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Abstract

Background

In China, dengue remains an important public health issue with expanded areas and

increased incidence recently. Accurate and timely forecasts of dengue incidence in China

are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop

an accurate predictive model of dengue.

Methodology/Principal findings

Weekly dengue cases, Baidu search queries and climate factors (mean temperature, rel-

ative humidity and rainfall) during 2011–2014 in Guangdong were gathered. A dengue

search index was constructed for developing the predictive models in combination with

climate factors. The observed year and week were also included in the models to control

for the long-term trend and seasonality. Several machine learning algorithms, including

the support vector regression (SVR) algorithm, step-down linear regression model, gradi-

ent boosted regression tree algorithm (GBM), negative binomial regression model

(NBM), least absolute shrinkage and selection operator (LASSO) linear regression model

and generalized additive model (GAM), were used as candidate models to predict dengue

incidence. Performance and goodness of fit of the models were assessed using the root-

mean-square error (RMSE) and R-squared measures. The residuals of the models were

examined using the autocorrelation and partial autocorrelation function analyses to check

the validity of the models. The models were further validated using dengue surveillance

data from five other provinces. The epidemics during the last 12 weeks and the peak of

the 2014 large outbreak were accurately forecasted by the SVR model selected by a

cross-validation technique. Moreover, the SVR model had the consistently smallest pre-

diction error rates for tracking the dynamics of dengue and forecasting the outbreaks in

other areas in China.
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Conclusion and significance

The proposed SVR model achieved a superior performance in comparison with other fore-

casting techniques assessed in this study. The findings can help the government and com-

munity respond early to dengue epidemics.

Author summary

Dengue epidemics have posed a great burden expanding of disease, with areas expanding

and incidence increasing in China recently. It has remained challenging to develop a

robust and accurate forecast model and enhance predictability of dengue incidence. Sev-

eral state-of-the-art machine learning algorithms, including the support vector regression

algorithm, step-down linear regression model, gradient boosted regression tree algorithm,

negative binomial regression model, least absolute shrinkage and selection operator linear

regression model and generalized additive model, were compared and evaluated to fore-

cast dengue incidence in this study. The SVR model, based on selection by a cross-valida-

tion technique, was superior to other models assessed using weekly dengue surveillance

data, Baidu search query data and meteorological data during 2011–2014 in Guangdong

province. The high accuracy and robustness of the proposed SVR model to predict the

occurrence of an outbreak was also validated using data from other provinces, including

Yunnan, Guangxi, Hunan, Fujian and Zhejiang, spanning southern China. To the best of

our knowledge, this is the first attempt to thoroughly evaluate different algorithms for

dengue incidence prediction. Our identification of the optimal model will help to precisely

track dengue dynamics in the country.

Introduction

Dengue is a serious infectious disease and remains rampant across tropical and subtropical

regions [1]. Primary dengue infection in humans often leads to a variety of clinical symptoms,

from mild fever to potentially fatal dengue shock syndrome, and effective antiviral agents capa-

ble of treating dengue infection are not available at present [1]. Aedes mosquitoes, including

Aedes aegypti and Aedes albopictus, serve as the main transmission vector of dengue viruses

[2]. The impacts of variability in climate conditions such as temperature and precipitation on

development rates and habitat availability for Aedes aegypti and Aedes albopictus larvae and

pupae have been identified [3]. By affecting agent development and transmission vector

dynamics, climate factors influences the spread of dengue. According to a recent analysis of

the global distribution and burden of dengue virus, the number of dengue infections per year

is estimated to be 390 million, of which nearly 96 million are symptomatic [4]. The estimated

number of dengue infections has sharply increased over the past 50 years, resulting in a huge

impact on human health around the world.

In China, dengue is a notifiable disease, and in recent years the area affected by dengue has

expanded and the incidence has steadily increased [5]. According to the China Center for Dis-

ease Control and Prevention (CDC), the range of dengue incidence is from 0.0091 to 3.4581

per 100,000 people, with a total of 52,749 new cases of dengue having been reported during

2009–2014 [6]. In particular, a succession of dengue outbreaks occurred in several provinces

including Guangdong, Yunnan, Fujian, and Guangxi during 2014 (S1 Fig) [6]. All of these

provinces are located close to Southeast Asian countries including Laos, Vietnam, Thailand,
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Singapore and Malaysia, where dengue has been hyperendemic for decades and poses a large

burden of disease [7–10]. However, dengue is still characterized as an imported disease in

China due to localized transmission sparked by regular virus importations from returned trav-

elers or visitors, rather than endemic transmission [5].

Guangdong, the most developed province located in southern China, experienced an

unprecedented outbreak in 2014, and the number of cases reached the highest level over the

past 25 years [5]. Our previous study showed that most of indigenous dengue cases occurred

in the autumn of 2014, and the Pearl River Delta Region accounted for the majority of cases

[11]. In addition to this remarkable spatial heterogeneity of cases, we observed a wide temporal

variation of weekly dengue incidence ranging from 0 to 9,660 cases, which makes predicting

dengue incidence difficult [11].

