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Abstract

A chronic inflammatory state to a large extent explains sickle cell disease (SCD) pathophysi-

ology. Nonetheless, the principal dysregulated factors affecting this major pathway and their

mechanisms of action still have to be fully identified and elucidated. Integrating gene expres-

sion and genome-wide association study (GWAS) data analysis represents a novel

approach to refining the identification of key mediators and functions in complex diseases.

Here, we performed gene expression meta-analysis of five independent publicly available

microarray datasets related to homozygous SS patients with SCD to identify a consensus

SCD transcriptomic profile. The meta-analysis conducted using the MetaDE R package

based on combining p values (maxP approach) identified 335 differentially expressed genes

(DEGs; 224 upregulated and 111 downregulated). Functional gene set enrichment revealed

the importance of several metabolic pathways, of innate immune responses, erythrocyte

development, and hemostasis pathways. Advanced analyses of GWAS data generated

within the framework of this study by means of the atSNP R package and SIFT tool identified

60 regulatory single-nucleotide polymorphisms (rSNPs) occurring in the promoter of 20

DEGs and a deleterious SNP, affecting CAMKK2 protein function. This novel database of

candidate genes, transcription factors, and rSNPs associated with SCD provides new mark-

ers that may help to identify new therapeutic targets.

Introduction

Sickle cell disease (SCD) is a rare hemoglobinopathy [1] characterized by high morbidity and

mortality. It affects millions of people throughout the world, including 300 thousand newborns
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annually [2]. The disease represents a severe genetic blood disorder caused by a single muta-

tion in β globin [3] that leads to a defective hemoglobin S (HBS) protein, which upon deox-

ygenation polymerizes rapidly [4] and gives red blood cells rigidity and sickle shape. Losing

flexibility, the misshapen red blood cells obstruct blood flow, disrupt homeostasis, and pro-

mote chronic hemolysis. The released heme iron into plasma creates an oxidative microenvi-

ronment resulting in inflammation and endothelial-cell activation, leading to tissue damage in

almost all organs and systems.

The SCD pathophysiology is largely explained by the chronic inflammatory state [5] and

partly by the dysregulated pro- and antiapoptotic agents [6]. Nonetheless, the principal dysre-

gulated factors in these major pathways and their mechanisms of action still need to be fully

identified and elucidated.

Several technologies [7,8] have been developed to identify candidate markers and have

highlighted potential molecular pathways related to SCD. Among the high-throughput geno-

mic technologies that have contributed to the identification of candidate genes and to our

understanding of complex interactions in multisystem diseases is the microarray technology.

Indeed, a microarray is a gene expression profiling technology that is widely used to simulta-

neously assess the expression levels of thousands of genes [9] in different disease contexts.

Such high-throughput technique is considered an important tool for clinical practice and for

the development of diagnostics [10,11]. Thus, its massive use in biomedical studies in the last

decade has resulted in a huge quantity of data for a large number of physiological states and

disease conditions [12]. In parallel, the constant evolution of bioinformatics tools provided the

scientific community with a more effective and reproducible meta-analysis workflow [13–20]

allowing for better handling of differences in study design and platforms and providing

enhancement of the analytical performance, which results in a more robust and reliable analy-

sis of gene expression signatures [21–24].

On the other hand, a genome wide association study (GWAS) is an approach that involves

rapid scanning of markers (genetic variants) across the genomes of different individuals [25].

It focuses on association between genetic variations such as single-nucleotide polymorphisms

(SNPs) and a specific disease. Recent studies have shown that integrative approach combining

GWAS and gene expression data is more effective than analyzing each data type individually

[26–29]. Indeed, SNPs present in the promoter regions of differentially expressed genes

(DEGs) and more specifically in regulatory elements [30] are likely to be regulatory SNPs

(rSNPs) that could mediate the binding of critical transcription factors (TFs) and consequently

alter the expression of target genes [31]. Therefore, joint identification of rSNPs and a gene

expression meta-signature will potentially advance the understanding of the disease mecha-

nisms [30,31].

