
Introduction
A strong link between Helicobacter pylori (HP) infection and
gastric cancer has been reported [1, 2]. HP is the leading cause
of HP infection-associated gastritis and can cause chronic gas-
tritis, gastroduodenal ulceration, mucosal atrophy, and intes-
tinal metaplasia [3]. The latter 2 conditions are known risk fac-
tors for the development of gastric cancer [1, 4]. Eradication of
HP is known to improve gastric mucosal atrophy and inhibit the
development of intestinal metaplasia [5]. Thus, it is important

to diagnose HP infection to avoid the potential development
of gastric cancer. We are concerned with the accurate diagnosis
of HP infection during routine medical check-ups.

Using standard endoscopy, HP infection is diagnosed on the
basis of gastric mucosal redness and swelling [6]; however,
even this approach requires advanced skills and knowledge
[4], and several years of training are necessary for endoscopists
to attain the necessary diagnostic expertise [7]. Machine learn-
ing can be applied to overcome the problems of diagnosis, and
a convolutional neural network (CNN) optimized for the diag-
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ABSTRACT

Background and study aims Helicobacter pylori (HP)-

associated chronic gastritis can cause mucosal atrophy and

intestinal metaplasia, both of which increase the risk of gas-

tric cancer. The accurate diagnosis of HP infection during

routine medical checks is important. We aimed to develop

a convolutional neural network (CNN), which is a machine-

learning algorithm similar to deep learning, capable of re-

cognizing specific features of gastric endoscopy images.

The goal behind developing such a system was to detect

HP infection early, thus preventing gastric cancer.

Patients and methods For the development of the CNN,

we used 179 upper gastrointestinal endoscopy images ob-

tained from 139 patients (65 were HP-positive: ≥10 U/mL

and 74 were HP-negative: < 3 U/mL on HP IgG antibody as-

sessment). Of the 179 images, 149 were used as training

images, and the remaining 30 (15 from HP-negative pa-

tients and 15 from HP-positive patients) were set aside to

be used as test images. The 149 training images were sub-

jected to data augmentation, which yielded 596 images.

We used the CNN to create a learning tool that would re-

cognize HP infection and assessed the decision accuracy of

the CNN with the 30 test images by calculating the sensitiv-

ity, specificity, and area under the receiver operating char-

acteristic (ROC) curve (AUC).

Results The sensitivity and specificity of the CNN for the

detection of HP infection were 86.7% and 86.7%, respec-

tively, and the AUC was 0.956.

Conclusions CNN-aided diagnosis of HP infection seems

feasible and is expected to facilitate and improve diagnosis

during health check-ups.
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nosis of HP infection may be clinically beneficial in preventing
the development of gastric cancer. Machine learning is a meth-
od of data analysis that allows the discovery of specific patterns
in large datasets. Deep learning is a type of machine learning
that is based on a set of algorithms that attempt to model
high-level abstractions in data. It is a multilayered approach
that imitates cerebral neural networks and uses various layers
to automatically extract features from images or voices. A CNN
can be trained to automatically extract image features and then
recognize patterns after multilayered learning of image data
achieved through deep learning [8]. A CNN is similar in struc-
ture to a neocognitron, which is an image recognition system
derived from computational neuroscience [8]. One important
characteristic of a CNN is that interhierarchy operations can be
stated as convolution operations. Thus, a CNN exhibits high ac-
curacy when used for recognition of images and voice.

Aiming to simplify endoscopic screening for HP infection, we
constructed a CNN that was optimized to diagnose HP infection
by learning endoscopic images. Caffe was used as the frame-
work for the CNN [9]. In the present study, we used a CNN de-
signed for generic object recognition and then used a fine-tun-
ing strategy to transfer the recognition capabilities of the CNN
to endoscopic images, to further aid in the diagnosis of HP in-
fection. The ultimate goal of the development of this system
was the early detection of HP infection, thus, preventing gastric
cancer.