In the absence of an effective vaccine against dengue in China, accurate and early forecasts

of dengue epidemics might allow for more effective targeting of control measures for the gov-

ernment. Since 2008, the China CDC has introduced the China Infectious Disease Auto-

mated-alert and Response System (CIDARS), which uses a time series moving percentile

method based on historical data, for detecting dengue outbreaks in China [12]. This traditional

method is overly dependent on the numbers of the routine surveillance data [12]. However,

routine surveillance data is typically available with a 1- to 2-week lag [13]. Recently, several

studies have explored the application of internet search terms to timely monitor disease out-

break and verify the usefulness and effectiveness of the approach [13–16]. The idea of applying

internet search query data may contribute to enhancing predictability for dengue in Guang-

dong where dengue poses a great temporal cycling of incidence.

For dengue surveillance, several attempts have been made to develop robust predictive

models for dengue incidence worldwide. Althouse et al. comprehensively assessed three

regression models including step-down linear regression, gradient boosted regression tree

model (GBM) and negative binomial regression model (NBM) for dengue incidence predic-

tion in Singapore, and suggested the linear model selected by AIC step-down was superior to

other models compared [16]. A more recent study achieved good performance by applying the

least absolute shrinkage and selection operator (LASSO) algorithm to develop a real-time

model to forecast dengue in Singapore [17]. In addition, generalized additive models (GAMs)

were also used as valuable tools of risk assessment for dengue dynamics in previous studies

[18, 19]. Furthermore, as a kind of the state-of-the-art and powerful machine learning algo-

rithm, support vector regression (SVR) [20] displayed excellent performances in time series

prediction. However, thorough comparisons of different predictive models and thus identify-

ing an optimal model in China are still lacking. We aimed to construct an accurate forecast

model to track the epidemic trajectory of dengue by comparing different prediction algo-

rithms. This work addressed the gap by a) rigorously evaluating predictive performance of a

variety of state-of-the-art algorithms using different assessment strategies and determining the

optimal model, and b) combining dengue surveillance data, meteorological and internet query

information with the proposed model for dengue incidence prediction in China.

Materials and methods

Data sources

Dengue case data. Weekly dengue case data of Guangdong, from 1 January 2011 to 31

December 2014, were obtained from the Guangdong Provincial CDC, which has access to the

China National Notifiable Disease Surveillance System. Both of the imported and indigenous

dengue cases were notified according to the surveillance system [21], and all of the cases dur-

ing the study period were included in this study. Information recorded for each case includes
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basic demographic characteristics (gender, age, nationality and residential address), type of

diagnosis (suspected, clinical, laboratory), virus serotype, and times of disease-related inci-

dents (date of illness onset, diagnosis and death). All patient data were analyzed anonymously.

Then the weekly number of dengue cases at the provincial level was calculated. In addition, the

population census data of Guangdong in 2010, from the Statistics Bureau of Guangdong Prov-

ince, was used to calculate dengue incidence. We further validated the models using dengue

surveillance data from five other provinces comprised of Yunnan, Guangxi, Hunan, Fujian

and Zhejiang (S1 Fig), which were at a high risk of dengue infection, in southern China during

the study period. Monthly dengue surveillance data of the five provinces were at the provincial

level and publicly available from the website (http://www.phsciencedata.cn/Share/index.jsp) of

the Public Health Science Data Center managed by the China CDC. Clinical diagnosed and

laboratory confirmed dengue cases were reported to the Chinese Ministry of Health and the

data were aggregated and included in this analysis. All dengue cases were diagnosed according

to the diagnostic criteria for dengue fever (WS216–2008) enacted by the Chinese Ministry of

Health [22].

Meteorological data. Meteorological data for the areas during the study period were

obtained from the China Meteorological Data Sharing Service System (http://cdc.nmic.cn/

home.do). Weekly mean temperature (degrees Celsius), weekly average relative humidity and

rainfall (millimeters) were extracted for the subsequent analyses. Meteorological data are

recorded by monitoring stations widely distributed in China, and the weekly data of mean

temperature, relative humidity and rainfall of a city were calculated using the area-weighted

average method. Actually, these three meteorological factors were frequently used to develop

time series forecast models for dengue and shown strong associations with dengue outbreaks

in previous studies [23, 24].

Search query data. We obtained search query surveillance data from the Baidu Index

website (https://index.baidu.com/) and constructed dengue search indexes (DSIs). Data were

extracted on a weekly basis at a city and provincial level for the study period [13]. The search

volume data of a term in a particular city is defined as the frequency of searching of a term

keyed in by Baidu users in a city. Then the search volume data of a term in a province was

summarized using the data from the cities.

Statistical modeling

Keyword selection and search index construction. Previous studies proposed to chose

the names or clinical symptoms of the studied diseases as the primary terms to search for more

related keywords, which were usually obtained from a Chinese website (http://tool.chinaz.

com/baidu/words.aspx) [15, 25]. Upon typing in 12 primary search terms, we obtained a

group of 39 related keywords (S1 Table). We also established an auto-crawler software using

Python to collect the search volume data of the keywords. The process of crawling search

query data is depicted in S2 Fig. The Python scripts are available from the authors for academic

usage.

Baidu search keywords used for this analysis were chosen by a sequence of selection proce-

dures [13, 15]. Shi et al. establish a dengue forecast model using predictors with delayed effects

in Singapore and verified its effectiveness [17]. According to the idea, we considered the pre-

dictors at lags of up to 8 weeks since this study covered a shorter period of time and the time

lags were reasonable for our data. The process of constructing the DSI is given in S1 Text.

