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Application of mass spectrometry enables the detection of metabolic differences between groups of related
organisms. Differences in the metabolic fingerprints of wild-type Solanum lycopersicum and three
monogenic mutants, ripening inhibitor (rin), non-ripening (nor) and Colourless non-ripening (Cnr), of tomato
are captured with regard to ripening behaviour. A high-resolution tandem mass spectrometry system
coupled to liquid chromatography produced a time series of the ripening behaviour at discrete intervals
with a focus on changes post-anthesis. Internal standards and quality controls were used to ensure system
stability. The raw data of the samples and reference compounds including study protocols have been
deposited in the open metabolomics database MetaboLights via the metadata annotation tool Isatab to
enable efficient re-use of the datasets, such as in metabolomics cross-study comparisons or data fusion
exercises.
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Background & Summary
Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) enables capturing of
metabolic snapshots at discrete time intervals1. Models can be built inspecting changes in metabolic
trajectories over time for a group of closely related organisms distinguished by the characteristic
properties under investigation2.

The ripening behaviour of Solanum lycopersicum and three ripening-inhibited mutants was explored
using a LC-MS/MS assay (Table 1). The plant material was harvested in five to ten day intervals up to the
point of ripening and daily after. Each genotype was grown in triplicate. Each block of 52 plant samples
was measured using a group-randomization setup with interspersed quality controls: blank injections
(solvent), pooled samples (mix, see table below), and aliquots of a pooled in-house standard tomato
reference (see Methods). Randomization groups were defined by day of harvest.

The study resulted in a metabolic data set about the ripening behaviour of wild-type and mutant
tomato, which completely abolish the normal ripening process (Data Citation 1)3. A total of 219 and 225
samples (including controls) were acquired in positive and negative ion mode respectively. Quality
measures including positive and negative control samples as well as representative internal standards
were taken into account during study design, facilitating data analysis and enabling filtering of
unintended biological variation in the data. A total of 58 distinct reference standards relevant to plant
metabolism were measured on the same instrumental setup to aid metabolite identification (Data
Citation 2) and consequently model validation via biological interpretation.

Tomato is a model system to study ripening in fleshy fruits4. Many single gene mutants are well
described, making it a suitable target to investigate various biological processes, including ripening, and
integrate these5. Understanding metabolic changes underlying factors of ripening are essential to exploit
regulatory mechanisms and improve fruit crop. Building on research of ethylene regulation in ripening,
changes in metabolites in this climacteric fruit are of particular interest because of the link between
ethylene biosynthesis and central metabolic pathways6.

By making this data set publically available, it lends itself to applications in the biochemistry of fruit
ripening, metabolic cross-study comparisons or investigations into reproducibility of data analysis in
metabolomics. The presence of standard reference files and complex biological data files—acquired on the
same LC-MS/MS system under identical conditions—also make it highly useful for exercises around data
analysis and interpretation. Other studies about the ripening behaviour of tomato include the multi-
platform metabolomics analysis by Carrari et al.7, Perez-Fons et al.8 as well as others9–12 that could be
used for combined analysis.

Methods
Plant material
Wild-type Solanum lycopersicum (Ailsa Craig, AC++) and three ripening inhibited AC++ mutants were
used in this study: ripening inhibitor (rin), non-ripening (nor) and Colourless non-ripening (Cnr)
mutations. The plants were grown in 24 cm-diameter pots in M3 compost (Levington Horticulture,
Ipswich, and Suffolk, UK) and watered daily under standard greenhouse conditions. Developing fruit
were sampled in five to ten day intervals (10, 15, 20, 30, 40 days post-anthesis) and daily from Breaker
(49, 50, 51, 52, 53, 54, 55, 56 days post-anthesis). Breaker fruit were defined as those showing the first
signs of ripening-associated colour change from green to orange. Non-ripe mutants were taken at day 49
as equivalents to breaker WT fruits. All plant samples were taken at the same time each day, frozen in
liquid nitrogen, and stored at −70 °C until required.

Name Group Description

AC++ Wild type (WT) Ailsa Craig variety

NOR Monogenic mutant Ailsa Craig near isogenic lines
containing the Non-ripening mutation

RIN Monogenic mutant Ailsa Craig near isogenic line
containing the ripening inhibitor mutation

CNR Monogenic mutant Ailsa Craig near isogenic line containing
the Colourless non-ripe mutation

Mix n/a Pooled sample of AC++, NOR, RIN, CNR, and TomQC

TomQC n/a Standard in-house tomato aliquots

Blank n/a Blank sample with solvent

Table 1. Summary of study samples. The table contains the sample name, its group, and description.
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Sample preparation
Stock standard solutions were prepared for the analytical reference standards at a concentration of
1,000 μg/ml in 20/80 HPLC analytical grade Ethanol/Water and then diluted 10× for injection.