In the present study, we performed a gene expression meta-analysis to identify a consensus

transcriptomic profile related to SCD, and by means of GWAS data, we investigated the

involvement of rSNPs in the expression of the identified key candidate genes.

Materials and methods

Search criteria and data collection

Analysis of the publicly available microarray datasets was carried out as per PRISMA guide-

lines [32] (S1 Table and Fig 1). A search involving a combination of the following keywords

(“sickle cell disease” and “Homo sapiens”) was performed in two public microarray expression

data repositories: NCBI Gene Expression Omnibus (GEO) Datasets [http://www.ncbi.nlm.nih.

gov/geo/] and ArrayExpress database [http://www.ebi.ac.uk/arrayexpress/]. Studies that were

publicly available by September 2016 were extracted. “Globin depleted” and “Homozygote SS”
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Fig 1. A PRISMA flow diagram of a systematic database search. The selection process of eligible microarray datasets for meta-analysis

of the shared transcriptomic signatures between Sickle cell disease patients, according to Prisma 2009 flow diagram.

https://doi.org/10.1371/journal.pone.0199461.g001

Table 1. Characteristics of included individual microarray dataset.

GEO Accession Number Tissue Number of samples

(Control/Cases)

Microarray Platform Reference study

GSE11524 Peripheral blood 30(12/18) Affymetrix Human Genome U133 plus 2.0 [33]

GSE16728 Peripheral blood 20(10/10)� Affymetrix Human Genome U133 plus 2.1 [34]

GSE53441 Peripheral blood 34(10/24) Affymetrix Human Genome U133 plus 2.2 [35]

GSE31757 Whole blood 8(3/5) Affymetrix Human Exon 1.0 ST [7]

GSE35007 Whole blood 251(61/190) Illumina HumanHT-12 v4 [36]

Inclusion criteria: Only samples homozygotes SS and submitted to Globin reduction were selected.

�: Consists of two studies with two datasets in total

https://doi.org/10.1371/journal.pone.0199461.t001
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were set as sample inclusion criteria. Table 1 provides details on all the datasets included in

this study.

Data preparation and quality control

Data preprocessing and meta-analysis were carried out using MetaQC [37] and MetaDE [18],

respectively. These packages of the R suite were chosen for quality control (QC) and identifica-

tion of differentially expressed genes (DEGs) in microarray meta-analysis. The input gene

expression table was prepared from the downloaded raw data following MetaDE guidelines

[18]. In brief, probe IDs of an individual study were annotated to retrieve their official gene

symbols using Bioconductor. The interquartile range method was applied to select the probe

ID with the largest interquartile range of expression values when multiple probes matched an

identical gene symbol. Individual studies that contained samples from different populations

were divided into substudies and treated as independent datasets during the meta-analysis.

Afterwards, the processed data were analyzed with MetaQC to compute six QC measures: (1)

internal homogeneity of coexpression structure among studies (IQC); (2) external consistency

of coexpression structure correlating with a pathway database (EQC); (3) accuracy of DEG

detection (AQCg) or pathway identification (AQCp); and (4) consistency of differential

expression ranking of genes (CQCg) or pathways (CQCp). The datasets showing good perfor-

mance on at least five QC criteria were retained. Table 2 presents the quantitative QC mea-

sures of each dataset.

Differential expression analysis

DEG analysis was performed with Limma software package [38] for each dataset indepen-

dently using an adjusted p value�0.05, based on Benjamini–Hochberg false discovery rate

(FDR) and the moderated t test. In this meta-analysis, DEGs across diseases and healthy con-

trols were selected by means of a maximum p value (maxP) [39]. This method combines p val-

ues and targets DEGs that have small p values in all studies (FDR < 0.05). Significantly up-

and downregulated DEGs were defined as those that showed a fold change (FC) greater than

1.4 in either direction.

Functional annotation and gene-regulatory network inference

The candidate genes identified via our meta-signature were used as input for different bioin-

formatics enrichment tools. Gene Ontology (GO) terms were identified in the TRANSPATH

database [40] on the geneXplain platform [41]; a different pathway gene set libraries (KEGG

Pathway, Reactome, and Wiki pathway), were requested by means of the EnrichR web tool

Table 2. MetaQC quantitative quality control measures for gene expression data.