SVR and the compared models for dengue prediction. The SVR model has shown an

excellent performance for time series prediction [26, 27]. We considered to use SVR for track-

ing dengue dynamics, and compared it with other time-series statistical models. This study
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implemented an ε-SVR approach, which uses a linear kernel function to predict a continuous

dependent variable. For the SVR model, an optimal cost parameter C was selected to avoid

overfitting and improve the predictive performance [20]. We performed a cross-validation

approach with root-mean-square error (RMSE) as an indicator of model performance to select

an optimal SVR model. Specifically, we trained several SVR models for different values of the

C parameter, and chose the most superior one corresponding to the lowest RMSE value. This

study tried values ranged from 0.005 to 1.0 with a span of 0.005 for the parameter C in the

established SVR model.

For the step-down linear regression model, a backward elimination procedure was per-

formed to search for an optimal subset of predictors that minimizes the Akaike information

criterion (AIC) [28]. For the GBM, the number of trees was set to 1000 to ensure performance,

and the rest of the parameters used the default values in the h2o package [29] of R. The GBM is

a nonparametric algorithm with capability for regression by carving a high dimensional data

space into mutually exclusive regions, and thus is robust in multicollinearity situations [30].

The NBM was chosen over Poisson regression due to over-dispersion of the search query data

[16], and was fitted via penalized maximum likelihood method [31]. For the GAM, a natural

cubic spline with 3 degrees of freedom was used for each predictor, and the model with the

lowest generalized cross validation score was chosen [19]. The gam package was used to imple-

ment the GAM framework allowing for zero inflated Poisson data analysis. The LASSO algo-

rithm is a shrinkage regression technique specially used to avoid the overfitting problem, and

estimate the parameters of the model with low variability [32]. In this study, the 10-fold cross-

validation approach [33] was performed to identify the optimal tuning parameter in the pen-

alty function and then determined an optimal LASSO model.

Since there was a significant increase in cases of dengue in Guangdong during 2014, we

first performed the models to predict the outbreak. In the compared models, the outcome vari-

able was the weekly number of cases (natural log-transformed, with 1 added to avoid logging

0) [17]. We included the constructed DSIs, climate variables and their delayed effects as pre-

dictor variables in the model. The observed year and week as predictors were also included in

the model to control for the long-term trend and seasonality, respectively. We further evalu-

ated the performance of the models using dengue surveillance data from five other provinces.

The same variables and parameter settings were used in the above-mentioned models.

Model comparison and validation. Candidate models were compared and validated

using four scenarios. First, dengue surveillance data from the 1st week of 2011 to the 41st week

of 2014 in Guangdong were used as training data to parameterize the models, and the last 12

weeks of the year to validate them. This strategy specifically evaluated the predictive accuracy of

each model over a 12-week time horizon and compared their performance [17]. Second, in

order to assess the performance of the models for forecasting the dengue outbreak in 2014, data

from the 35th week to 46th week which covers the peak in dengue incidence were used to assess

the prediction performance of the models. The models were evaluated using the RMSE [34],

which is used to assess the differences between values predicted by a model and the actual values.

If yt is the actual number of dengue cases for time t when the prediction is made, and ŷ t is the

number of cases predicted by a model, the RMSE for that model is RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

t¼1
ðŷ t � ytÞ

2

n

r

,

where n is the size of samples for prediction. A smaller RMSE indicates better predictive perfor-

mance of a model. To briefly obtain prediction intervals from each model and compare their

accuracy of covering the eventual data point, the estimated standard errors from step-down lin-

ear regression model were used to calculate the 95% prediction interval using the normal

approximation method [35]. Then the goodness of fit of the models was assessed by means of
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the R-squared statistic [36], where the higher R-squared indicates the greater explanatory power

in dengue incidence predicting. Moreover, to examine the adequacy of the models, we applied

an autocorrelation function (ACF) and a partial autocorrelation function (PACF) to check if the

residuals from the established models were independent and randomly distributed over time

[37]. These analyses were performed for each of the twenty cities in Guangdong.

Third, in order to assess the ability of the models in tracking dengue dynamics, we applied

an out-of-sample forecasting approach [17] to make 1-week-ahead predictions to achieve

nearly real-time estimations of dengue incidence for the studied cities in Guangdong. The

forecasts were characterized as an estimated incidence map of dengue, and compared with the

true epidemic in the area.

Furthermore, the established models were validated using dengue surveillance data and

internet search query from five other provinces at a high risk of dengue infection over the

study period. The out-of-sample forecasting approach was employed and the 1-month-ahead

predictions were obtained to compare their performance in tracking dengue dynamics in

2014. Predictive performance and goodness of fit of the models was also assessed using the

RMSE and R-squared measurements, respectively. All statistical analyses were conducted in R

version 3.0.2 (R Core Development Team).

Results

Temporal characteristics of dengue cases, DSI, mean temperature, rainfall and relative humid-

ity for each city in Guangdong province during 2011–2014 are presented in S3–S12 Figs.

There was a sharp increase in dengue cases in the autumn of 2014 for each city. In particular,

the Pearl River Delta cities had the most obvious increase in the number of the notified dengue

cases in September and October, and most areas in Guangdong have hotter temperatures and

more rain during the summer season. The fluctuating trend in DSI was fairly consistent with

the epidemic activity of dengue.

In 2014, Guangdong accounted for about 96.3% of all notified dengue cases nationwide (S1

Fig). Spatiotemporal dynamics of dengue infections and DSIs during 2011–2014 in Guang-

dong is presented in Fig 1. Most of the dengue cases occurred in the Pearl River Delta region

of Guangdong, especially for Guangzhou, Foshan, Zhongshan, Zhuhai and Shenzhen (Fig 1A).

