, mouse RNA-seq, HPCA and

Encode, and Blueprint Epigenomics transcriptomes reference lists. Consequently, the consistent rate

with CellMatch database by SingleR improved from 0% to 80%–90%. However, CHETAH showed no differ-

ence in the consistent rate with CellMatch.

The Performance of scCATCH during Analysis of the scRNA-Seq Dataset

scCATCH was employed to annotate six known scRNA-seq datasets to assess the performance of

scCATCH with three recorded in the CellMatch database and three unrecorded. On assessing the internal

datasets recorded in the CellMatch database, the Enge dataset (Enge et al., 2017) included 2,281 human

pancreatic cells and 6 cell types, namely alpha cells, beta cells, delta cells, acinar cells, ductal cells, and

mesenchymal cells, whereas the Wu dataset (Wu et al., 2017) included 20,679 mouse brain cells and

7 cell types including oligodendrocyte precursor cells (OPCs), astrocytes, oligodendrocytes, neurons, mi-

croglial cells, endothelial cells, and mural cells. The Lindsey dataset (Plasschaert et al., 2018) included 2,970

human lung cells and 7 cell types including basal cells, brush cells/pulmonary neuroendocrine cells

(PNECs), ciliated cells, FOXN4+ cells, ionocytes, secretory cells, and SLC16A7+ cells. On assessing external

datasets that were not recorded in the reference database, the Zheng dataset (Zheng et al., 2017b)

included 2,638 human peripheral blood cells and 9 cell types, namely CD8+ cells, naive and memory

CD4+ T cells, CD14+ and FCGR3A+ monocytes, B cells, NK cells, DCs, and platelets. Moreover, the Zeisel

(Zeisel et al., 2015) and Heng (Heng et al., 2019) datasets included 2,915 (7 cell types) and 3,918 (12 cell

types) mouse brain cells including neurons, oligodendrocytes, microglia, endothelial cells, mural cells, as-

trocytes, ependymal cells, neuronal progenitor cells, OPCs, pericytes, and fibroblasts.

In general, scCATCH detected most cell identities and accurately annotated the cluster consistent with the pre-

defined cell type in the literature. Both internal datasets and external datasets displayed an average consistency

rate of 83% (Table 2). For 6 cell types in the Enge dataset, scCATCH consistently identified 4 cell types, namely

alpha cells, beta cells, delta cells, and acinar cells, and identified clusters 5 and 6 as epithelial cells and acinar cells

or beta cells, whichwere ideally considered as ductal cells andmesenchymal cells (Figure 4A) on the basis of their

known marker genes PROM1 and THY1, respectively. However, PROM1 encodes a pentaspan transmembrane

glycoprotein that localizes to membrane protrusions and is expressed on stem cells (Oshima et al., 2007),

whereas the protein encoded by THY1 is expressed in numerous cell types and widely considered as a hemato-

poietic stem cellmarker. Asmarker genes EPCAM (Cheng et al., 2010; Seeberger et al., 2009),KRT19 (Seeberger

et al., 2009), and CDH1 (Seeberger et al., 2009) were confirmed as marker genes of pancreatic epithelial cells,

scCATCH expectedly annotated cluster 5 with epithelial cells instead of ductal cells. Moreover, cluster 6 was

identified as acinar or beta cells owing to their equal ESs, probably because of the limited cell number in cluster

6, comprising only 54 among 2,811 cells. Regarding the annotation of brain cells in another internal dataset,

scCATCH identified all cell types in accordance with the literature, except for mural cells, which were marked

as pericytes by scCATCH (Figure 4A). Moreover, pericytes were also considered mural cells, thus indicating

100% accuracy of scCATCH in annotating cell types in the Wu dataset. Among the 7 cell types in the Lindsey

dataset, scCATCH accurately identified all cell types consistent with the literature, including basal cells, brush

cells/PNECs, ciliated cells, FOXN4+ cells, ionocytes, secretory cells, and SLC16A7+ cells (Figure 4A). Interest-

ingly, cluster 2, identified as brush cells/PNECs in the literature, was concurrently annotated as brush or neuro-

endocrine cells owing to their similar ESs.