Dataset IQC EQC CQCg CQCp AQCg AQCp Rank

GSE35007 2.53 3.7 301.34 307.65 145.57 220.18 2.17

GSE11524 5.33 3.6 148.75 307.65 101.43 210.4 2.5

GSE16728-A 3.58 3.7 145.79 307.65 78.46 157.71 3

GSE31757 3.97 1.17� 102.06 307.65 44.78 138.97 3.92

GSE53441 7.02 3.82 58.5 73.32 27.43 37.71 4

GSE16728-B 0.41� 3.6 33.06 212.76 18.27 88.93 5.42

Inclusion Criteria: Dataset with good performance in at least five quality control criteria

�: Low performance

https://doi.org/10.1371/journal.pone.0199461.t002
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[42]. The selection criterion for significantly enriched pathways and GO terms was a p value of

0.05 or less. Furthermore, for better result interpretation, we constructed a biological network

describing the most significant over-represented GO biological process terms obtained at the

previous step. In brief, we conducted two-sided (enrichment/depletion) hypergeometric distri-

bution tests, with a p value significance level of�0.05, followed by the Bonferroni adjustment

using the ClueGO plugin [43] of the Cytoscape [44] software.

Protein–protein (PP) interactions including physical and functional association across our

set of genes were identified in stringdb 10.0 [45]. To gain more insights into post-transcrip-

tional regulation of expression of DEGs, we used the complete list of our DEGs, their log FC,

and the p value as input for the RNEA R [46] package to reconstruct a subnetwork of gene

regulation.

GWAS data integration

GWAS was carried out on 1,213 individuals (HbSS and HbSb0) and gave a collection of

15,153,765 SNPs and indels related to SCD [47]. From those we selected 1,000 SNPs (with the

best p-value ranking) affecting the genes that we identified as DE by our meta-analysis. To

identify the location of each SNP within the related candidate gene, we used the list of the

1,000 SNPs as input for the VariantAnnotation Bioconductor package with 2,000 as value rep-

resenting the number of base pairs upstream of the 5’- gene end and 200 representing those

downstream of the 3’- gene end. SNPs occurring in coding regions were used as input for SIFT

(Sorting Intolerant from Tolerant) web server—able to identify nonsynonymous SNPs and

predict the effect of coding variants on protein function. The remaining SNPs (occurring in

non-coding regions) were used as input for atSNP (A:ffinity T:esting for regulatory SNP: s) R

package [42] to predict the regulatory variants (rSNPs). This software later computes an affin-

ity score for the genomic sequences around each SNP (±30 bp) against a library of TF motifs

for both alleles (reference and SNP allele) using their corresponding position-weighted matri-

ces (PWMs). SNPs with a significant change in the affinity scores between the reference and

SNP alleles were then hypothesized as rSNPs. We selected ENCODE PWMs as a TF motif

library and set a p value corrected by the Benjamini–Hochberg criterion in the rank test

between alleles (pval_rank_bh) to less than 0.1 to select significant rSNPs.

The main steps of the bioinformatics workflow integrating microarray meta-analysis and

GWAS data are described in Fig 2.

Results

Data mining and quality assessment

Five case-control studies (GSE11524, GSE16728, GSE53441, GSE31757 and GSE35007) satisfy-

ing the fixed inclusion criteria were selected for this meta-analysis. GSE16728 includes two

cohorts; each cohort was regarded as a different dataset and was analyzed separately. Sample

sources were either peripheral blood or whole blood subjected to globin mRNA depletion [48].

The retained studies included 343 samples representing a total of 247 homozygous SCD

patients and 96 healthy controls. Table 1 provides detailed information about the datasets,

sample types, study references, and the microarray platforms used here. All expression-pro-

cessed raw data that yielded a high score at the QC step are presented in Table 2.