There was a close correlation between the number of dengue cases and the DSI in Guangdong

(Fig 1 and S13 Fig).

The relative predictive accuracy of dengue incidence and goodness-of-fit assessment for

each model are shown in Table 1. The standardized RMSE and R-squared values for each city

in Guangdong are shown in Fig 2. According to the model performance for the two prediction

periods, the SVR model had the smallest RMSE values, irrespective of city. The results sug-

gested that the SVR model outperformed other compared models and was chosen as the opti-

mal model in this study. Results of goodness-of-fit suggested that the discrepancy between

observed incidence and the incidence expected under the SVR model was smallest. Forecasts

of the SVR model for the last 12 weeks and the outbreak period of dengue incidence in 2014,

including 95% prediction intervals, for Foshan are presented in Fig 3. The epidemic during the

last 12 weeks and the peak of the large 2014 outbreak were accurately forecasted by the SVR

model. SVR model forecasts for the other four cities including Guangzhou, Zhongshan, Zhu-

hai and Shenzhen with a high risk of dengue infection are displayed in S14–S17 Figs, respec-

tively. The ACF and PACF plots revealed that there was no autocorrelation in the residuals

from the SVR approach established, and thus ensured the validity of the models (Fig 3 and S18

Fig). SVR algorithm consistently yielded the smallest prediction error rates for all the studied

cities among the models compared, supporting the use of SVR to perform the forecasts.
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Fig 1. Spatiotemporal dynamics of dengue cases and dengue search index (DSI) during 2011–2014 in

Guangdong province, China. (A) Geographical distribution of dengue cases in Guangdong province, China in 2014.

(B) Time series of dengue cases and DSI in Guangzhou city. (C) Time series of dengue cases and DSI in Foshan city.

(D) Time series of dengue cases and DSI in Zhongshan city. (E) Time series of dengue cases and DSI in Zhuhai city.

(F) Time series of dengue cases and DSI in Shenzhen city.

https://doi.org/10.1371/journal.pntd.0005973.g001
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Additionally, the forecast accuracy of the SVR model increased as the value of parameter C got

larger, and then quickly converged to a stable level, indicating the model had a good stability

predictive ability (S19 Fig).

Predictions of dengue incidence in 2014 using an out-of-sample forecasting approach

(1-week-ahead prediction for each forecast window) for the best fitted SVR model are shown

in Fig 4. We observed an outstanding performance of the SVR model for detecting the peak of

the large 2014 outbreak for the cities with a high risk of dengue infection (Fig 4A). Dynamic

forecasts of dengue incidence for the five cities are presented in S1–S5 Videos. The estimated

map of dengue incidence in 2014 for Guangdong province by the SVR model well described

the truly epidemic proportions of this disease (Fig 4B). The ACF and PACF plots of the residu-

als from the fitted SVR models also revealed that there was no any autocorrelation in the resid-

uals and the models had captured the patterns in the data quite well (S20 Fig).

To further validate the established models, we used dengue data from five other provinces,

Yunnan, Guangxi, Hunan, Fujian and Zhejiang (S1 Fig), with a high risk of dengue infection

Table 1. Comparison of model performance and goodness-of-fit for support vector regression (SVR) model, step-down linear regression model

(Linear), gradient boosted regression tree model (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection opera-

tor (LASSO) linear regression algorithm and generalized additive model (GAM) by the means of root-mean-square error (RMSE) and R-squared,

respectively. Two prediction periods were considered: 1) data corresponding to the period between the 41st to 53rd weeks (the last 12 weeks) in 2014 was

used to validate the models; 2) data corresponding to the period between the 35th to 46th weeks which covers the outbreak in dengue incidence in 2014 was

used to validate the models. Results are presented for five cities with a high risk of dengue infection, and the other cities in Guangdong province.

Measure Prediction period City Model

SVR Linear LASSO GAM GBM NBM

RMSE The last 12 weeks Guangzhou 16.2576* 109.9521 150.9228 218.0674 413.2917 182.2022

Foshan 1.0483* 42.6509 25.9806 21.7453 47.6923 88.4364

Zhongshan 0.3537* 3.7104 3.7638 4.7373 7.0461 4.3282

Zhuhai 0.5717* 3.9115 3.9045 2.7538 6.7354 3.9376

Shenzhen 0.8045* 6.1420 6.4693 12.0565 8.6777 5.0949

Other cities studied 0.2681* 2.3806 2.0621 4.4973 3.4527 2.3305

Outbreak period Guangzhou 95.9668* 2204.7680 1378.6220 3215.8340 2691.7620 1764.1030