For the Zheng dataset, scCATCH identified the actual cell identities of most clusters along with marker

genes of the cluster, such as B cells, CD8+ T cells, CD14+ and FCGR3A+ monocytes, and DCs (Figure 4A).

Cluster 1 and 2 were notably labeled as naive and regulatory T cells, which were actually naive CD4+ and

memory CD4+ T cells. However, CD4 was not upregulated in either cluster 1 or 2 (Figure 4B), thus lacking

Figure 3. Continued

(C) Cell type annotation in the Chen dataset via scCATCH and cell-based annotation including CellAssign, SingleR, Garnett, scMap, and CHETAH.

(D) Cell type annotation in the Xin dataset via scCATCH, CellAssign, SingleR, Garnett, scMap, and CHETAH.

(E) Cell type annotation of the Gierahn dataset. The representative cell types were labeled for CellAssign and SingleR. Nodes 1, 2, 3, 4, 5, 6, 10, 69, and 70

represent intermediate cell types with a low confidence score.

See also Figure S1 and Tables S1 and S2.
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evidence regarding clusters 1 and 2 to be annotated on the basis of CD4 expression. Moreover, the cluster

2 marker gene IL7R common between scCATCH and the Zheng dataset was considered a potential marker

gene of regulatory T cells (Haase et al., 2015; Wang et al., 2013). Cluster 7 seemed difficult to annotate on

the basis of cluster marker genesGNLY andNKG7 of NK cells and cluster marker geneCD63 of basophils in

peripheral blood, whereas cluster 9, containing only 14 cells, expressed both platelet (PPBP) and naive

T cell (ACTN1, ARHGAP45, LDLRAP1, and R3HDM4) marker genes (Zheng et al., 2017a).

Furthermore, two scRNA-seq datasets frommouse brain were selected for scCATCH analysis. At the level of cell

type identification, scCATCH accurately annotated the primary cell types including neurons, oligodendrocytes,

microglia, endothelial cells, pericytes, astrocytes, and ependymal cells (Figure 4A). Notably, cluster 1 (interneu-

rons), cluster 2 (S1 pyramidal neurons), and cluster 3 (CA1 pyramidal neurons) in the Zeisel dataset were anno-

tated with type IC spiral ganglionic neurons, neurons, and neurons via scCATCH. These may be due to limited

number of records onmarkers for interneurons and pyramidal neurons. Moreover, vascular smooth muscle cells

(VSMCs) were annotated with mural cells, concurrent with the fact that mural cells include VMSCs in the Zeisel

dataset. For Heng dataset, 9 of 12 cell types annotated via scCATCHwere consistent with the literature, whereas

3 other clusters (neural progenitor cells, VSMCs, andbrain fibroblasts) were labeled as neuroblasts and type I and

type II spiral ganglionic neurons via scCATCH (Figure 4A). scCATCH identified marker genes Dcx, Ccnd2,

Crmp1, Dbn1, Dlx2, Pfn2, Btg1, Meis2, Stmn2, and Dlx6os1 (Luo et al., 2015; Shah et al., 2018; Zhang et al.,

2009) for cluster 3, leading to a high possibility as neuroblasts. However, it is difficult to determine the cell

type of clusters 5 and 11 since cluster 5 includes marker genes for type I spiral ganglionic neurons such as

Cdc42ep3, Mgst3, Mob2, Nexn, Rap1a, and Tpm1 for type I spiral ganglionic neurons (Shrestha et al., 2018)

and cluster 11 includes marker genes for type II spiral ganglionic neurons like Adm, Bmp7, Islr, Oat, Serpinf1,

and Wls. (Shrestha et al., 2018). Regarding their subtypes, numerous marker genes of type I spiral ganglionic