Identification of the gene expression meta-signature

A shared transcriptional signature among SCD patients was identified by a meta-analysis of

the retained datasets by combining p values according to the stringent maxP method [39]. The
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raw data were loaded into the R environment and analyzed using the R package MetaDE.

Non-DEGs as well as those showing small variation and expression intensities across the

Fig 2. Workflow of microarray meta-analysis integrating GWAS data. A flow diagram depicting the process involved in the meta-analysis of the

selected microarray datasets with integration of GWAS data.

https://doi.org/10.1371/journal.pone.0199461.g002
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majority of datasets and contributing to the FDR were filtered out. The statistical framework

(maxP) identified highly significant biomarkers that are differentially expressed in all studies:

335 DEGs including 224 overexpressed and 111 underexpressed genes satisfying the signifi-

cance threshold of FDR < 0.05 (see S2 Table).

The top 10 upregulated and top 10 downregulated DEGs are presented in Table 3, along

with the average FC in expression. Among these, DnaJ heat shock protein family (Hsp40)

member C6 (DNAJC6), ring finger protein 182 (RNF182), and carbonic anhydrase I (CA1)

were the most significantly overexpressed genes, whereas Wntless Wnt ligand secretion media-

tor (WLS), Transcription factor 7-like 2 (T-cell specific, HMG-box) (TCF7L2), and G protein-

coupled receptor 171 (GPR171) were the most underexpressed genes (Table 3).

Network construction

PP interaction analysis was conducted to identify the key hub genes among our 335 DEGs.

Using the STRING database [45], we generated a PP interaction network among 175 nodes

with a high confidence score of 0.7. For better visualization of the network, we extracted the

most connected components that represent the 139 major nodes of the network. These

included 139 proteins and 278 edges representing the interactions within Fig 3A. Based on

network topology measures, a list of top 10 hub genes was compiled (see S3 Table). Four key

hub genes that showed a higher score in both degree and betweenness-centrality metrics are

coding for S-phase kinase-associated protein 1 (SKP1; degree = 15, betweenness central-

ity = 0.35), HECT and RLD domain-containing E3 ubiquitin protein ligase 5 (HERC5;

degree = 13, betweenness centrality = 0.14), NSF attachment protein alpha (NAPA; degree = 12,

betweenness centrality = 0.32), and erythrocyte membrane protein band 4.2 (EPB42;

Table 3. Top 20 shared DEGs identified in the meta-analysis ranked by average Log2FC.

Entrez Gene ID HGNC Gene symbol Gene Description Average Log2FC FDR

Top 10 upregulated Genes

9829 DNAJC6 DnaJ heat shock protein family (Hsp40) member C6 4,938 0,017

221687 RNF182 Ring finger protein 182 4,003 0,002

759 CA1 carbonic anhydrase I 3,366 1,38E-18

3045 HBD Hemoglobin subunit delta 3,294 1,38E-18

2994 GYPB Glycophorin B (MNS blood group) 3,246 1,38E-18

9911 TMCC2 Transmembrane and coiled-coil domain family 2 3,166 1,38E-18

2993 GYPA Glycophorin A (MNS blood group) 3,070 1,38E-18

8140 SLC7A5 Solute carrier family 7 (amino acid transporter light chain, L system), member 5 2,999 0,0004

66008 TRAK2 Trafficking protein, kinesin binding 2 2,985 0,023

493856 CISD2 CDGSH iron sulfur domain 2 2,980 1,38E-18

Top 10 downregulated Genes

79971 WLS Wntless Wnt ligand secretion mediator -1,766 0,036

6934 TCF7L2 Transcription factor 7-like 2 (T-cell specific, HMG-box) -1,562 0,016

29909 GPR171 G protein-coupled receptor 171 -1,523 0,027

79668 PARP8 Poly(ADP-ribose) polymerase family member 8 -1,344 0,002

64167 ERAP2 Endoplasmic reticulum aminopeptidase 2 -1,343 0,048

91526 ANKRD44 Ankyrin repeat domain 44 -1,300 0,001

5788 PTPRC Protein tyrosine phosphatase, receptor type, C -1,275 0,005

1362 CPD Carboxypeptidase D -1,209 0,030

50852 TRAT1 T cell receptor associated transmembrane adaptor 1 -1,169 0,009

23224 SYNE2 Spectrin repeat containing, nuclear envelope 2 -1,159 0,047

https://doi.org/10.1371/journal.pone.0199461.t003
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Fig 3. Network-based meta-analysis of hub genes. A: Protein interaction network analysis indicates a central role for SKP1, NAPA, EPB42, and

