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Abstract
It was previously reported, that temperature may significantly influence neural dynamics on the different levels of brain
function. Thus, in computational neuroscience, it would be useful to make models scalable for a wide range of various
brain temperatures. However, lack of experimental data and an absence of temperature-dependent analytical models of
synaptic conductance does not allow to include temperature effects at the multi-neuron modeling level. In this paper, we
propose a first step to deal with this problem: A new analytical model of AMPA-type synaptic conductance, which is able
to incorporate temperature effects in low-frequency stimulations. It was constructed based on Markov model description of
AMPA receptor kinetics using the set of coupled ODEs. The closed-form solution for the set of differential equations was
found using uncoupling assumption (introduced in the paper) with few simplifications motivated both from experimental
data and from Monte Carlo simulation of synaptic transmission. The model may be used for computationally efficient and
biologically accurate implementation of temperature effects on AMPA receptor conductance in large-scale neural network
simulations. As a result, it may open a wide range of new possibilities for researching the influence of temperature on certain
aspects of brain functioning.
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1 Introduction

From a medical perspective, it has been suggested that tight
control of brain temperature in patients, suffering during a
post-traumatic period is highly recommended (Shigemori
et al. 2012). However, despite the fact that the techniques
of the control of the brain temperature have been devel-
oped, direct mechanisms of the influence of temperature on
neural dynamics are still uncertain (Badjatia 2009). Better

Action Editor: Upinder Singh Bhalla

� Dominik S. Kufel
dominic.kufel@gmail.com

1 The Polish Children’s Fund, Pasteura 5a,
02-093 Warsaw, Poland

2 Department of Physics & Astronomy, University College
London, 0 Gower St, WC1E 6BT, London, UK

3 Faculty of Mathematics, Physics and Computer Science,
Institute of Computer Science, Department
of Neuroinformatics, Maria Curie-Sklodowska University
in Lublin, Akademicka 9, 20-033 Lublin, Poland

understanding of temperature effects on different levels of
brain function may be useful in developing more sophisti-
cated methods of treatment for different neurological disor-
ders which are sensitive to temperature (including hot-water
epilepsy (Kowacs et al. 2005), autism (Helt et al. 2008) or
brain injury (Mrozek et al. 2012; Dietrich 1992).

On the level of single neurons, multiple effects of
temperature on brain function have been observed. The most
important from the perspective of neural dynamics are:

1) Temperature influences membrane resting potential
(Hodgkin and Huxley 1952; Buzatu 2009).

2) Temperature affects ion channels dynamics (Hille
2001; Sterratt 2015).

3) Temperature affects synaptic transmission (Asztely
et al. 1997; Weight and Erulkar 1976; Schiff and
Somjen 1985).

Temperature effects on membrane resting potentials (the
Goldman-Hodgkin-Katz equation) and on ion-channel
dynamics (e.g. Hodgkin and Huxley (1952)) are now rela-
tively well-characterized. But the influence of temperature
on synaptic transmission has proven to be more difficult to
model (e.g. De Schutter et al. (2009)). This may be because
of the various processes involved in synaptic transmission,
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such as presynaptic release of neurotransmitter; dynamics
of a vesicle pore; diffusion of neurotransmitter; binding of
the neurotransmitter; and kinetics of postsynaptic receptors.
The influence of temperature on each of this processes is
different, and they combine to the significant modification
of the synaptic transmission (Fuxe et al. 2005).

Therefore, generally, in the creation of biologically-real
models in computational neuroscience, it is useful to make
them easily scalable for different temperatures. This is
especially important because some of the neurobiological
experiments - for example, in vitro studies - are usually
conducted at temperatures lower than physiological ones.
Therefore, a better knowledge about the temperature
dependence of synaptic transmission may be crucial for
linking in vitro and in vivo studies. Furthermore, an optimal
way of including a full description of temperature effects in
neural simulations may allow computational brain research
to address new areas: for example, investigation of the
influence of temperature on such neurological disorders like
hot-water epilepsy, cerebral brain injury or autism.

It is possible to tackle the problem of including
temperature effects on synapses from different perspectives:

(1) A first approach is to include some multiplicative
coefficients accounting for the influence of tempera-
ture in phenomenological synapse models e.g. alpha
function, dual-exponential functions, single exponen-
tial functions. In this approach, it is required to
multiply all of these time constants and amplitudes
of phenomenological functions by some (probably
different) factors associated with temperature. These
coefficients would mimic the increase in the speed
of chemical reactions with temperature (according
to Arrhenius equation). However, there is a signif-
icant problem related to this approach. The values
of temperature multiplicative factors are not known
a priori (for an arbitrarily chosen kinetic scheme).
These values would have to be obtained for each
study separately by performing additional neurobio-
logical experiments at different temperatures, which is
usually not possible for in vitro research.

(2) A second approach is to model synapses on the micro-
physiological level - to investigate temperature effects
on the kinetics of synaptic receptor proteins, with con-
formation dynamics described by kinetic schemes. To
include temperature effects, it is required to multi-
ply all of the kinetic rate constants between differ-
ent conformational states by coefficients dependent
on temperature. This approach was previously taken
experimentally (Postlethwaite et al. 2007; Cais et al.
2008). Nonetheless, the possible problem is that all
of the temperature coefficients (which scale rate con-
stants) are specific for given kinetic scheme. So, even

if temperature coefficients in one kinetic scheme were
found, they would be invalid for other schemes (unless
one finds a way to link different kinetic schemes,
which is currently not possible apart from linking very
simple kinetic models (Shelley and Magleby 2008)).