Foshan 16.0143* 173.7577 181.8552 293.1263 223.1956 411.1545

Zhongshan 1.1039* 89.4721 19.1110 78.5326 46.2534 39.9386

Zhuhai 1.3978* 24.2412 25.9709 32.9678 38.1410 13.8852

Shenzhen 1.6497* 26.8269 29.0679 43.6315 43.9624 18.4250

Other cities studied 0.7876* 16.3118 14.9820 18.3629 15.3275 26.4680

R-squared The last 12 weeks Guangzhou 0.9990§ 0.8513 0.9602 0.9315 0.5796 0.9411

Foshan 0.9992§ 0.7413 0.7142 0.7066 0.6054 0.6402

Zhongshan 0.9948§ 0.7932 0.9659 0.7416 0.9665 0.7704

Zhuhai 0.9996§ 0.7457 0.9699 0.9416 0.8287 0.7232

Shenzhen 0.9983§ 0.8307 0.8296 0.6099 0.7137 0.8423

Other cities studied 0.9963§ 0.5709 0.6463 0.6796 0.5620 0.5315

Outbreak period Guangzhou 0.9438§ 0.8121 0.8170 0.8109 0.7736 0.9765

Foshan 0.9441§ 0.6670 0.6481 0.6794 0.5084 0.5748

Zhongshan 0.9730§ 0.6888 0.9039 0.6989 0.7929 0.9277

Zhuhai 0.9804§ 0.7074 0.8159 0.7329 0.7167 0.8946

Shenzhen 0.9735§ 0.6789 0.6278 0.6691 0.4033 0.7937

Other cities studied 0.8865§ 0.3081 0.2106 0.3361 0.1924 0.4224

* This indicates the values of RMSE of the SVR model were smallest.
§ This indicates the values of R-squared of the SVR model were largest.

https://doi.org/10.1371/journal.pntd.0005973.t001

An accurate forecast model of dengue

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005973 October 16, 2017 8 / 22

https://doi.org/10.1371/journal.pntd.0005973.t001
https://doi.org/10.1371/journal.pntd.0005973


in southern China. There was a high correlation between the epidemic activity of dengue

infection and the trend in DSI in these areas (Fig 5A–5F). The assessment of predictions for

single observations that were left out of the data set used to fit the model is presented in Fig

6. The results demonstrated a more competitive prediction by the SVR model relative to the

other models, because the RMSE values of the SVR model were consistently smallest for the

1-month-ahead predictions in 2014, irrespective of the region investigated (Fig 6). The pro-

posed SVR model had satisfactory prediction performance with large R-squared values for

Yunnan (R-squared = 0.976), Guangxi (R-squared = 0.970), Hunan (R-squared = 0.997),

Fujian (R-squared = 0.981) and Zhejiang (R-squared = 0.985) (Fig 6). It shows that the SVR

model is a practical method to predict dengue dynamics in the five provinces.

Discussion

This study demonstrates an efficient tool using a SVR algorithm to predict dengue out-

breaks and track the epidemic trajectory in China. To the best of our knowledge, it is the

first attempt to thoroughly evaluate the state-of-the-art algorithms for dengue prediction,

and identify an optimal model that may help to complement the traditional surveillance for

dengue dynamics.

Fig 2. Comparison of prediction performance and goodness of fit of the models considered involving the

support vector regression (SVR) model, step-down linear regression model, gradient boosted regression

tree model (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection

operator (LASSO) linear regression algorithm and generalized additive model (GAM) using the root-

mean-square error (RMSE) and R-squared statistic, respectively. (A) Data corresponding to the period

between the 41st to 53rd weeks (the last 12 weeks) in 2014 was used to assess the models using the RMSE. (B)

Data corresponding to the period between the 35th to 46th weeks which covers the outbreak in dengue incidence in

2014 was used to assess the models using the RMSE. (C) Data corresponding to the period between the 41st to

53rd weeks (the last 12 weeks) in 2014 was used to assess the models using the R-squared. (D) Data

corresponding to the period between the 35th to 46th weeks which covers the outbreak in dengue incidence in

2014 was used to assess the models using the R-squared. The RMSE and R-squared values were standardized

according to the specific city in Guangdong province.

https://doi.org/10.1371/journal.pntd.0005973.g002
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Located in southern China, Guangdong has a subtropical humid monsoon climate and has

frequent economic and cultural communication with the nations of Southeast Asia where den-

gue poses a great burden of disease. The climate, combined with Guangdong’s highly urban-

ized environment, favors the presence of Aedes mosquitoes and the transmission of dengue

virus, thus making the area highly vulnerable to dengue outbreaks. In the absence of an effec-

tive vaccine against dengue in China, conducting a rapid survey on mosquito vector density

and suppressing the vector population comprise the core of dengue-control programs at pres-

ent [38]. Though a community-based integrated intervention strategy has been carried out to

control dengue outbreaks in Guangdong [39], it is still important to enhance the predictability

of dengue outbreaks that exhibit strong temporal cycling.

Fig 3. Observations and model predictions of dengue case counts in Foshan city, China, 2014. (A)

Model forecasts using the SVR algorithm for the dengue epidemic period between the 41st to 53rd weeks (the

last 12 weeks) in 2014. The black lines represent observed values, the blue dashed lines denote model-based

fitted values, the red dashed lines correspond to model-based predicted values, and the pink contours

represent the corresponding 95% prediction intervals. The observations and predictions of dengue case

counts are expressed as a log-scale. (B) Residuals of the SVR model for the last 12 weeks forecasts were

assessed using the autocorrelation function (ACF) plot. (C) Model forecasts using the SVR algorithm for the

period between the 35th to 46th weeks which covers the outbreak in dengue incidence in 2014. (D) Residuals

of the SVR model for the outbreak period forecasts were assessed using the ACF plot.

https://doi.org/10.1371/journal.pntd.0005973.g003
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Although the China CDC has introduced the CIDARS for detection of dengue outbreaks,

this method is overly dependent on numbers of notified dengue cases, and there is room to

improve the predictive performance [12]. Moreover, due to an inherent defect in the routine

surveillance approach, reports of the spread of dengue are delayed [13]. This may slow the

quickly public health response to an impending outbreak of infectious disease to some degree.