ARPC5 in SCD anemia. All 335 genes served as input for the STRING database with the high confidence interaction score 0.7, and a network was built

by means of Cytoscape. The network topology was analyzed by the Cytoscape NetworkAnalyzer tool, and then network topology measures such as the

degree (represented by the node size scale), betweenness (represented by police size scale), closeness centrality, and clustering coefficient were

calculated. B and C: The top-ranked subnetwork identified by the OH-PIN algorithm (threshold: 2, overlapping score 0.5) using CytoCluster (a

Cytoscape plugin).

https://doi.org/10.1371/journal.pone.0199461.g003
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degree = 12, betweenness centrality = 0.22). Uploading the 139 proteins via the CytoCluster

Cytoscape plugin extracted the top-ranked clusters as a subnetwork. These included SKP1 (25

nodes and 73 edges) and EPB42 (22 nodes and 52 edges). Both subnetworks are independent

protein complexes with their interacting nodes likely to work collectively to perform biological

functions listed in Fig 3B and 3C.

To gain insight into the regulatory system upstream of the identified DEGs, we employed

the Regulatory Network Enrichment Analysis (RNEA) bioinformatics tool that extracts lists of

prioritized TFs. A regulatory subnetwork showing the interaction of activated regulators with

their target genes and with one another is shown in Fig 4.

Identification of regulatory and nonsynonymous SNPs

Identifying potential rSNPs is crucial for understanding disease mechanisms. From a subset of

the most significant 1,000 DEGs associated SNPs (retrieved from GWAS data analysis based

on P-value) and using the atSNP R package [15], we evaluated the regulatory potential of 789

SNPs (occurring in non-coding regions) by comparing them with a motif library of 2,065

PWMs from the ENCODE project [16]. The analysis revealed a total of 60 significant rSNPs

that affect gene regulation of 20 candidate disease genes out of 335 DEGs. These SNPs affect

binding affinity of TFs for their target promoter (full results are in S4 Table). Besides, we iden-

tified seven TFs (Fig 4) carrying rSNPs such as NFE2, which plays a prominent role in the

hematopoietic stem cell differentiation pathway.

We next evaluated the functional impact of the remaining coding variants (211 SNPs out of

1,000 SNPs) in the affected proteins. According to SIFT, one nonsynonymous SNP

(rs1132780) was predicted as damaging with a significant score of 0.042 (results are in S5

Table). Rs1132780 occurs in the coding region of the calcium/calmodulin-dependent protein

kinase kinase 2 (CAMKK2) gene and affects all its catalytic domain isoforms with an amino

acid change from arginine to cysteine at position 363 of the protein.

Gene set enrichment analysis for identification of over-represented

biological pathways and GO terms

Enriched GO biological process terms and biological pathways associated with our complete

list of DEGs and showing a p value<0.05 were identified by means of both geneXplain and

EnrichR tools (full results are in S6 Table). Among the top significant terms identified were

those associated with an innate immune response, oxidative stress, hemostasis, and hemopoie-

sis (Fig 5). Relevant GO terms identified only on the basis of the list of DEGs carrying rSNPs

were associated mainly with B-cell proliferation, T-cell differentiation, B-cell activation

involved in an immune response, and T-cell lineage commitment.