In fact, both of the approaches described above are similar,
as amplitude and time constants in phenomenological
modeling (under certain assumptions) may be interpreted
as a combination of different kinetic rates (Destexhe et al.
1994b).

Generally, the problem of including temperature effects
in synapse modeling is complex and yet not well-
characterized. Both the first and second approaches
are hard to generalize for different phenomenological
functions describing synaptic conductance or for different
microphysiological kinetic schemes. Including temperature
effects, require additional neurobiological experiments,
which does not allow previously developed models to be
easily scalable for a wide range of brain temperatures. In
this paper, a novel approach to the problem of including
temperature effects on modeling synapses is proposed. On
the basis of previous experimental and numerical research,
we construct assumptions for a new analytical model
to include temperature effects in modeling the kinetics
of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor. First, using Monte Carlo simulation
and Markov modeling we propose simplifications of an
experimental kinetic scheme (Postlethwaite et al. 2007)
to allow for a closed form solution of the set of ODEs
describing this problem. Second, we introduce the concept
of uncoupling of the differential equation system describing
AMPA receptor kinetics. Third, after solving the resulting
set of differential equations, we compare results using the
constructed model with numerical and experimental data.
Finally, we suggest that our model provides a simple way to
mimic temperature effects in neural dynamics simulations
at low frequencies, regardless of the phenomenological
function used to describe AMPA synaptic conductance.

2Methods andmodel

In this section, we construct a new, analytical model of
the conductance of AMPA-type synapse for low-frequency
stimulations using uncoupling assumption of set of ODEs
along with simplifications from experimental and numerical
data.

Monte Carlo simulation of synaptic transmission Some of
the assumptions of the analytical model presented below
are based on the analysis of the data from Monte Carlo
simulation of the synaptic transmission. The simulation was
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Table 1 Parameters of the AMPA receptor model (see kinetic scheme
and text)

Parameter Description Value

kb Agonist binding rate 107 [1/molar · 1/s]
ku Agonist unbinding rate 8 · 103 [1/s]
ko Channel opening rate 20 · 103 [1/s]
kc Channel closing rate 10 · 103 [1/s]
kd Desensitization rate 4 · 103 [1/s]
kr Resensitization rate 15 [1/s]
A Amplitude of glutamate

concentration
7.48 · 10−4 [molar]

ω Decay time constant of
glutamate concentration

2471 [1/s]

Q10 Coefficient of temper-
ature dependence of
kinetic rates

2.4

constructed based on the assumptions and parameters of
Postlethwaite et al. (2007) - code of their original simulation
is available1 using the MCell simulator (Stiles et al. 1996).

The most important assumptions of the simulation are as
follows:

1. The geometry used in the Monte Carlo simulation refers
to the AMPA-type synapse at the calyx of Held of a
rat. The morphological data was given by Sätzler et al.
(2002). In the simulation, presynaptic and postsynaptic
terminals were separated by the synaptic cleft of
28nm. Postsynaptic terminal consisted Postsynaptic
Density (PSD) with an area of 0.32 micrometer on
0.32 micrometer, populated by 80 AMPA receptors.
Additionally, four neighboring PSDs were included -
separated by 317 nm.

2. Vesicle from which glutamate was released was a cube
with the volume equal to the volume given by Sätzler
et al. (2002) and connected to the synaptic cleft by a
gradually opening (with exponential dynamics) fusion
pore. Vesicle was released at variable locations above
a central postsynaptic density (PSD). Each vesicle
contained 6000 glutamate molecules.

3. The diffusion rate of the glutamate was assumed to be
equal to 3·106cm2/s for the receptor kinetic parameters
detailed in Table 1.

All of the simulations used 1 · 10−6 s time step. For
more detailed discussion about the assumptions of the
Monte Carlo simulation see Postlethwaite et al. (2007).
All standard parameters used in the simulation and further

1https://senselab.med.yale.edu/modeldb/showModel.cshtml?
model=85981

analytical model are presented in the Table 1. The code in
MCell is available.2

Analytical model Our model is based on the following
numerical and experimental findings:

(1) Acceleration in postsynaptic AMPA receptor kinetics
is the predominant effect of increased temperature
on altered synaptic responses at low frequencies
((Postlethwaite et al. 2007)). With this assumption,
modeling of temperature effects on synapses was
simplified by considering temperature effects only on
AMPA receptor kinetics, rather than also on modified
presynaptic release and/or neurotransmitter diffusion
dynamics. Furthermore, we assumed that to include
temperature effects on AMPA receptor kinetics it
is sufficient to multiply all of the rate constants
(kb, ko, kc, kd, kr ) by a single temperature coefficient
Q10 (Postlethwaite et al. 2007).3

(2) As suggested by Postlethwaite et al. (2007), temper-
ature effects are mediated by driving AMPARs to
higher sub-conductance states. To include higher sub-
conductance states in an analytical model of AMPA
receptors, a few simplifications of the complex 13
state, 30 transitions kinetic scheme of Postlethwaite
et al. (2007) (Scheme 1 in Fig. 1) were made. Scheme
1 was re-written into the simplified form of Scheme
2. This form uses the symmetry of states and transi-
tions in Scheme 1. Based on uncoupling of equations,
described in point (4) below, this symmetry is evident
in that one can divide Scheme 1 into five orders of
sub-conducting states.