Tomato samples were subjected to an untargeted metabolite analysis by LC-MS/MS of polar extracts.
Approximately 30 mg of dried tomato tissue was extracted with HPLC analytical grade Ethanol/Water
20:80. The polar extracts were diluted 10:1 with water and injected underivatised. Samples were acquired
in three batches on 17, 20, and 21 September 2010 in positive ion mode and on 23, 24, and 27 September
2010 in negative ion mode.

Chromatography
All samples were run on a Waters Acquity® UPLC system (Waters Corporation, USA), HSS T3 150 × 2
mm, 1.7 μm particles, UPLC column at 30 °C oven temperature. The solvents used for the assay consisted
of 0.2% Formic Acid (Solvent A) and 98/2/0.2 Acetonitrile/Water/Formic Acid (Solvent B). Gradient
[time (min)/%B] starting at flow rate 0.25 ml/min: 2.5/0, 7.5/10 (flow rate to 0.4 ml/min), 10.0/100,
12.0/100, 18.0/0, 25.0/0. Aliquots of 2 μl were injected.

Mass spectrometry
The compounds were detected using a Thermo LTQ Velos Orbitrap mass spectrometer operating in
positive and negative Electrospray ionization (ESI) mode at a resolution of 30,000 with a scan range from
85–900m/z and 95–900m/z respectively. MS/MS spectra were obtained in a data dependent manner
through higher-energy collisional dissociation (HCD, normalized collision energy: 50.0) at a resolution of
7,500: The two most intense mass spectral peaks detected in each scan were fragmented to give MS2
spectra (100–900m/z). Full scan data was acquired in FT (accurate mass) mode, MS/MS spectra were
acquired in centroid mode. The LTQ Velos Orbitrap used the Xcalibur control software version 2.1.0 for
data acquisition. Reference standards were acquired using the same protocol and experimental setting.

Reference and internal standards
Reference standards were commercially purchased from Fluka Analytical, Sigma-Aldrich, and
C/D/N Isotopes or prepared in-house. Internal standards for reference tomato aliquots comprised
the following (final concentration): Citric acid-d4 (1,000 μg/ml), L-Alanine-d4 (200 μg/ml), Glutamic
acid-d5 (200 μg/ml), and L-Phenyl-alanine-d5 (100 μg/ml). Pooled in-house standard tomato reference
was prepared from the shop bought Angelle variety: mashed up in bulk and aliquoted out following the
protocol outlined above.

Data processing and transformation
Non-targeted LC-MS/MS vendor raw data files were converted to the open source format mzML using
the program ProteoWizard13. Vendor-based peak picking was enabled for MS1. The resulting mzML files
were subsequently processed with MassCascade14 in KNIME15, the open source Konstanz Information
Miner environment: features were extracted with ±5 p.p.m. mass accuracy, smoothed using a third order
polynomial and deconvoluted using a modified Bieman algorithm16. Noise reduction was firstly carried
out by removing ion signals that are not consistent across six adjacent scans17 and secondly via a Durbin-
Watson criterion set to a threshold of 2.818. The workflow including all settings is available at
MyExperiment19 under this article’s title. Obiwarp20 was used for cross-sample alignment before signals
below an intensity threshold of 10,000 were filtered out. The maximum percentage of missing values per
group and feature was set to 10% to account for limits in detection while ensuring that features used for
statistical analysis are at least consistently present in 90% of the samples. Lower and higher percentages of
missing values were found to decrease and increase the number of features respectively, without
significantly affecting subsequent data validation. Overall, differences between groups were less
pronounced with an allowed missingness of 0% and above a missingness value of 20%, most likely
due to an increase in the sparsity of the feature matrix. Gaps in the resulting sample by feature matrix
were either backfilled or—if missing—imputed using a readily available PCA-based approach21. In
contrast to naïve methods (e.g., mean replacement), PCA-based gap filling takes the natural variance of
the data into account and has been shown to give good results22. Statistical analysis was carried out in the
statistical programming environment R, version 3.0.2. Total signal intensity normalization and Pareto
scaling were used for data pre-treatment.