Discussion

SCD is a monogenic disorder characterized by chronic hemolytic anemia and episodic vaso-

occlusion. These major pathological signs are primarily triggered by the polymerization of

defective hemoglobin S [49] and end with a sustained inflammatory response and tissue dam-

age. Multiple cell types are involved in the chronic inflammatory state and are associated with

SCD severity, including leukocytes, activated monocytes, neutrophils, and platelets [50–52]. In

addition, SCD patients show higher levels of several molecules that promote inflammation,

including heme and proinflammatory cytokines, such as TNF-α, IL-1β, and IL-8 [53–55],

which enhance the vaso-occlusive process [53,56] and aggravate the disease.

The inflammatory response thus plays a prominent role in SCD pathophysiology [51] and

needs to be resolved to help control the disease and prevent the subsequent damage to organs.
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Fig 4. Transcriptional regulatory subnetwork based on microarray meta-analysis. Regulatory network analysis was performed using

RNEA R/package to determine the regulation complexes upstream of DEGs identified in the meta-analysis. Genes carrying in their

promoter, a significant regulatory SNPs are marked by a yellow star. Each node represents a DEG or enriched transcription factor,

depending on their shapes. The node size indicate greater significance of the enrichment. The edges reflect the relationships between the

nodes.

https://doi.org/10.1371/journal.pone.0199461.g004
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Nevertheless, the mechanisms that determine the appearance of the inflammatory response

and its persistence (which exacerbates the symptoms of SCD patients) and the factors involved

still need to be clarified.

Here, we set up a full complete ’omics bioinformatics pipeline to further delineate the rela-

tion between SCD patients’ transcriptomics profile and the pathophysiology of the disease

focusing especially on the inflammatory response.

Several individual microarray-based gene expression studies related to SCD have been pub-

lished in recent years and were made available for public reuse. On the other hand, the small

number of individuals analyzed in each study is an obstacle for the identification of a consen-

sus set of DEGs. A meta-analysis of the available data should reduce study bias, increase statis-

tical power, and improve the overall biological-process understanding [57,58], which may lead

to therapeutic-target discovery [59,60].

In the present study, we not only increased the sample size of individuals subjected to the

meta-analysis but also overcame the heterogeneity of the disease expression across both SCD

patients and individual datasets by means of a bioinformatics approach that takes into account

the between-study and within-study variation.

Our meta-analysis, using all public eligible SCD raw data [7,33–36] produced a consensus

shared DEG profile. Indeed, we identified 335 DEGs, which include 224 upregulated and 111

downregulated genes having FDR< 0.05. Among these, we found the already known set of

Fig 5. Over-representation of pathways and GO categories in biological networks identified by the meta-analysis. Network representation

of an enriched pathway integrating biological processes on the DEG list according to the ClueGO Cytoscape plugin. Hypergeometric (right-

handed) enrichment distribution tests were conducted with a p value significance level of�0.05, followed by the Bonferroni adjustment for the

terms, and thus leading term groups were selected based on the highest significance. Each node represents a biological process. The edges

reflect the relationships between the terms based on the similarity of their associated genes. The node size and deeper color indicate greater

significance of the enrichment.

https://doi.org/10.1371/journal.pone.0199461.g005
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genes previously reported to be associated with SCD, e.g., KLF1 (Krüppel-like factor 1) [61,62]

and HBD (hemoglobin subunit delta), as well as more than 130 candidate genes found to be

differentially expressed by a preceding meta-analysis despite a different statistical framework

that was applied to only two datasets [63].

The gene set enrichment and pathway analysis of our DEG set revealed the importance of

innate immunity (regulation and activation of innate immune response “GO:0002218,

GO:0045088,” innate immune system “R-HSA-168249,” interferon alpha/beta signaling

“R-HSA-909733,” the type I interferon signaling pathway “GO:0060337,” and the IL-6 signal-

ing pathway, Homo sapiens “WP364”), hemostasis (blood coagulation “GO:0007596,” platelet

activation “hsa04611,” and positive regulation of the MAPK cascade “GO:0043410”), a

response to stress (oxidative stress “WP408,” glutathione metabolism “WP100”) and hemo-

poiesis (erythrocyte development “GO:0048821,” myeloid cell development “GO:0061515”)

pathways. Heme biosynthesis and apoptosis were also found among the significant biological

terms (a complete list is provided in S6 Table).