(3) For simplification all of the state transitions except
the transition from closed to bound states in AMPA
receptor kinetics (considering the single mesh of
Scheme 2 in Fig. 2) were assumed to be Markov
models: time and voltage independent and dependent
only on the occupancy of neighboring states as was
previously proposed by Destexhe et al. (1994b).

Additional simplification was as follows: modifications
in the directions of the transitions with rates kr and kc were
made to rewrite Scheme 1 to Scheme 2 (these transitions are
diagonal in Scheme 2 vs vertical in Scheme 1). This change
simplified the dynamics of each closed (C) state by reducing
its coupling with the adjacent open and desensitized states
of the AMPA receptor. This approach allows for a much

2https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?
model=239072
3This approach is analogous to the way of including temperature
effects on voltage-gated ion-channels (Hodgkin and Huxley 1952) and
is motivated by the Arrhenius equation. Q10 is the multiplicative factor
for increasing a given speed of reaction upon a 10 degree Celsius
increase of temperature.

https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=85981
https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=85981
https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=239072
https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=239072
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easier analytical solution of the differential equations des-
cribing the simplified kinetic scheme.

Separately, the 1st order (and symmetrically, with
additional assumptions described below, the i-th order) of
the AMPAR kinetic states was assumed to behave as a single
mesh, according to Scheme 3 in Fig. 3. It was assumed that
C0 � 1. This is the case when very few receptors bind
glutamate so that nearly all receptors remain in form C0.
This is motivated by comparing the number of channels in
different states in the more detailed Monte Carlo simulation
described above (see Fig. 4). Therefore, the fraction of
channels in C0 state is considered always to be 1. In a
further analogous simplification, each state in the i-th mesh,
with i = 1, 2, 3, 4, is likewise assumed to remain at
1. This assumption is necessary for an analytical model
because otherwise, the system of differential equations is
too complex to be solved analytically. Only the open states
of the AMPA receptor (O1, O2, O3, O4) contribute to the
synaptic conductance (Smith et al. 2000).

(4) To describe the kinetic scheme with m states using
differential equations it is necessary to write m − 1
coupled differential equations, which complexity is
proportional to the number of transitions between
different states (Destexhe et al. 1994b). With the
purpose to simplify this description we introduce the
assumption of uncoupling. In mathematical terms,
assumption of uncoupling the differential equations for
each single mesh may be written, for i-th order, as:

kb(t)(xi−1+xi) � kcyi+1+krzi+1+ku(xi+1+xi) (1)

Particulary, for 1st order we obtain:

kb(t)(x0 + x1) � kcy2 + krz2 + ku(x2 + x1) (2)

where xi , zi , yi are the fractions of channels in a state
Ci , Di , Oi respectively.

We see that from the perspective of the (i+1)-th
order sub-conductance state, the fraction of channels

in the i-th order sub-conductance bound state (Ci)
is perceived as 1 [generalization of assumption (3)].
However, we do introduce a scaling function to
differentiate the absolute values of fractions in these
Ci states. For each i-th order of conductance λi(t)

function is introduced. λi(t) scales relative fraction of
channels in each state to an absolute (scaled identically
to all of the orders of the kinetic scheme) fraction.

This method allows us to uncouple set of twelve
coupled differential equations with a complex formu-
lation to set of 4 pairs of differential equations (cou-
pled only in pairs, rather than between different orders
of sub-conductance). Using this approach, we are able
to include higher order sub-conductance states and, as
a result, find an analytical solution of the problem.

(5) Glutamate binding was assumed to be independent,
similarly to model by Robert and Howe (2003)
This departure from Postlethwaite et al. (2007) was
motivated by a disproportionate increase of the
complexity (in comparison to the gain in accuracy) of
an analytical solution of a set of differential equations
when assuming cooperative binding.

(6) Glutamate concentration was assumed to be time-
dependent according to a single exponential decay
function (Scimemi and Beato 2009), with parameters
fitted to a simulation of glutamate concentration in
the synaptic cleft (and consequently at the PSD)
in the Monte Carlo model of synaptic transmission.
Therefore, the function describing the binding rate,
from closed to bound states, has a form dependent on
the concentration of glutamate at the PSD:

kb(t) = kbAe−ωt (3)

where the parameters ω [1/s] and A [molar] were fitted
from averaging glutamate concentration (in the cleft)
in Monte Carlo simulation of synaptic transmission.

Therefore, the function describing the binding rate, from
closed to bound states, has a form dependent on concentra-
tion of glutamate at the PSD: with a time constant ω and

Fig. 1 Scheme 1 - modified
kinetic scheme model by
Postlethwaite et al. (2007),
independent binding was
assumed (see below) and no
transitions between desensitized
states (with minor influence on
accuracy of results)
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Fig. 2 Scheme 2. Kinetic
scheme used for construction of
an analytical model consists five
orders of subconductance (index
numbers of states: 0,1,2,3,4) and
four meshes (colored triangles)

amplitude A fitted to the numerical data from the Monte
Carlo simulation.4

A dual-exponential function [in the form of y = (Aeαt −
Beβt )] was also used as a fitting method for glutamate
concentration, but the resulting, more complex, system of
equations could not be solved analytically, and this increase
in complexity was not compensated for by a substantial
gain in accuracy of the model in comparison to the single-
exponential function.