Dataset Cluster Cell Type Cell

Sum

Consistent Rate

scCATCH Cell

Assign

Garnett SingleR scMap CHETAH

Chen 1 Intercalated

cell

110 O 13% 28% 98% 90% 0%

2 Principle cell 74 O 96% 0% 69% 66% 0%

3 Proximal

tubule cell

19 O 47% 0% 32% 21% 0%

All NA 203 100% 46% 15% 81% 75% 0%

Xin 1 Beta cell 503 O 98% 47% 95% 94% 0%

2 Alpha cell 946 O 100% 5% 99% 98% 0%

3 Delta cell 58 O 93% 48% 67% 9% 0%

4 PP cell 93 O 100% 45% 72% 16% 0%

All NA 1,600 100% 99% 22% 95% 89% 0%

Gierahn 1 B cell 376 O 75% 8% 1% 64% 0%

2 T cell 903 O 70% 0% 9% 45% 0%

3 DC 104 O 38% 0% 0% 68% 0%

4 NK cell 471 O 10% 0% 55% 37% 0%

5 Monocyte 1,840 O 28% 0% 1% 90% 0%

All NA 3,694 100% 41% 0.9% 10% 69% 0%

Table 1. Comparison of scCATCH with Other Methods for Cell Type Annotation

NA, not applicable. O indicates scCATCH annotates the accurate cell type of the cluster.

The consistent rate of scCATCHand Seurat was determined as the percentage of consistent clusters with the same cell type in

each dataset, whereas the consistency of SingleR and CHETAHwas determined as the percentage of consistent cell numbers

with the same cell type. See also Tables S1 and S2.
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neurons were observed in cluster 9 when compared with the original annotation of glutamatergic neurons. The

GABAergic neurons in cluster 12 were annotated with type IC spiral ganglionic neurons via scCATCH owing to

limited reference data and a limited number of cells.

DISCUSSION

In this study, we developed scCATCH, a cluster-based automatic annotation toolkit for scRNA-seq analysis,

which uses a tissue-specific cell taxonomy reference database (CellMatch) and ES protocol to annotate cell

types. We not only validated the extremely high feasibility of ES protocol in scCATCH but also demon-

strated the superiority of scCATCH over other methods of identifying marker genes, including Seurat,

the cell-based annotation method CellAssign, Garnett, SingleR, scMap, and CHETAH, through three

scRNA-seq validation datasets. Moreover, scCATCH was used to assess six other known scRNA-seq data-

sets wherein scCATCH accurately annotated most cell types.

Thus far, common cell type annotation methods primarily include the cluster-based method by matching single

or several representative cluster potential marker genes with known cell markers, which is usually carried out

manually; however, such a method tends to require subjective prior knowledge among investigators, and the

unstable selection of cluster potential marker genes from the pool ranging from tens to hundreds of cluster po-

tential marker genes results in poor replicability of cell type annotation. Hence, the complete CellMatch refer-

encedatabase and theESprotocolwere introduced into scCATCH,wherein the ESprotocol was primarily based

on thematched number of supporting studies and validatedmarker genes. The cell type with themost evidence

would be selected as the ultimate annotation. Together with the frequently used Seurat and ES protocol, this

study indicates the high feasibility of scCATCH for the most annotated cell types concordant with the literature.

Comparedwithmanual annotation, the present method preventsmanual selection of marker genes and subjec-

tive cell type determination. Without the requirement of prior knowledge, scCATCH rapidly, accurately, and

reproducibly automatically annotates cell types of clusters from scRNA-seq data.

Recently, some cell-based annotationmethods have increasingly emerged to identify the cell type at the single-

cell level rather thansingle-cluster level.CellAssign,Garnett, SingleR, scMap,andCHETAHareknownmethods in

cell-based category that mapped the expression profile of each cell with reference profiles of known cell types.

However, forbiomedical research, researchersusually aremore interested incell cluster(s) that showdifferentpat-

ternsduringphysiological process,diseasedevelopment, ordrug treatment. This couldbe theunderlying reason

for the commonworkflowof scRNA-seq studies toperform cluster analysis first, followedby annotating cell types

using marker genes. Besides, for cell-basedmethods, the major challenge lies in the determination of cell types

oneach cluster. Uncertaintymaybe introducedby cell heterogeneity as shownbyour analysis. In addition, for the

common cluster-based strategy, an accurate and reproducible toolkit for automatically annotating cells without

prior knowledgewas unavailable. Hence, wedeveloped scCATCH to help biologists to address the current chal-

lenges.Moreover, scCATCHdisplayed extreme superiority to the cell-based annotationmethods, not only upon

solid tissue cell type identification but also upon blood cell type identification.