Taking these points into account, we believe that a statistical model holds the promise of being

able to provide near real-time quantitative predictions of the occurrence and evolution of an

outbreak of dengue, and may be used to efficiently guide the deployment of vector-control

operations. Recent studies have exploited digital surveillance based on internet search behavior

to timely monitor infectious diseases that have substantial seasonal and geographic variation

[13–16]. Due to the increased availability and use of internet over the last decade, the behavior

Fig 4. Observations and model predictions (1-week-ahead predictions) for the dengue outbreak in

Guangdong, 2014. (A) Observations and model predictions of dengue case counts were only shown for five cities

with a high risk of dengue infection in Guangdong province. In each panel, the blue points represent observed case

counts, the red dashed lines denote model-based predicted values. Dynamic forecasts of dengue epidemics are

presented in Video Files 1–5, respectively. (B) The actual dengue incidence map and that from the SVR model-

based 1-week-ahead predictions in Guangdong, 2014. Incidence is expressed as the number of case counts per

100,000 people.

https://doi.org/10.1371/journal.pntd.0005973.g004
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of people seeking information about health has been greatly changed by the availability of

health-related information on the internet [40]. In China, according to the 39th Statistical

Report on Internet Development, there are 73.1 million internet users in China until 2016,

accounting for about 53.2% of the national population [41]. The remarkable increase in the

internet use and search trends data of people is the basis for us being able to detect and track

dengue outbreaks in the country.

However, evidence for a working statistical model that exhibits robust ability in the practice

of dengue dynamics forecasting is still not available in China, especially for near real-time esti-

mates of dengue epidemic activity in Guangdong, where the risk of dengue infections is high.

Our study aimed to develop an accurate prediction tool for dengue outbreaks using machine

learning in conjunction with internet search queries and meteorological data in China. Marcel

et al. recently discussed the importance of internet-based disease surveillance for rapid disease

outbreak detection, and proposed it as a powerful tool to complement traditional disease sur-

veillance [42]. Our analysis found that specific search terms from Baidu are highly correlated

with dengue incidence in China. Particularly, for Guangdong, the included search keywords

showed a correlation of 0.91 with observed dengue incidence, which is basically consistent

with previous studies [16].

We further demonstrate the feasibility of applying SVR in dengue incidence forecasting

and show that the established SVR model is superior to the other models compared according

to the results of the empirical analysis of this study. Our results, based on dengue surveillance

data from five other high risk provinces of Yunnan, Guangxi, Hunan, Fujian and Zhejiang also

Fig 5. Temporal dynamics of dengue infection and dengue search index (DSI) during 2011–2014 in mainland

China. (A) Time series of dengue cases and DSI in Guangdong province. (B) Time series of dengue cases and DSI in

Yunnan province. (C) Time series of dengue cases and DSI in Guangxi province. (D) Time series of dengue cases

and DSI in Hunan province. (E) Time series of dengue cases and DSI in Fujian province. (F) Time series of dengue

cases and DSI in Zhejiang province. Blue lines represent time series of dengue case counts, and red lines represent

time series of DSI, respectively.

https://doi.org/10.1371/journal.pntd.0005973.g005
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Fig 6. Comparison of prediction performance of the models including the support vector regression (SVR) model, step-

down linear regression model, gradient boosted regression tree model (GBM), negative binomial regression model (NBM),

least absolute shrinkage and selection operator (LASSO) linear regression algorithm and generalized additive model (GAM)

by the means of root-mean-square error (RMSE). Left panel: comparison of 1-month-ahead predictions for the 2014 outbreak in

Yunnan, Guangxi, Hunan, Fujian and Zhejiang which pose a high risk of dengue infection. In each panel, the RMSE values of different

forecast windows for each model are summarized and presented as box plots. Right panel: the actual trend of 2014 dengue epidemics

in Yunnan, Guangxi, Hunan, Fujian and Zhejiang are shown. In each panel, the blue lines represent observed case counts, and the red

lines denote model-based predicted values.

https://doi.org/10.1371/journal.pntd.0005973.g006
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demonstrate a more competitive performance by the SVR model. Our proposed method

exhibited itself as a highly efficient tool to predict dengue incidence, and should have predict-

able positive impacts on the development of an early forecasting system for dengue outbreaks

in China. Previous studies also show that a support vector machine-based model has high gen-

eralization performance and outperforms classical models in terms of prediction accuracy in

Malaysia and Thailand, where the incidence of dengue outbreaks is also high [43, 44]. Our pro-

posed SVR model further supports the support vector machine-based model as a highly effi-

cient tool to predict dengue incidence.

The proposed SVR is a machine learning algorithm implementing the structural risk mini-

mization inductive principle to minimize the generalized error bound and achieve good gener-

alization in complex and noisy data [45]. In comparison to the considered models including

step-down linear regression, GBM, NBM, LASSO and GAM, one of the main features of the

SVR model is that it performs linear regression in the high-dimension feature space using ε-

insensitive loss and tries to reduce model complexity, and handle different types of data sets

with high prediction accuracy [46].