(7) According to experimental data, AMPA receptors
are tetramers (Rosenmund et al. 1998). Conductance
of AMPA receptor can be described as a sum of
conductances of all orders of subconductance multiplied
by different constants for different orders of states in
kinetic scheme as suggested by Sahara and Takahashi
(2001):

g(t) = g4

n=4∑

i=1

aiyi(t) (4)

where, g4 is a peak conductance of a channel in 4-fold
bound state, n is a number of orders in kinetic scheme and
ai , yi are scalling factor and fraction of open channels in
the i-th state respectively.

Conductances of different orders of states in kinetic scheme
were set as fractions of the peak conductance at the 4-fold
bound state O4 (O1 : a1 = 0.1, O2 : a2 = 0.4, O3 : a3 = 0.7,
O4 : a4 = 1.0) as was proposed by Postlethwaite et al.

4Departure from model based on neurotransmitter concentration
occurring as a pulse (described by Dirac Delta at tpulse) proposed by
Destexhe et al. (1994b) or Destexhe et al. (1994a) was motivated by
availability of direct data of glutamate concentration on PSDs in Monte
Carlo simulation and unit inconsistency problem (which is a result of
modeling using Dirac Delta at tpulse combined with the assumption
about considering fraction of channels in C0 state as 1).

(2007), and motivated by previous experimental work by
Smith et al. (2000). This assumption suggests that we may
break down the problem of finding the synaptic conductance
into finding the sum of four functions (one for each order of
sub-conductance, see Fig. 2).

Combining the above assumptions simplifies the original
complex kinetic scheme, containing 13 states and multiple
transitions (described by 12 coupled differential equations).
Modification of directions of transitions (from Oi and
Di) using the uncoupling concept splits the corresponding
system of differential equations to four, one-side dependent
and specular between themselves (see Fig. 2), single meshes
as in Fig. 3. Furthermore, by assuming the fraction of
channels in state Ci−1 for i-th order of scheme to be equal to
1 we are able to solve a coupled pair of differential equations

Fig. 3 Scheme 3. Single mesh triangle from Scheme 2 described by an
independent pair of coupled differential equations
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within every single mesh. Thus, simplification leads to 4
independent pairs of coupled differential equations. For the
first order of conductance we know the solution explicitly
and for higher orders we use λi(t) = xi−1(t) (which is the
solution in respect to the fraction of channels in state Ci−1

of pair of differential equation for (i-1)-th order), which
assures information flow from lower to higher orders of
AMPAR sub-conductance.

Making these assumptions, one obtains the general
system of coupled linear ODEs, describing the 1st through
4-th orders of kinetic states (Scheme 2):

dxi

dt
= kbAe−ωtλi(t) − (ko + ku + kd)xi(t) (5)

dyi

dt
= koxi(t) − kcyi(t) (6)

where yi(t) = [Oi(t)] is a fraction of channels in an open
state of i-th order, xi(t) = [Ci(t)] is a fraction of channels
in a bound state of i-th order, λi(t) is a function to convert
fraction of all channels to same absolute scale (not only
relative for each order) - for the i-th order of Scheme 2
it equals to solution with respect to fraction of channels
in state C0 of two differential equations of (i-1)-th order:
λi(t) = xi−1(t). Using this approach we may include higher
sub-conductance states of AMPA receptor with an analytical
approach, due to the uncoupling of differential equations
describing the kinetic scheme.

The above set of linear coupled ODEs [(5) and (6)] has
a closed-form solution. For the first order, with boundary
conditions y1(0) = 0 and x1(0) = 0 the solution is:

y1(t) = Akbko

SP
e−ωt + Akbko

RP
e−(P+ω)t − Akbko

RS
e−kct (7)

Fig. 4 Fraction of AMPAR channels in unbound state C0. Fraction of
channels decays from 1 to about 0.8 in 3ms, supporting our assumption
that the fraction of channels in state Ci−1 in first mesh is far larger than
the fraction of channels in the other states

where S = kc −ω, P = kd + ko + ku −ω, R = −kc + kd +
ko + ku.

As it is possible to be seen, the first-order approximating
function is a sum of exponents (as suggested by Destexhe
et al. (1994b)).

The full solution for all orders of a kinetic scheme
(Scheme 2) can be found in Appendix A.

3 Results

Analytical model of AMPA receptor We found that, for
kinetic rates fitted from the model of Postlethwaite et al.
(2007), our analytical model is able to reproduce two of
their key results from detailed Monte Carlo simulation.
These results describe the dynamics of fractions of AMPAR
channels in different states (compare Fig. 5 here with Fig.
2B of Postlethwaite et al. (2007)) and the time courses of
AMPAR synaptic conductance at two different temperatures
(compare Fig. 6 here with Fig. 1A of Postlethwaite et al.
(2007)).

Fraction of channels Fractions of AMPAR channels in dif-
ferent states (Fig. 5) are both qualitatively and quantitatively
(after normalization: see Discussion) consistent with this
obtained in Monte Carlo simulation (with a mean error 5%
for the time courses of the open states).