In this study, CellMatch, a comprehensive tissue-specific cell taxonomy reference database till date, was

constructed for scCATCH as the underlying data. Application of CellMatch to SingleR and CellAssign re-

sulted in significant improvement in accuracies of cell type annotations, which suggests the great utility of

CellMatch as a reference database. Furthermore, as our understanding on cell types continues to be

Dataset Recorded in CellMatch Species Tissue Cell Sum Cluster Sum Consistent Rate

Enge Yes Human Pancreas 2,281 6 4/6

Wu Yes Mouse Brain 20,679 7 6/7

Lindsey Yes Human Lung 2,970 7 7/7

Zheng No Human PBMCs 2,638 9 7/9

Zeisel No Mouse Brain 2,915 10 9/10

Heng No Mouse Brain 3,918 12 9/12

Table 2. Evaluation of scCATCH with Internal and External Datasets

PBMCs, peripheral blood mononuclear cells.
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Figure 4. Evaluation of scCATCH

(A) Cell types were annotated via scCATCH in three internal and three external datasets. Cluster numbers are provided with the corresponding cells. Cell

types are listed in each cluster. OPC, oligodendrocyte precursor cell; PNEC, pulmonary neuroendocrine cell; DC, dendritic cell; VSMC, vascular smooth

muscle cell; NPC, neuronal progenitor cell.

(B) The violin plot for the expression levels (log10) of CD4 and IL7R across 9 cell clusters in the Zheng dataset.
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enriched, more marker gene information would be supplemented in this reference and its performance

could be further enhanced. In the workflow of scRNA-Seq analysis, clustering is of key importance to the

conclusions. For cell type annotation, inadequate clustering analysis also would introduce errors into

this process as too many or few cells are both problematic for labeling. It is interesting to evaluate the ef-

fects of multiple clustering algorithm on cell type annotations in the future.

In summary, this study describes the development of an automatic and efficient toolkit for the identification

of cluster potential marker genes on the basis of ES protocol and annotation by constructing a comprehen-

sive tissue-specific cell taxonomy reference database (CellMatch) as the underlying data. The feasibility and

availability of scCATCH were systematically validated in different datasets. The present scCATCH analysis

would potentially facilitate rapid and accurate identification of actual cell identities without prior knowl-

edge with high replicability. The present results would greatly benefit studies on scRNA-seq data through

the elucidation of the cell composition in complex tissues and provide novel insights into mechanisms un-

derlying disease pathogenesis and progression.

Limitations of the Study

The performance of scCATCHmajorly depends on the reference database. The limited reference database

potentially led to incorrect annotation of cell types via scCATCH.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The source codes and results are implemented in R and are freely available (https://github.com/ZJUFan-

Lab/scCATCH; https://github.com/ZJUFanLab/scCATCH_performance_comparison). No new data were

generated for this study. All data used in this study are publicly available.
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Figure S1.Cell composition in each cluster of Chen datasets, Related to Figure 3 and Table 

1. Cell composition in cluster 1 (A), cluster 2 (B) and cluster 3 (C), annotated by Garnett, 

SingleR, scMap, CellAssign and CHETAH. 

 

 

 

 

 

 

 



Table S1. Cell annotation by SingleR and CHETAH with various referred databases on Chen datasets, Related to Figure 3 and Table 1. 

Dataset Cluster Cell type 

Consistent rate 

SingleR referred database CHETAH referred database 

Immgen Mouse.RNAseq CellMatch Headneck CellMatch 

Chen 

1 Intercalated cell 0% 0% 98% NA 0% 

2 Principle cell 0% 0% 69% NA 0% 

3 Proximal tubule cell 0% 0% 32% NA 0% 

All - 0% 0% 81% NA 0% 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Cell annotation by SingleR and CHETAH with various referred databases on Xin and Gierahn datasets, Related to Figure 3 and 

Table 1. 