Although good generalization performance with SVR has been presented in this study

when compared with other five models considered, this model can be abysmally slow in large-

scale tasks since it has the extensive memory requirements [47]. Also, another important prac-

tical question of SVR lies in choice of the kernel [47]. Regarding the establishment of the SVR

model herein, the most suitable kernel function for the dengue data should be considered. It

has been suggested that linear kernel function is more robust to multicollinearity, and using

the linear kernel function could achieve better performance than the RBF kernel function in

case where the number of predictors is relatively large [48]. Additionally, the linear kernel has

less complexity than other kernel functions because it has fewer hyperparameters and will be

easier to understand. Therefore, the linear kernel function in SVR was used because it could

effectively handle many variables in this analysis. Carefully tuning the cost parameter C for the

established SVR model and selecting the most suitable value was also an important practical

question to avoid overfitting and enhance predictive performance. In practice, the cost param-

eter C was varied through a wide range of values and the optimal performance assessed using

cross-validation for verifying performance [49]. In this study, we applied a cross-validation

technique to search the optimized value for the parameter C. By training several SVR models

for different values of the parameter C, we chose the best model with the smallest RMSE.

Baidu is the most popular search engine in China, making it the most representative data

source for tracking online behavior of Chinese people. However, several limitations related to

internet search query based surveillance for infectious diseases should be mentioned. First,

according to the 39th Statistical Report on Internet Development, the percentage of internet

users in the rural areas has steadily increased and is responsible for 27.4% until 2016 [41].

Although the availability and popularity of the internet has grown greatly in the rural areas in

recent years, the differences in the internet penetration between the rural and urban areas still

exist and may influence the internet search queries based surveillance for dengue. Second,

internet searching behavior is susceptible to the impact of media reports, which may affect the

performance of the internet search term-based predictive model [50]. For example, due to a

loss of resolution occurring as a result of media-driven interest that change search behavior,

Google Flu Trends was reported to over-estimate the seasonal influenza [40]. In this study, we

retrospectively assessed the performance of the proposed SVR model for dengue prediction.

Prospective studies should be conducted to evaluate the impacts of media-driven interest or

other events that change search behavior of people on the model in the future. In addition,

although the variables of dengue case data, internet search surveillance data, meteorological

data, and human population data were integrated and analyzed in this work, other sources of
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information on relevant indicators of risk, particularly evidence on mosquito density and herd

immunity [16], may subsequently be incorporated in future studies. Furthermore, since annual

population data in Guangdong province during the study period could not be obtained, the

latest data of the 6th population census in 2010 was used to calculate the observed and pre-

dicted dengue incidence. The variation of population during the study period might affect the

estimates of dengue incidence in this study.

In conclusion, the present study demonstrates the utility of using SVR model to track

dynamics of dengue outbreaks in China. The proposed SVR model achieves a superior perfor-

mance in comparison with other forecasting techniques we assessed. The findings of this study

will be useful for the government in identifying initiatives needed to strengthen dengue

control.
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S8 Fig. Time series of weekly dengue cases, dengue search index (DSI), mean temperature,

mean rainfall and mean relative humidity in the cities of Yangjiang and Maoming, Guang-

dong province during the study period of 2011–2014.
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S9 Fig. Time series of weekly dengue cases, dengue search index (DSI), mean temperature,

mean rainfall and mean relative humidity in the cities of Zhanjiang and Shanwei, Guang-
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S10 Fig. Time series of weekly dengue cases, dengue search index (DSI), mean temperature,

mean rainfall and mean relative humidity in the cities of Shantou and Jieyang, Guangdong

province during the study period of 2011–2014.
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S11 Fig. Time series of weekly dengue cases, dengue search index (DSI), mean temperature,

mean rainfall and mean relative humidity in the cities of Chaozhou and Heyuan, Guang-

dong province during the study period of 2011–2014.
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S12 Fig. Time series of weekly dengue cases, dengue search index (DSI), mean temperature,

mean rainfall and mean relative humidity in the cities of Qingyuan and Shaoguan, Guang-

dong province during the study period of 2011–2014.
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S13 Fig. Correlation between dengue cases notified and dengue search index (DSI) in 2014

in Guangdong, China. (A) Geographical distribution of dengue cases of 2014 in Guangdong.

(B) Geographical distribution of DSI of 2014 in Guangdong. There was a significant correla-

tion (Spearman correlation coefficient r = 0.91) between the geographical distribution of den-

gue incidence and that of DSI in Guangdong, China.

(TIF)

S14 Fig. Observations and model predictions of dengue case counts in Guangzhou city,

China, 2014. (A) Model forecasts using the SVR algorithm for the dengue epidemic period

between the 41st to 53rd weeks (the last 12 weeks) in 2014. The black lines represent observed

values, the blue dash lines denote model-based fitted values, the red dash lines correspond to

model-based predicted values, and the pink contours represent the corresponding 95% predic-

tion intervals. The observations and predictions of dengue case counts were expressed as a log-

scale. (B) Residuals of the SVR model for the last 12 weeks forecasts were assessed using the

autocorrelation function (ACF) plot. (C) Model forecasts using the SVR algorithm for the

period between the 35th to 46th weeks which covers the outbreak in dengue incidence in 2014.

(D) Residuals of the SVR model for the outbreak period forecasts were assessed using the ACF

plot.