Data Records
All samples used in this study have been submitted to MetaboLights23 at the European Bioinformatics
Institute (EMBL-EBI). Each MetaboLights entry contains protocols about sample collection, extraction,
chromatography, mass spectrometry, metabolite identification, and data transformation. The study was
metadata tagged using the Investigation/Study/Assay (ISA) suite24. ISA uses tab-separated text files to
store the experimental information. In addition, identified metabolites were stored in mzTab25

compatible tab separated files provided by the MetaboLights’s Isacreator plug-in extension.
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Data record 1
Data Citation 1 contains the study samples: 442 LC-MS/MS files (.mzML, 64-bit) acquired in
continuous mode: 219 in positive and 223 in negative ion mode.

Consistent file names are composed of: oacquisitionDate>_orunId>_osample>_
osampleTime>.

Data record 2
Data Citation 2 contains the reference standards: 71 LC-MS/MS files (.mzML, 64-bit) acquired in
continuous mode: 43 in positive and 28 in negative ion mode. Chemical names are used as file names and
linked to the ChEBI database26. Additionally, putative in silico generated fragment structures for MS2 are
collated in individual mzTab files for 34 out of 43 samples acquired in positive ion mode to aid
interpretation. No MS2 spectra are available for the remaining 9 samples.

Technical Validation
In mass spectrometry experiments, acquired data needs to be checked for unintended systematic and
random factors that may distort analysis. These factors can result from the biological or experimental
level and can be detected through good experimental design. Quality controls consisting of blanks, mixed
samples, and standard tomato samples were used to assess and to validate the experimental design. The
stability of the experimental system was inspected using principal component analysis (PCA) on the
processed sample by feature matrices of the two data sets, acquired in positive and negative ion modes
(Fig. 1). PCA is a well-established technique that can be used to provide a first overview of the data with
regard to questions related to high variance, e.g., sample clusters, trends, and outliers. In all of the models
the total signal is normalized and aligned signals Pareto scaled. As shown in Fig. 1, quality control
samples cluster distinctively, indicating absence of significant non-biological induced variation in the
study. Nota bene, PCA of the batches in the absence of quality controls shows that samples acquired on
17 September show strong batch variation compared to samples acquired on 20 and 21 September; this is
very common and expected27,28.

Ion traces from internal standards were extracted from reference tomato aliquots after data processing
and used to validate the consistency of the data set. Tables 2 and 3 summarize the results of the ‘positive’
and ‘negative’ data set. L-Alanine-d4 was not ionized in negative ion mode and consequently not detected
in the negative mode.

The consistency of the retention times and abundances of the internal standards across
samples—together with the clusters observed in the PCA—indicate little technical sample-to-sample
variation29.

Usage Notes
This data set can be used for data-driven cross-tool comparisons in metabolomics, investigating the
effects of data processing, e.g., peak picking and deconvolution, and analysis of statistical models and

Figure 1. Principal Component Analysis of the data sets acquired in positive (a) and negative (b) ion mode.

The first two principal components are shown. The data are coloured by group. Total signal normalization

and Pareto scaling was applied to both data sets. Quality controls—blanks, mixed, and aliquots of reference

standard tomato samples—cluster distinctively outside the main group. Blanks are well outside Hotelling’s

T2 confidence region (95%, indicated as grey circle).
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subsequent biological interpretation. Open source tools and databases can be used to support and
demonstrate efforts within the metabolomics community, driven by COSMOS30 as well as recent
initiatives in the metabolomics society. Such a comparison can include feature extraction and cross-
sample alignment by tools such as MzMine231, MassCascade, and XCMS32 and subsequent exploration of
interpretability and predictability of multivariate models build on different data processing approaches
and tools. Additionally, effects of data pre-treatment methods such as scaling and normalization could be
investigated with regard to metabolite ranking on biological importance according to developed
models used.

With regard to ripening, the monogenic mutants (nor, rin and Cnr) can be compared to the wild-type
AC++ to identify and investigate metabolites correlated to differences between the genotypes. This
comparative analysis can involve Partial Least Squares Discriminant Analysis (PLS-DA) and S-plots to
highlight statistically reliable features that are strongly correlated with the models between the individual
mutants and wild-type. Knowledge of identified features, i.e. metabolites, is essential for metabolic
modelling and exploration of regulatory mechanisms.

The data set can also contribute to the generation of a standard metabolome of tomatoes: submission
of high quality data sets of key organisms such as Solanum lycopersicum into public databases, enable the
community to gradually collect and subsequently discover the metabolome of a species. This study
features metabolomics data from four different varieties of tomato that are semantically annotated,
complete, and fully publicly available.
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