Just after the t = 0, binding of glutamate leads AMPARs
to transition from unbound to bound states. The fraction
of channels in bound states is dependent on glutamate
concentration at PSDs and rate of unbinding in the AMPA
receptor kinetic scheme. Excluding effects of unbinding,
with the diffusion of neurotransmitters in synaptic cleft

Fig. 5 Fraction of channels in different states as a function of time.
“Open, scaled channels” refers the sum of the fractions of channels
in open states, with each fraction multiplied by its respective peak
conductance
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Fig. 6 Conductance curve of AMPA synapse in 25 ◦C and 35 ◦C.
Conductance in 35 ◦C in comparison to 25 ◦C has larger and quicker
peak. Transition between 25 ◦C and 35 ◦C was achieved only by
multiplication of all rate constants in the kinetic scheme by Q10 = 2.4

considered as a random walk, the mean distance of a
single neurotransmitter from the location of release (vesicle
pore) should increase over time proportionally to

√
N ,

where N is the number of steps). Hence, the glutamate
concentration should decay with 1/

√
N , and the number

of bound states should increase proportionally to 1 − √
N .

However, as time passes some of the AMPAR channels
unbind neurotransmitters (transitioning from C1 to C0

state), therefore eventually reaching equilibrium - so the
function of bound state fraction (in time) should be close to
a ‘flattened’ 1 − √

N .
During synaptic transmission, AMPAR protein under-

goes conformational changes. The rate of these changes is
proportional to temperature - the effect of temperature is
reflected in our analytical model by scaling all of the rate
constants of the kinetic scheme by a Q10 parameter. The
continuous growth of fraction of channels in desensitized
states can be attributed to that the resensitizing rate of reac-
tion is about three orders of magnitude smaller than the
rate of desensitization. Therefore, channels after entering,
are unlikely to leave desensitized states - the fraction of
channels in desensitized states slowly approaches the frac-
tion of channels in all bound states. Generally, the analytical
model slightly underestimates (about 9% of the difference
between analytical model and numerical results) the fraction
of AMPAR channels in states that are bound and desensi-
tized. This may come from the assumption in the analytical
model about directions of transitions away from open states,
which go from Oi states to Ci−1 states (rather than Ci)
and from Di to Ci−1 states (rather than Ci). Thus, in the
first order of sub-conductance states (see Fig. 2), some
transitions from the open state go back to the unbound
state (rather than the first bound closed state as assumed in

Scheme 1). Underestimation of the fraction of channels in
desensitized states is due to the modification in directions
of transitions for the first order of sub-conductance, smaller
fraction of AMPARs is in a bound state. Resensitization
(due to its low transition likelihood) has a minor influence
on the results.

Synaptic conductance The AMPAR conductance curve
(Fig. 6) obtained from the analytical model is able to repro-
duce (with 5% accuracy for the relative amplitude and peak
time, which is within the experimental uncertainty range)
the shape and scale of temperature effects on synaptic trans-
mission (compared with Fig. 1B of Postlethwaite et al.
(2007)). At 35 ◦C both the rise and decay time constants
of synaptic conductance are smaller in value (peak time is
shorter). The peak conductance is larger (ratio about 1.25)
and is reached quicker in 35 ◦C in comparison to 25 ◦C.

However, the analytical model predicts a too rapid rise-
time of conductance in comparison to experimental data
(see the time of peak on Fig. 6 and on Fig. 1B of
Postlethwaite et al. (2007)). This is due to the assumption
(6) (see Methods). Namely, only a single exponential decay
time (from a peak value at t = 0) of glutamate concentration
was used - which only roughly approximates reality (see
Fig. 7). However, we did not include any other, more
complex glutamate concentration functions as they did not
allow for closed-form analytical solution to the differential
equations system including higher sub-conductance states.

It was found that modifying the diffusion rates of the
neurotransmitters by the temperature coefficient cannot
increase the accuracy of the solution (in comparison to
the experimental data) - as presented in Fig. 8. Q10diff

coefficient of diffusion (effectively multiplying diffusion
coefficient of glutamate) with temperature, leads to quicker
decay of glutamate concentration in the synaptic cleft

Fig. 7 Glutamate concentration obtained from Monte Carlo simulation
in 25 ◦C and assumed fitting curve proportional to e−ωt
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Fig. 8 Influence of different Q10 diffusion coefficients on synaptic
conductance

and quicker rise time and decay of synaptic conductance.
However, increasing Q10diff

causes also a smaller AMPAR
peak conductance than is observed experimentally. This
supports the previous conclusion of Postlethwaite et al.
(2007) for the predominant role of postsynaptic kinetics
in mediating temperature effects on synapses. In turn, this
result may be important in the context of possible medical
applications. Namely, the creation of a drug capable of
altering receptor kinetics may lead to successful prevention
of adverse temperature effects on synapse dynamics.5

The significance of including higher subconductance
states in the analytical model was also investigated. It
turned out, that including higher and higher states of
subconductance leads to saturating increase of ratio (in
35 ◦C relatively to 25 ◦C) of synaptic conductance peak
amplitudes (for about 12% in comparison to first order
approximation), with minor influence on ratio of times
of peak (Fig. 9). Furthermore, it was found that it is
possible to achieve same dynamics of AMPAR synaptic
conductance (qualitatively and quantitatively) by using 3rd
approximation (without including 4-th order) and changing
the fraction of the peak conductance at the 4-fold bound
state for the 3rd state from 0.7 to 0.9. Therefore, we
suppor the conclusion by Postlethwaite et al. (2007),
which claims that higher temperature leads AMPARs to
higher conducting states (thus increasing conductance peak
amplitude).

The significance of including higher sub-conductance
states in the analytical model was also investigated.
Including higher states of sub-conductance leads to a
saturating increase (in 35 ◦C relative to 25 ◦C) of synaptic
conductance peak amplitudes (an increase of 12%, in

5For example, a drug for slowing down the kinetics in a state of the
brain hyperthermia - or a drug for speeding up kinetics in case of
hypothermia.