Dataset Cluster Cell type 

Consistent rate 

SingleR referred database CHETAH referred database 

HPCA Blueprint.encode CellMatch Headneck CellMatch 

Xin 

1 Beta cell 0% 0% 95% 0% 0% 

2 Alpha cell 0% 0% 99% 0% 0% 

3 Delta cell 0% 0% 67% 0% 0% 

4 PP cell 0% 0% 72% 0% 0% 

All - 0% 0% 95% 0% 0% 

Gierahn 

1 B cell 62% 56% 1% 0% 0% 

2 T cell 90% 95% 9% 20% 0% 

3 DC 74% 88% 0% 4% 0% 

4 NK cell 84% 75% 55% 0% 0% 

5 Monocyte 89% 52% 1% 0% 0% 

All - 85% 67% 10% 5% 0% 

 

 

 



 

Table S3. The clustering method and initialization platform for all datasets, Related to Table 1 and Table 2. 

Dataset Clustering method Initialization platform Compatibility 

Chen Seurat package C1 Fluidigm system √ 

Xin Seurat package C1 Fluidigm system √ 

Gierahn Seurat package Seq-Well √ 

Enge NA Smart-seq2 √ 

Wu Louvain-Jaccard graph clustering Drop-Seq √ 

Lindsey SPRING Droplet microfluidics √ 

Zheng Seurat package 10X Genomics √ 

Zeisel BackSPIN C1 Fluidigm system √ 

Heng K-means clustering 10X Genomics √ 

NA, not available. √ represent the compatibility with the pipeline of scCATCH. 

 



Transparent Methods 

Datasets 

scRNA-seq datasets were retrieved from several high-quality reports and Gene Expression 

Omnibus (GEO), including human and mouse primary tissues such as peripheral blood, brain, 

lung, kidney, and pancreas, wherein unannotated cells were excluded. The Zheng dataset (2,700 

peripheral blood mononuclear cells [PBMCs]) was directly downloaded from Satija Lab 

(https://satijalab.org/seurat/). Validation datasets included the Chen, Xin, and Gierahn datasets, 

wherein cell types were experimentally validated via FACS or in situ hybridization and IHC. 

Test datasets included three internal datasets of Enge, Wu, and Lindsey and three external 

datasets of Zheng, Zeisel, and Heng, wherein cell types were annotated using known marker 

genes. 

Construction of the CellMatch reference database 

Human and mouse cell markers from CellMarker (http://biocc.hrbmu.edu.cn/CellMarker), 

MCA (https://figshare.com/articles/MCA_DGE_Data/5435866), CancerSEA 

(http://biocc.hrbmu.edu.cn/CancerSEA), and the CD Marker Handbook 

(http://static.bdbiosciences.com/documents/cd_marker_handbook.pdf) were retrieved. 

For CellMarker database, cell markers derived from undefined tissue were excluded in this 

study and only cell markers with at least one supporting article were included. After integrating 

cell markers from the same tissue of origin, it led to 45,090 records (28,636 for human and 

16,454 for mouse) involving 175 tissue types, 635 cell types, 20,213 cell marker genes and 

2,085 references. 

For MCA database, raw counts and the meta information of cell types were downloaded and 

processed. For each tissue, cells with the same annotation were merged and cell marker genes 

for each cell type were identified with FindAllMarkers of Seurat by using Normalized data via 

LogNormalize, in which the percentage of expressed cells was set to 75%, P value from 

Wilcoxon Rank-Sum (WRS) test to 0.01, and log10 fold change to 0.5. After the integration of 

marker gene from same tissue origin, it led to a total of 4,014 records related with 31 tissue 



types, 139 cell types, and 1,486 cell marker genes. 

For CancerSEA database, cell marker genes were curated from cancer related single-cell 

studies, wherein studies sourced from tissue were included. A total of 1,196 records were 

obtained from 11 references related with 6 tissue types, 27 cell types as well as 997 cell marker 

genes. 

For CD Marker Handbook database, human and mouse key cell markers were collected as 

blood cell markers. A total of 54 records were obtained from CD Marker Handbook database 

related with 15 cell types and 50 cell marker genes. 