Patients and methods
Preparation and experimental data

This prospective, cohort study was approved by the ethics com-
mittee of the Foundation for the Detection of Early Gastric Car-
cinoma (approval No. 15-02). The study included white-light
endoscopic images that had been obtained from 139 individ-
uals during annual company-sponsored health check-ups. As
this study was exploratory study, sample size was determined
according to practicability for sample collection and analysis.
We referred to the papers related to previously reported ma-
chine learning[10]. All endoscopic examinations were per-
formed with an EG-L580NW endoscope (Fujifilm, Tokyo, Japan)
by the same doctor (H.N.), certified by the board of the Japan
Gastroenterological Endoscopy Society.

All 139 individuals provided their written consent for an HP
blood test. The distributions of clinical diagnoses are indicated
based on the degree of mucosal atrophy according to the Ki-
mura and Takemoto classification in ▶Table 1 [11]. Blood was
drawn from each individual, and the serum was tested for HP
IgG antibodies. An antibody titer of ≥10U/mL was considered
positive for HP infection and a titer of < 3U/mL was considered
negative. To avoid the inclusion of false-negative test results,
individuals with a serum antibody titer of ≥3U/mL and ≤9U/mL
and individuals who underwent HP eradication were excluded
from the study to improve the diagnosis of the CNN. Of the
139 individuals tested, 65 were positive for HP infection,
whereas 74 showed negative results.

From the 139 individuals, we obtained 179 endoscopic ima-
ges of the lesser curvature of the stomach. For machine learn-

ing, 149 of the 179 images were used, and the remaining 30
were set aside to be used as test images. These 30 images
were obtained from 15 patients who tested positive for HP in-
fection and 15 patients who tested negative. Representative
HP-positive and HP-negative images are shown in ▶Fig. 1. The
149 learning images were large batch images of 800×800 pix-
els each (▶Fig. 2). Processing of these images was performed
at angles of 45°, 90°, and 180° for data augmentation, yielding
a total of 596 images for learning (▶Table2).

Machine learning

We used GoogLeNet DCNN pretuned for generic object recog-
nition[12]. GoogLeNet, developed by Google, is a 22-layer net-
work that won acclaim during the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) [13, 14]. A diagram of CNN
learning flow is presented in ▶Fig. 3.

In general, CNN learning has strong early-stage dependen-
cies. There were limited images available for the learning pro-
cess; however, transfer learning effectively leveraged the avail-
able dataset. The transfer learning process was based on fine-
tuning [15], which was based on a pretrained network, and the
parameters used were early values. Furthermore, transfer
learning was the technique used for learning the task data set
[16]. Flow images, like the identification layer, were the only
factors added to the task data set, and we trained the network’s
weights and biases so that the network’s output would correct-
ly identify the input image.

Stochastic gradient descent was used to optimize the net-
work [17]. The momentum coefficient for the rate of learning,
batch size, number of iterations, and attenuation were 0.0005,
20, 20,000, and 0.0005, respectively.

Creating a learning device by means of GoogLeNet

As discussed above, presence or absence of HP infection was
confirmed according to the serum HP IgG antibody levels in
the patients from whom the 149 endoscopic images were ob-
tained. We compared the results of the serum HP IgG antibody
tests with the results obtained by applying our new machine
learning algorithm and investigated the sensitivity, specificity,
and area under the receiver operating characteristic (ROC)
curve (AUC) for our system.

▶ Table 1 Patient numbers for clinical diagnosis of gastritis.

Training Test Pt. number

Non 45 14 59

C-1 9 1 10

C-2 9 3 12

C-3 6 2 8

O-1 24 5 29

O-2 14 4 18

O-3 2 1 3

Total 109 30 139
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▶ Fig. 1 Examples of endoscopic images obtained from individuals who, upon laboratory tests, were shown to be negative (upper row) or
positive (lower row) for HP infection.

▶ Fig. 2 Image processing by means of deep learning focused on the center of the image. Image resolution was 800 x 800 pixels. a Before
processing. b After processing.
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Evaluation

As aforementioned, 30 images (15 HP-positive and 15 HP-neg-
ative images) were used as test images. CNN decision accuracy,
that is, screening accuracy, was determined on the basis of the
ROC curve, derived by plotting sensitivity against specificity, for
which we calculated the AUC. No cut-off values (values differ-
entiating between positive and negative results) were used,
and the ROC curve was obtained when we plotted the values.
Values ranged from 0 to 1, and values closer to 1 indicated
high classification accuracy.