Fig. 9 Comparing ratio of peak amplitudes and peak times 35 ◦C and
25 ◦C for different order approximations of higher sub-conductance
states

comparison to the first order approximation), with only
a minor influence on the ratio of times to peak (Fig. 9).
Furthermore, it was found that it is possible to achieve
the same dynamics of AMPAR synaptic conductance
(qualitatively and quantitatively) by using the 3rd order
approximation (but not the 1st or 2nd order) and changing
the fraction of the peak conductance at the 3rd order
open state from 0.7 to 0.9. Therefore, we support one of
the results of Postlethwaite et al. (2007), which claims
that higher temperature drives AMPARs to higher sub-
conductance states (rather than only increasing unitary
subconductances) cause the increase in conductance peak
amplitude).

4 Discussion

Normalization of fraction of channels Without any correc-
tion, the model would not be able to fit experimental data
quantitatively (because the sum of all of the fractions of
channels in different states does not equal 1). The reasons
are the assumptions (3) and (4): the fraction of channels in
state Ci for the (i+1)-th order mesh equals 1. To resolve
this problem, we introduce a normalization constant, which
scales the analytical model output to agree with the results
of detailed Monte Carlo simulation.

First, we calculated the sum of all bound channels in
the analytical model. The results are presented in Fig. 10.
The sum of all bound channels firstly rapidly increases
and then after a time of approximately 0.5 ms gradually
decreases over time. This is due to resensitization, which
drives AMPARs to the C0 state (as assumed in Scheme 2).
Additionally as the concentration of the glutamate in the
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Fig. 10 Fraction of bound AMPAR channels for different orders of
kinetic Scheme 2

cleft is low, the binding rate is substantially lower than
unbinding rate, so no new channels get bound.

Second, we investigated what is the absolute number of
the bound channels in the Monte Carlo simulation over
time. The absolute number of unbound channels (easily
convertible for the absolute number of bound channels as
they sum up to one) is presented in Fig. 4. Finally, we
compared the absolute number of bound channels (in Monte
Carlo simulation) at the peak of the synaptic conductance
(0.5ms after stimulation) with the sum of all bound channels
(in the analytical model) at the respective peak (0.3ms after
stimulation). A fraction of 0.13 of the channels is bound at
the peak in the Monte Carlo simulation, which corresponds
to ≈ 1 according to the analytical model. Therefore, to
quantitatively reproduce Monte Carlo results to a good
level of approximation, we only have to multiply all of the
fractions of channels in the analytical model by 0.13. The
normalization factor is weakly dependent on the order of
subconductance assumed - as the 1st order contributes by
far the most to the sum of all bound channels.

Glutamate binding model An analytical model showed
that, with the assumptions we made, it is possible to
reproduce experimental and averaged numerical results of
the Monte Carlo simulation using independent glutamate
binding. However, considering the complexity of biological
systems and the role of variability in their behavior, we
do not argue that independent binding is a biological
reality, but rather a reliable approximation for simulating
aspects of AMPAR dynamics and temperature response. In
Postlethwaite et al. (2007), using Monte Carlo simulation,
it was shown that variability of both rise and decay time
constants of AMPAR conductance as a function of the

mEPSC peak amplitude was not successfully reproduced
by an independent binding model for the kinetic scheme
they proposed. Although it is not possible to research this
relationship using our differential-equation based model
which describes only the averaged dynamics of the system,
we suggest that the kinetic model proposed here (kinetic
scheme in Fig. 2) may reproduce some aspects of the
biological variability observed experimentally. To verify
this we have run three sets of Monte Carlo simulations (with
assumptions discussed in the Methods section) - two for
kinetic scheme proposed by Postlethwaite et al. (2007) (one
with cooperative and one with independent binding) and one
set with the kinetic scheme proposed in this paper (with
independent binding). The rate constants of the models were
fitted to reproduce average behavior for the cooperative
binding of Postlethwaite et al. (2007). We found that for the
Scheme 2 (Fig. 2) with independent binding skewness =
0.62 and CV = 0.27 are close to the values resulting
from kinetic scheme by Postlethwaite et al. (2007) with
cooperative binding (skewness = 0.53, CV = 0.31)
unlikely to kinetic scheme by Postlethwaite et al. (2007)
with independent binding(skewness = 0.25, CV = 0.19).

Temperature dependence of AMPA receptor conductance
Our simulations show that, for a single synapse, increased
temperature causes larger peak amplitude of AMPAR con-
ductance, which is also achieved quicker (the conductance
peaks faster in time). However, these results are not easily
interpretable in a more general context. One of the examples
is predicting an influence of temperature-modified synap-
tic conductance on temporal summation of signals across
morphology of a neuron. As a single synaptic conductance
has a larger peak amplitude in higher temperature, a smaller
number of EPSPs should elicit an action potential at the
higher temperature. However, rise and decay time constants
of the AMPAR conductance function are quicker at the
higher temperature, so the effective summation window of
the different signals should be shorter and therefore they
should sum up less efficiently. These opposing features of
AMPAR synaptic conductance hinder a simple description
of compounded temperature effects on multi-synaptic net-
works: it is difficult to strictly predict (because we do not
know the relative importance of amplitude and time con-
stants of synaptic conductance curve) how temperature may
influence temporal summation of the synaptic signal. In
the future, more detailed study on this topic may allow
us to investigate temperature effects from the level of sin-
gle synapses to that of large neural networks, which may
help in better understanding of complex and paradoxical
field interactions in brain imposed by temperature (Ander-
sen and Moser 1995). Additionally, detailed investigation
of the influence of temperature on field potentials may be
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important in the context of temperature-sensitive epilepsy
(Traub and Wong 1982).