Cell marker gene symbols and gene IDs were revised in accordance with NCBI gene data 

(https://www.ncbi.nlm.nih.gov/gene/) updated on July 1, 2019, wherein unmatched genes were 

removed from the CellMatch. Repeated records were combined, and cell types and subtypes 

were extracted from the names of annotated cells in accordance with histological origin, 

expression of specific markers or degrees of differentiation. To ensure the accuracy of 

CellMatch, manual confirmation were performed via independently examining the marker 

genes and reference by three reviewers. Lastly, cell marker genes curated from CellMarker, 

MCA, CancerSEA and CD Marker Handbook database were integrated to establish species-

specific and tissue-specific reference database CellMatch, which includes 49,635 records 

(29,836 for human and 19,799 for mouse) involving 184 tissue types, 353 cell types and related 

686 subtypes, 20,792 cell marker genes and 2,097 references. 

Data pre-processing 

All scRNA-seq data were processed using R (version 3.6.1). For Zheng datasets, the raw count 

was processed in accordance with the pipeline of the Satija Lab tutorial, using Seurat 3.0, 

wherein cells with unique feature counts of >2,500 or <200 and >5% mitochondrial counts 

were filtered out. For other datasets, all cells in the datasets were included in the filtered 

matrices and the meta information of cell clusters and cell types for all cells were obtained 

from the literature. Cells with same annotation were merged into the same cluster, and 

duplicated genes were combined through summation of raw counts for each cell. All datasets 



were then saved as the CellDataSet class prepared for running scCATCH and other methods. 

Data preparation for scCATCH 

All datasets were transferred as Seurat objects from CellDataSet objects by extracting raw 

count and meta information of cell clusters and cell types. Then the raw counts were normalized 

via the global-scaling normalization method LogNormalize. Principal component analyses 

(PCA) were performed followed by uniform manifold approximation and projection (UMAP) 

analysis for dimensional reduction and visualization. All datasets were stored as Seurat objects 

prepared for running scCATCH. 

Identification of cluster potential marker genes with scCATCH 

For clusters i and j among n clusters (i ≠ j, i & j ≤ n), Gi,j was defined as the gene set in which 

every gene’s average expression in cluster i is significantly greater than that in cluster j with 

the percentage of expressed cells (≥25%), using WRS test (P<0.05) and a log10 fold change of 

≥0.25. For each cluster i, the cluster potential marker gene set Mi was obtained using the 

following equation: 

Mi=Gi,1∩Gi,2∩Gi,…∩Gi,j 

Cluster annotating process with scCATCH using cluster potential marker genes 

Evidence-based scoring (ES) protocol in scCATCH involved two steps. The first step was to 

determine the cell type, and the second step was to determine the subtype of the corresponding 

cell type. For each cluster i, the cluster marker gene set Mi was matched with species-specific 

(human or mouse) and tissue-specific (blood, brain, kidney, etc.) cell markers from CellMatch 

database on the basis of revised gene symbols. ci was considered as the matched unique cell 

type candidates. For each candidate k among ci, the ESk was determined as follows: 

ESk=√
lk

lk+1
×

gk

gk+1
 (1) 

In equation (1), lk represents the unique number of related studies, while gk is the number of 

associated cell marker genes, referring to the intersection of set Mi and the cell markers in 



CellMatch database. Candidate k with the maximal ESk was determined as the cell type for 

cluster i. Furthermore, si was considered the matched unique subtypes belonging to candidate 

k. For each subtype m among si, the ESk,m was determined as follows: 

ESk,m =√
lk,m

lk,m+1
×

gk,m

gk,m+1
 (2) 

In equation (2), lk,m represents the unique number of related evidence/reference while gk,m is the 

number of associated cell marker genes. Subtype m with the maximal ESk,m (> 0.5) was 

determined as the cell subtype for cluster i. 

For scCATCH annotation, the mouse kidney cell markers was selected from CellMatch 

database for Chen dataset. The human pancreas and pancreatic islet cell markers were used for 

Xin and Enge datasets. The human blood, peripheral blood, and bone marrow cell markers 

were picked for Gierahn and Zheng datasets; mouse brain cell markers for Wu, Zeisel, and 

Heng datasets; human lung cell markers for Lindsey dataset. 