Results
When we considered CNN output values of 0.5–1.0 as positive
and values of 0–0.49 as negative, sensitivity was 86.7% and
specificity was 86.7%. The AUC was 0.956 (▶Fig. 4).

Discussion
Diagnosing cancer early and providing appropriate treatment
are vital. Mucosal atrophy and intestinal metaplasia that can oc-
cur with HP infection are important factors in the development
of gastric cancer [2–6, 18, 19]. If endoscopy is performed at the
time of an individual’s annual health check-up, the five key Kyo-
to classification features that indicate a person’s risk of gastric
cancer (atrophy, intestinal metaplasia, enlargement and tortu-
osity of the gastric folds, nodularity, and diffuse reddening) can
be examined; however, these features are not easily identified,

and all endoscopists do not possess the same diagnostic ability
[20].

Endoscopic evidence of HP infection is, however, rapidly ob-
tained, and it results in an accurate diagnosis. Ji et al. noted the
relative difficulty of real-time diagnosis under white light and
reported the effectiveness of magnifying endoscopy with nar-
row band imaging (NBI) [21]. Nodularity recognized under
white-light endoscopic examination is highly specific for HP in-
fection (96% specificity), but discovery of such nodularity is not
sufficiently sensitive for correctly identifying patients without
HP infection (32% sensitivity) [21]. In general, the diagnostic
ability increases under white light; therefore, chromoendosco-
py, that is, dying tissues and viewing them endoscopically, is
useful. Magnifying endoscopy allows for detailed observation
of the mucosal structure, leading to the diagnosis of HP infec-
tion. Diagnosis is facilitated by observing and classifying fea-
tures such as hypertrophic mucosa and absence of round pits
with regularly arranged collecting venules; however, achieving
an objective diagnosis is difficult [22, 23], making NBI neces-
sary. HP infection diagnosed using NBI is classified on the basis
of the following three abnormal pit patterns: type 1 (slightly
enlarged, round pits with unclear or irregular subepithelial ca-
pillary networks [SECNs]); type 2 (obviously enlarged oval or
elongated pits with an increased density of irregular vessels);
and type 3 (well-demarcated oval or tubulovillous pits with
clearly visible coiled or wavy vessels). The reported sensitivity
and specificity of these pit patterns for the detection of HP in-
fection are 95.2% and 82.2% [24]. Both magnifying endoscopy
and NBI are required to accurately identify the absence of mu-
cosal pits and collecting venules as well as the presence of ir-
regular SECNs; thus, diagnostic skill is necessary.

Diagnosis of HP infection relies on the results of endoscopic
rapid urease testing (RUT), endoscopic biopsy and culture, the
measurement of serum antibodies, the results of the urea
breath test (UBT), and the results of stool antibody testing.
Endoscopy-based tests, such as RUT or pathological diagnosis
from biopsy samples, can yield false-negative results if mucosa
without HP is collected. RUT is effective; however, but we did
not perform a biopsy in all cases during endoscopic examina-
tion. In addition, RUT was considered expensive and hence not

▶ Table 2 Breakdown of training images and test images.

HP infection

status

No. of endo-

scopic images

No. of images after

data augmentation

Training
images

Positive 70 280

Negative 79 316

Test
images

Positive 15 –

Negative 15 –

Input layer Output layerHidden layer
(convolution & pooling

Back propagation

The results of
HP IgG antibodies

HP-positive

HP-negative

Correct value

▶ Fig. 3 Flow diagram of CNN learning.
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performed. Serum antibody tests always yield false-negative
results in small children immediately after infection, and false-
negative results are possible within a few months after eradica-
tion therapy. The test device used for the UBT is not commonly
available. Stool antigen testing is highly sensitive and specific
and can be used for diagnosis even in children. Nevertheless,
collection and handling of the specimens are difficult. Serum
antibody testing is recommended in Japan to screen for HP in-
fection if endoscopy is not performed [25].