The results of the PP interaction analysis supported those obtained by the gene enrichment

analysis. Indeed, among the top predicted hub genes sorted by degree and betweenness cen-

trality, we found genes that play a prominent role in innate immunity pathways (HERC5,

HERC6), hemopoiesis (AHSP), and heme biosynthesis (ALAS2). The latter (5’-aminolevulinate

synthase) encodes a major regulatory enzyme in erythrocytes [64]. This protein is the rate-lim-

iting enzyme in heme synthesis and contributes to regulation of heme (iron-containing mole-

cule) synthesis preventing free-iron accumulation and subsequent organ damage [65].

Our findings showing the increase in ALAS2 transcription (logFC = 1.9) are in agreement

with the previously reported higher heme concentration measured in SCD patients’ groups

(steady state and crisis) when compared with healthy individuals [66]. This high heme level

has been shown to induce inflammation and to increase vascular permeability, adhesion mole-

cule expression, and leukocyte recruitment [67,68] and has been suggested to contribute to

severe clinical manifestations of SCD [69]. Accordingly, we did not notice either the transcrip-

tion of heme oxygenase gene (HMOX1; coding for the enzyme regulating catalytic cleavage of

heme groups) or the expression of the master TF NRF2 (its protein product regulates the tran-

scription of most of antioxidant genes). This observation is in line with another study showing

that a large proportion of SCD patients have a relatively modest HMOX1 plasma concentra-

tion due in part to a hyporesponsive HMOX1 promoter [70]. Nevertheless, our results revealed

transcriptional induction of other antioxidant genes such as GPX1, GCLC, CAT, PINK1,

SESN3, UBQLN1, CD36, and SNCA.

Carbon monoxide (CO), one of the products of HMOX1, has been widely studied for its

therapeutic potential [71–75]. Indeed, administration of CO and biliverdin inhibits vascular

inflammation and vaso-occlusion in mouse models of SCD [72]. Furthermore, HMOX1

induction has had a beneficial effect in several pathological conditions [76] including chronic

nephropathy [77]: an SCD-related pathology. HMOX1 inducers may thus help to decrease

heme concentration and consequently reduce the inflammatory responses that worsen the

patients’ symptoms; i.e., HMOX1 inducers may be beneficial to SCD patients.

For a better understanding of the transcriptional mechanisms that regulate our DEGs, we

constructed a gene-regulatory subnetwork associated with SCD (Fig 4). According to the net-

work topology analysis, the nuclear factor-kappa B (NF-κB) remained the top hub-enriched

TF. NF-κB regulates several physiological responses, including transcription of a large set of

proinflammatory-cytokine genes [78] usually upregulated in SCD [53–55]. Our results indi-

cate the increased transcription of various proinflammatory-cytokine genes including IL-6, IL-
12, and IL-18 and cytokine receptor genes such as IL-17RD and IL-17RC even if the increased

expression of these transcripts was below the cutoff.

Meta-analysis of sickle cell disease related data

PLOS ONE | https://doi.org/10.1371/journal.pone.0199461 July 6, 2018 12 / 21

https://doi.org/10.1371/journal.pone.0199461


At the same time, using GWAS data, from the identified polymorphisms we extracted the

rSNPs occurring in the promoter region of our DEGs and gained an important insight into the

regulatory complexes governing these gene expression patterns. Our analysis revealed the

occurrence of 60 rSNPs in promoter DNA sequences of 20 genes (S4 Table), including NFE2,

HDAC4, PI3Kδ, and PI3Kγ.