(TIF)

S15 Fig. Observations and model predictions of dengue case counts in Zhongshan city,

China, 2014. (A) Model forecasts using the SVR algorithm for the dengue epidemic period

between the 41st to 53rd weeks (the last 12 weeks) in 2014. The black lines represent observed

values, the blue dash lines denote model-based fitted values, the red dash lines correspond to

model-based predicted values, and the pink contours represent the corresponding 95% predic-

tion intervals. The observations and predictions of dengue case counts were expressed as a log-

scale. (B) Residuals of the SVR model for the last 12 weeks forecasts were assessed using the
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autocorrelation function (ACF) plot. (C) Model forecasts using the SVR algorithm for the

period between the 35th to 46th weeks which covers the outbreak in dengue incidence in 2014.

(D) Residuals of the SVR model for the outbreak period forecasts were assessed using the ACF

plot.

(TIF)

S16 Fig. Observations and model predictions of dengue case counts in Zhuhai city, China,

2014. (A) Model forecasts using the SVR algorithm for the dengue epidemic period between

the 41st to 53rd weeks (the last 12 weeks) in 2014. The black lines represent observed values, the

blue dash lines denote model-based fitted values, the red dash lines correspond to model-

based predicted values, and the pink contours represent the corresponding 95% prediction

intervals. The observations and predictions of dengue case counts were expressed as a log-

scale. (B) Residuals of the SVR model for the last 12 weeks forecasts were assessed using the

autocorrelation function (ACF) plot. (C) Model forecasts using the SVR algorithm for the

period between the 35th to 46th weeks which covers the outbreak in dengue incidence in 2014.

(D) Residuals of the SVR model for the outbreak period forecasts were assessed using the ACF

plot.

(TIF)

S17 Fig. Observations and model predictions of dengue case counts in Shenzhen city,

China, 2014. (A) Model forecasts using the SVR algorithm for the dengue epidemic period

between the 41st to 53rd weeks (the last 12 weeks) in 2014. The black lines represent observed

values, the blue dash lines denote model-based fitted values, the red dash lines correspond to

model-based predicted values, and the pink contours represent the corresponding 95% predic-

tion intervals. The observations and predictions of dengue case counts were expressed as a log-

scale. (B) Residuals of the SVR model for the last 12 weeks forecasts were assessed using the

autocorrelation function (ACF) plot. (C) Model forecasts using the SVR algorithm for the

period between the 35th to 46th weeks which covers the outbreak in dengue incidence in 2014.

(D) Residuals of the SVR model for the outbreak period forecasts were assessed using the ACF

plot.

(TIF)

S18 Fig. Residuals analysis using a partial autocorrelation function (PACF) for the estab-

lished support vector regression (SVR) models. (A) PACF analysis for the SVR model fore-

casting the period between the 41st to 53rd weeks of 2014 in Guangzhou. (B) PACF analysis for

the SVR model forecasting the period between the 35th to 46th weeks of 2014 in Guangzhou.

(C) PACF analysis for the SVR model forecasting the period between the 41st to 53rd weeks of

2014 in Foshan. (D) PACF analysis for the SVR model forecasting the period between the 35th

to 46th weeks of 2014 in Foshan. (E) PACF analysis for the SVR model forecasting the period

between the 41st to 53rd weeks of 2014 in Zhongshan. (F) PACF analysis for the SVR model

forecasting the period between the 35th to 46th weeks of 2014 in Zhongshan. (G) PACF analysis

for the SVR model forecasting the period between the 41st to 53rd weeks of 2014 in Zhuhai.

(H) PACF analysis for the SVR model forecasting the period between the 35th to 46th weeks of

2014 in Zhuhai. (I) PACF analysis for the SVR model forecasting the period between the 41st

to 53rd weeks of 2014 in Shenzhen. (J) PACF analysis for the SVR model forecasting the period

between the 35th to 46th weeks of 2014 in Shenzhen.

(TIF)

S19 Fig. Tuning of the cost parameter C in the SVR model using cross-validation method.

(A) Model forecasts for the dengue epidemic period between the 41st to 53rd weeks (the last 12

weeks) in 2014. (B) Model forecasts for the period between the 35th to 46th weeks which covers
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the outbreak in dengue incidence in 2014. A cross-validation approach with root-mean-square

error (RMSE) as an indicator of model was performance to select an optimal SVR model. Sev-

eral SVR models were trained for different values of the C parameter, and the most superior

one corresponding to the lowest RMSE value was identified. Blue: Guangzhou. Red: Foshan.

Orange: Zhongshan. Black: Zhuhai. Yellow: Shenzhen. The optimal values of RMSE for the

SVR models are denoted using the pink solid dots.

(TIF)

S20 Fig. Residuals analysis using an autocorrelation function (ACF) and a partial autocor-

relation function (PACF) for the 1-week-ahead predictions of 2014 from support vector

regression (SVR) models. (A) ACF analysis of the 1-week-ahead predictions in Guangzhou.

(B) PACF analysis of the 1-week-ahead predictions in Guangzhou. (C) ACF analysis of the

1-week-ahead predictions in Foshan. (D) PACF analysis of the 1-week-ahead predictions in

Foshan. (E) ACF analysis of the 1-week-ahead predictions in Zhongshan. (F) PACF analysis of

the 1-week-ahead predictions in Zhongshan. (G) ACF analysis of the 1-week-ahead predic-

tions in Zhuhai. (H) PACF analysis of the 1-week-ahead predictions in Zhuhai. (I) ACF analy-

sis of the 1-week-ahead predictions in Shenzhen. (J) PACF analysis of the 1-week-ahead

predictions in Shenzhen.

(TIF)
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