Uncoupling assumption accuracy To further test the accu-
racy of our uncoupling assumptions of differential equa-
tions in the analytical model, we carried out additional
Monte Carlo simulation of synaptic transmission for the
kinetic scheme proposed here, by comparing the dynam-
ics of Scheme 2 without uncoupling, to the dynamics with
uncoupling (Scheme 3). This comparison illustrated that the
uncoupling assumption is fulfilled with different accuracy
for each order (Fig. 11).

The assumption is best fulfilled for the first order of
kinetic scheme (see Fig. 2) and the error associated with this
order of sub-conductance is < 0.5%. For the second and
fourth orders, the error is around 15%. The worst accuracy
is for the third order, with an error level of roughly 40% at
the peak of synaptic transmission. However, from (1), we
may see that the accuracy of the uncoupling assumption is
dependent also on a glutamate concentration: the higher the
glutamate concentration is at PSDs, the better the accuracy
of the assumption. Therefore these error percentages should
be divided by a factor of about 1.8, as the glutamate
concentration function is not able to correctly capture the
dynamics of glutamate concentration in the synaptic cleft
(see Fig. 7).

New modeling method of temperature effects on AMPA
receptor The creation of an analytical model for the

AMPA type synapse, capable of simulating temperature
effects, has few potential applications. First, our analytical
model was validated with experimental data and it may
be implemented with high accuracy and efficiency in
large neural network simulations, which (when combined
with previous studies about temperature-dependence of
the conductance of voltage-gated ion channels) may open
new possibilities of researching temperature influences on
neural dynamics in computational neuroscience. Second,
due to the generality of this model, it is weakly dependent
on the kinetic scheme or phenomenological method of
synaptic conductance modeling we have chosen. The
model provides simple theoretical linking between some
models created in one temperature to any other (in
a reasonable physiological range), by using the model
developed here as a ‘linking bridge’, without performing
additional experiments (however its accuracy has to be
further carefully tested).

This theoretical linking could be done as follows:

1. To some synaptic conductance curve, we fit (with
free parameters being rate constants and glutamate
concentration constants A, ω (with the constraints for
their values being in physiological range) of the model
developed here.

2. In fitted model, to determine dynamics at a different
temperature, we multiply all of the AMPAR kinetic
rate constants by an appropriate temperature dependent
factor (Q10 = 2.4 for our simulations) and hence create
a new synaptic conductance curve.

Fig. 11 Uncoupling assumption
validation for different orders of
kinetic scheme. ‘Left’ and
‘Right’ denote for numerical
values of left and right side of
equation (1) respectively
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Fig. 12 Scheme 4

3. Finally, we fit desired phenomenological model to the
synaptic conductance curve we achieved in the previous
step (see also Scheme 4 on Fig. 12).

This approach shall be insensitive to possible fitting
parameter degeneracy, due to the use of the common
multiplication Q10 = 2.4 factor.

The model may be efficiently implemented in NEURON
(Hines and Carnevale 1997) using NMODL (Hines and
Carnevale 2000), making it ready for easy implementation
in neural network simulations.

Comparison of the performance of the model with the
simple AMPA kinetic models Set of the simple AMPA
receptor kinetic models have been proposed previously by
Destexhe et al. (1994b). Here, we will analyze three of
the AMPA kinetic models proposed, which are shown in
Schemes 5, 6 and 7 (Fig. 13). Employing the assumptions
(1),(2),(5) and (6) (see Methods) we may solve the set
of differential equations describing the kinetics of the
AMPA receptor for a given kinetic model and include
the influence of temperature by multiplication of the rate
constants by Q10 coefficients (yet not assuming that all
of the coefficients are equal to each other). However,
temperature coefficients for the arbitrary kinetic scheme are

Fig. 13 Kinetic schemes 5,6,7 (Destexhe et al. 1994b) used in the
comparison of performance with the model developed in this paper

not known a priori (as described earlier in the Introduction).
Thus, we will find the temperature coefficients by fitting the
rate constants of the simple models from Schemes 5, 6 and
7 to the analytical model (developed here) - this process is
described in more detail in the previous paragraph. The full
solutions of the coupled linear ODEs describing Schemes
5,6 and 7 are presented in Appendix B.

For kinetic models from Scheme 5 and 6 solutions
may be discussed together as r2 and r3 rate constants
are indistinguishable from each other (so we can reduce
them to one constant). Models from Scheme 5 and 6 were
unable to capture the dynamics of the AMPA receptor
in different temperatures, as relatively large fitting error
could hinder the subtle temperature dependence of the
amplitude and time courses of synaptic conductance. For
kinetic model from Scheme 7, it was possible to obtain
accurate fit of the data in 25 ◦C. However, for the best fit
in 35 ◦C the model was underfitting the amplitude of the
synaptic conductance, which is crucial in the investigation
of temperature dependence. The solution of the kinetic
model from Scheme 7 needs additional constraints on
parameters during the fitting process (as there are square
roots in the solution). Moreover, the Q10 parameters used in
this model do not have a physical meaning, as (for the best-
fit) some of them were found to be lower than 1 (so they
should decrease the speed of the conformational changes of
AMPARs).