Among the top significant enriched GO terms and biological pathways associated with the

subset of these 20 candidate disease-associated genes were those primarily related to T-cell

activation/differentiation; alpha-beta, gamma-delta, and regulatory T-cell differentiation; T-

cell lineage commitment; and B-cell proliferation or activation. This result is highly consistent

with the alteration of a lymphocyte count [79], phenotype, and function associated with SCD

[80]. This alteration in the acquired immunity may explain the increased risk of severe bacte-

rial infections among these patients [81,82]. Indeed, different studies have shown that SCD

patients have a decreased T-lymphocyte count and increased B-lymphocyte count either at

baseline or in acute crisis [83]. Of note, T-cell lymphopenia–associated inflammatory

responses have been previously linked to the inactivation of PI3Kδ and PI3Kγ [84], genes of

two PI3K isoforms that we found to be significantly downregulated and to carry rSNPs

(log2FC: -0.94 and -0.56, respectively) in this analysis. This finding suggests that the downregu-

lation of these kinase genes, predominantly expressed in the hematopoietic system [85], may

be implicated in the profound lymphopenia observed in SCD patients.

Our gene-regulatory network also showed significant overexpression of the TF nuclear fac-

tor-erythroid 2 (NFE2). The expression of this TF is activated by CREB1 and repressed by

MYC TFs. Promoter analysis revealed that NFE2 is affected by five rSNPs including

rs35702801 and rs34155291 (S7 Table) that are predicted to disrupt several MYC motifs but

not to affect the affinity of CREB1 binding. These rSNPs by altering TF MYC binding may

hence explain the overexpression of NFE2 observed in SCD patients. Some studies have shown

Fig 6. Downregulated and upregulated DEGs involved in apoptosis pathways. The inner ring is a bar plot where the

height of the bar indicates the significance of the term (−log10 adjusted p value), and color corresponds to the z-score.

The outer ring displays scatterplots of the expression levels (log2FC) for the genes in each term.

https://doi.org/10.1371/journal.pone.0199461.g006
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that elevated expression of NFE2 modulates proinflammatory cytokine IL-8 expression in

myeloid cells [86] and causes a high neutrophil count in a murine model [87]. We suggest here

that overexpression of NFE2 may contribute to the neutrophilia associated with the severity of

SCD. This neutrophilia may be—as suggested by others—accentuated by the alteration of neu-

trophil apoptosis, which leads to neutrophil accumulation in blood [88]. Accordingly, our

results reveal downregulation of the DEGs involved in the positive (“GO:1902043”) and nega-

tive (“GO:2001237”) regulation of the extrinsic apoptotic signaling pathway (Fig 6).

Additionally, the GWAS revealed a nonsynonymous SNP occurring in CAMKK2’s protein-

coding region (S5 Table), transforming arginine to cysteine at position 363 present in all

CAMKK2 protein isoforms including the active isoforms 1, 2, and 3. Thus, besides the down-

regulation, the amino acid change affecting the catalytic domain was predicted by the SIFT

analysis to be a deleterious SNP with a significant damage score (0.041). CAMKK2 belongs to

a family of Ca2+/CaM-dependent, highly versatile serine/threonine kinases that catalyze the

phosphorylation of (and have high affinity for) mainly three substrates: CAMK1, CAMK4, and

AKT. CAMKK2 was reported to be exclusively expressed in the myeloid lineage [89] and par-

ticipates in the regulation of several relevant physiological and pathophysiological processes,

including hematopoiesis, cancer, inflammation, and immune responses. It was recently

reported that under stressful conditions in immune cells, the loss of CAMKK2 promotes dif-

ferentiation (both in bone marrow and peripheral-blood cells) of common myeloid progeni-

tors toward granulocyte and monocyte precursor cells rather than megakaryocytes or

erythrocytes [89]. This nonsynonymous SNP occurring in CAMKK2’s protein-coding region

may thus also contribute to the increase in the neutrophil number (the most abundant type of

granulocytes). Yet, the granulopoiesis state can be reversed by the re-expression of CAMKK2.

Further research is needed to determine whether the CAMKK2 protein present in the blood of

SCD patients shows an altered activity.

In conclusion, besides previously reported genes, our meta-signature contains a new subset

of genes identified for the first time as associated with SCD. Among these, ALAS2 belonging to

heme metabolism is well known to be associated with SCD, as are PI3K delta and gamma iso-

forms involved in T-cell differentiation. The present analysis yielded a large database of rSNPs

and candidate genes that may be helpful for future studies dealing with the pathogenesis and

complexity of SCD.
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