The UBT, which does not require endoscopy, has a sensitivity
and specificity of 97% and 97%, respectively, and the serum an-
tibody assay has a sensitivity and specificity of 97.7% and
95.6 %, respectively [26, 27]. UBT is a very useful and sensitive
method, the serological H. pylori antibody test is the gold
standard test to detect H. pylori infection [25].

We developed and tested a CNN system to be used as a diag-
nostic aid. The sensitivity and specificity of the CNN system
were 86.7% and 86.7%, respectively, and the AUC was 0.956.
The AUC was large, and we believe that our system was capable
of consistent recognition. The sensitivity and specificity of the
UBT and serum antibody testing in this study differed by 10% in
terms of accuracy, so increasing precision will be the next chal-
lenge. The CNN system developed to aid in the diagnosis of HP
gastritis is not influenced by the site at which the endoscopic
biopsy specimen is obtained. In fact, no biopsy specimens are
needed. The system is advantageous in that the diagnostic cap-
abilities of endoscopy specific to HP can be automated.

Watanabe et al. reported that it was difficult to distinguish
between H. pylori-infected and H. pylori-eradicated patients [7].
In this study, we excluded patients with a history of H. pylori era-
dication or with serum antibody titers of ≥3U/ml and ≤9U/ml.
It is important to distinguish H. pylori-eradicated, -infected and
-uninfected patients, and accurate training data are necessary
to create a CNN for the diagnosis of H. pylori infection. Patients
with H. pylori IgG antibody titers of ≥3 U/mL and ≤9 U/mL were
considered to be included within a serological boundary region

of H. pylori infection, which the training data that we used for
the CNN did not contain. Including this in the training data set
would improve the diagnostic accuracy of the CNN. We under-
stand that the analysis in this study was quite different from
clinical practice. To improve the CNN, we plan to prospectively
evaluate its diagnostic accuracy in patients after eradication of
H. pylori so that H. pylori-positive, -negative, and -eradicated di-
agnoses are included in the CNN.

Accurately diagnosing HP infection using standard endos-
copy is difficult. Bah et al. conducted a prospective investiga-
tion of the diagnostic accuracy based on gastric endoscopy
images. The resulting sensitivity and specificity were 75% and
63%, respectively, and the authors concluded that it is difficult
to diagnose HP gastritis from endoscopic images alone [28].
Their findings reflect the fact that diagnostic skill, and thus ac-
curacy, varies from one endoscopist to another. We have two
reasons for selecting images of the lesser curvature of the
stomach. Firstly, the lessor curvature has a higher diagnostic
sensitivity and specificity than the greater curvature (data not
shown). Secondly, we wanted to make the diagnosis of H. pylori
infection as simple as possible. A system to aid and support di-
agnosis, whether performed by residents or experts, is desir-
able and will be very useful. In this study, we hypothesized atro-
phy in the corpus lesser curvature is an endoscopic indicator for
H. pylori infection. However, in the Western countries, HP gas-
tritis confined to the antrum and does not progress to the cor-
pus much [29]. Therefore, this algorithm may not be so useful
for patients in non-East Asian countries. An optimized CNN can
be used as an automated diagnostic aid to identify HP infection.
The developed CNN system will allow the diagnosis of HP infec-
tion at an early stage and facilitate appropriate timing of eradi-
cation. Therefore, it may be possible to reduce the risk of gastric
cancer with this system.

Conclusions
We developed a CNN system to aid in the endoscopic diagnosis
of HP infection. Good results were obtained, suggesting that
the system is useful for identification of HP infection. To the
best of our knowledge, this is the first report of such a CNN.
We believe that this machine learning system will effectively
support clinical diagnosis irrespective of whether the system is
used by residents or experts. Its use may help ease the diagnos-
tic burden of physicians. By clarifying patient risks, it may also
help in the identification of appropriate treatment strategies. In
the future, we plan to aim for identification accuracy similar to
that in the present study and to advance the parameter adjust-
ment and data augmentation.
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▶ Fig. 4 Receiver-operating characteristic curve.
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