Therefore, without the more careful investigation of the
simpler kinetic models, we propose that the analytical
model developed here is a more convenient and accurate
way to include temperature effects on AMPA receptor
conductance.

5 Conclusion

In the present study, an analytical model of an AMPA-
type synapse including temperature effects was created.
The model was developed on the bases of previous Marko-
vian models describing the kinetics of the AMPA receptor
and was simplified by uncoupling of the differential equa-
tion system, and by kinetic scheme modifications motivated
by Monte Carlo simulation of synaptic transmission. This
method may be used to make simple models of synaptic
conductance easily-scalable for any temperature and may
provide simple theoretical linking of neurobiological mea-
surements (involving AMPA-type synapse) conducted in
different temperatures. Due to its accuracy (in comparison
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to experimental data) and efficiency, this model may be
used in large neural network simulations. This opens new
possibilities to research various temperature effects on neu-
ral dynamics in large-scale multi-neuron experiments and
simulations. It may provide a theoretical basis for better
understanding of different neurological disorders associated
with sub- and super- physiological temperatures. In con-
junction with some previously proposed models (Ważny
and Wojcik 2014), this approach may shed some light on
understanding paradoxical temperature influence in serious
neurological disorders like autism spectrum disorder (Helt
et al. 2008), which will be a scope of our interest in the
forthcoming future.
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Appendix A

The solution of all order of differential equation system
describing AMPA receptor kinetics:

yscaled (t) = 0.1Ae−t (kc+ω)ko

(
− etωS

R
+ e(kc−P)t

PR
+ ekc t

P S

)
kb + 0.4A2e−t (kc+P+2ω)ko

(
− et(P+S+ω)(kc − G)

PR(P − ω)(S − ω)
− et(kc+ω)(ω − S)

R(P − ω)(S − ω)ω
+ ekc t (ω − S)

P (S − ω)ω(R + ω)

+ et(P+2ω)(ω − P)

R(P − ω)(S − ω)(R + ω)

)
k2
b

+0.35A3e−t (kc+P+3ω)ko

(
− 2et(P+S+ω)(kc − G)(−G + S − ω)(S − G)

PR(kc − 3ω)(P − 2ω)(P − ω)(R + ω)(R + 2ω)
− et(kc+2ω)(−G + S − ω)(ω − P)(S − G)

R(P − 2ω)(P − ω)ω2(R + ω)(R + 2ω)
+ ekc t (kc − G)(S − G)

PRω2(R + ω)(R + 2ω)

− 2et(P+3ω)

R(kc − 3ω)(R + ω)(R + 2ω)
− 2et(kc+ω)(kc − G)(−G + S − ω)

R(P − ω)ω2(R + ω)(R + 2ω)

)
k3
b

+A4e−t (kc+P+4ω)ko

(
− et(kc+3ω)(S−G)(−G+S − ω)(ω−P)(3ω−G)(−G+kc−3ω)

6R(P − 3ω)(P − 2ω)(P − ω)ω3(R + ω)(R + 2ω)(R + 3ω)
+ et(P+S+ω)(kc−G)(S−G)(−G+S−ω)(−G+kc − 3ω)

PR(kc − 4ω)(P −3ω)(P −2ω)(P −ω)(R+ω)(R + 2ω)(R + 3ω)

+ et(kc+2ω)(kc − G)(−G + S − ω)(−G + kc − 3ω)

2R(P − 2ω)ω3(R + ω)(R + 2ω)(R + 3ω)

− et(kc+ω)(kc − G)(S − G)(−G + kc − 3ω)

2R(P − ω)ω3(R + ω)(R + 2ω)(R + 3ω)
− et(P+4ω)

R(kc − 4ω)(R + ω)(R + 2ω)(R + 3ω)
+ ekc t (kc − G)(S − G)(−G + S − ω)

6PRω3(R + ω)(R + 2ω)(R + 3ω)

)
k4
b

where, S = kc − ω, R = −kc + kd + ko + ku, P =
kd + ko + ku − ω, G = kd + ko + ku

Appendix B

Solution of the system of two coupled ODEs described by
kinetic model of Destexhe et al. (1994b) (Scheme 5):

y(t) = Br1e
−r2t

(
et(r2−ω) − 1

)

r2 − ω

where B is a constant.
Solution of the system of two coupled ODEs described

by kinetic model of Destexhe et al. (1994b) (Scheme 6):

y(t) = Br1e
t(−(r2+r3))

(
et(r2+r3−ω) − 1

)

r2 + r3 − ω

Solution of the system of two coupled ODEs described
by kinetic model of Destexhe et al. (1994b) (Scheme 7):

y(t) =
(

Br1e
− 1

2 t
(√

(r2+r3+r4)2−4r2r4+r2+r3+r4

) ((
−1 + e

√
t ((r2+r3)2+2(r3−r2)r4+r4

2)

)
r2(r4 − ω)−

(
r4

(
−1 + e

t

√
(r2+r3)2+2(r3−r2)r4+r2

4

)

+
(

1 + et
√

(r2+r3)2+2(r3−r2)r4+r4
2 − 2e0.5t (r2+r3+r4+

√
(r2+r3)2+2(r3−r2)r4+r4

2)−2ω)
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(r2 + r3)2 + 2(r3 − r2)r4 + r4

2(r4 − ω)

−
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)) /(
2
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−4r2r4 + (r2 + r3 + r4)2
(
r2r4 − (r2 + r3 + r4)ω + ω2
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