Annotation with cluster potential marker genes identified by Seurat and scCATCH 

For Seurat, cluster potential marker genes of three validation datasets were identified with 

FindAllMarkers, wherein Normalized data via “LogNormalize” were processed to determine 

the positive cluster potential marker genes with default parameters with the percentage of 

expressed cells (>10%), using WRS test (P<0.01) and a log10 fold change >0.25. For scCATCH, 

cluster potential marker genes of three validation datasets were identified with findmarkergenes, 

wherein Normalized data via LogNormalize were processed to determine the positive cluster 

potential marker genes with default parameters with the percentage of expressed cells (≥25%), 

using WRS test (P<0.05) and a log10 fold change ≥0.25. Both cluster potential marker genes 

generated from Seurat and scCATCH were used to annotate the cell types of three validation 

datasets via the function of scCATCH on the basis of ESs. As previously described, the tissue 

type for the Chen dataset, Xin dataset and Gierahn dataset was set to kidney, pancreas and 

pancreatic islet and blood, peripheral blood, and bone marrow, respectively, when annotating. 

Performance comparison on the validation datasets with various methods 



For CellAssign, three validation datasets were first transformed as SingleCellExperiment 

objects from CellDataSet object by extracting raw count and meta information of cell types. 

CellMatch database was then used as reference while all other parameter in CellAssign were 

kept as default (learning rate, 0.01). 

For Garnett, the marker genes of mouse kidney cells, human pancreas and pancreatic islet cells, 

and human blood, peripheral blood and bone marrow cells from CellMatch database were first 

extracted to train corresponding classifiers of three validation datasets. The parameter of the 

number of unknown type cells was set as an outgroup during classification with a value of 50. 

Then the trained classifiers were used to classify the cells of Chen, Xin and Gierahn datasets. 

For SingleR, three validation datasets were first transformed as a SingleR object from 

CellDataSet object by extracting raw count and meta information of cell types. To annotate 

Chen dataset by SingleR, the default databases of the Immunological Genome Project 

(ImmGen) and the mouse RNA-seq were used as the reference list, wherein a new reference 

list generated from CellMatch database by extracting the marker genes of mouse kidney cells 

was incorporated. To annotate Xin and Gierahn dataset by SingleR, the default databases of 

HPCA as well as Encode and Blueprint Epigenomics transcriptomes were used as the reference 

list, wherein a new reference list generated from CellMatch database by extracting the marker 

genes of human pancreas and pancreatic islet cells was incorporated for Xin dataset, and 

another new reference list by extracting the marker genes of human blood, peripheral blood 

and bone marrow cells was incorporated for Gierahn dataset. 

For scMap, three validation datasets were transformed as SingleCellExperiment objects from 

CellDataSet object by extracting raw count and meta information of cell types. The three 

validation datasets were normalized with log2 raw counts and duplicated genes were removed 

from the normalized matrices. The individual cells in each dataset were used as the reference 

to projects cells of the corresponding dataset by scMap-cell. 

For CHETAH, three validation datasets were transformed as SingleCellExperiment objects 

from CellDataSet object by extracting raw count and meta information of cell types. To 

annotate Chen, Xin and Gierahn datasets by CHETAH, the default reference of head and neck 



were used and three new references were created and added by extracting the corresponding 

marker genes from CellMatch database, as previously described in SingleR. 

Consistent rate evaluation 

Consistent rate for scCATCH was defined as the percentage of consistent clusters annotated 

with the same cell type as in the literature, while consistent rate for CellAssign, Garnett, 

SingleR, scMap and CHETAH was defined as the percentage of consistent cells with the same 

cell type, as in the literature. 

Code and data availability 

The source code of scCATCH is implemented in R and is freely available at 

https://github.com/ZJUFanLab/scCATCH. The source code and results of performance 

comparison on the detail of the process among scCATCH, CellAssign, Garnett, SingleR, scMap 

and CHETAH, and CellMatch database are implemented in R and is freely available at 

https://github.com/ZJUFanLab/scCATCH_performance_comparison. All data are accessible 

in GEO with the following accession codes: (a) for Chen dataset, the accession code is 

GSE99701; (b) Xin dataset, GSE81608; (c) Gierahn dataset, GSM2486333; (d) Enge dataset, 

GSE81547; (f) Wu dataset, GSE103976; (g) Lindsey dataset, GSE102580; (h) Zeisel dataset, 

GSE60361; (i) Heng dataset, GSE125708. 
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