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Abstract

Over half of individuals infected with human immunodeficiency virus (HIV) suffer from HIV-

associated neurocognitive disorders (HANDs), yet the molecular mechanisms leading to

neuronal dysfunction are poorly understood. Feline immunodeficiency virus (FIV) naturally

infects cats and shares its structure, cell tropism, and pathology with HIV, including wide-

ranging neurological deficits. We employ FIV as a model to elucidate the molecular path-

ways underlying HIV-induced neuronal dysfunction, in particular, synaptic alteration. Among

HIV-induced neuron-damaging products, HIV envelope glycoprotein gp120 triggers eleva-

tion of intracellular Ca2+ activity in neurons, stimulating various pathways to damage synap-

tic functions. We quantify neuronal Ca2+ activity using intracellular Ca2+ imaging in cultured

hippocampal neurons and confirm that FIV envelope glycoprotein gp95 also elevates neuro-

nal Ca2+ activity. In addition, we reveal that gp95 interacts with the chemokine receptor,

CXCR4, and facilitates the release of intracellular Ca2+ by the activation of the endoplasmic

reticulum (ER)-associated Ca2+ channels, inositol triphosphate receptors (IP3Rs), and syn-

aptic NMDA receptors (NMDARs), similar to HIV gp120. This suggests that HIV gp120 and

FIV gp95 share a core pathological process in neurons. Significantly, gp95’s stimulation of

NMDARs activates cGMP-dependent protein kinase II (cGKII) through the activation of the

neuronal nitric oxide synthase (nNOS)-cGMP pathway, which increases Ca2+ release from

the ER and promotes surface expression of AMPA receptors, leading to an increase in

synaptic activity. Moreover, we culture feline hippocampal neurons and confirm that gp95-

induced neuronal Ca2+ overactivation is mediated by CXCR4 and cGKII. Finally, cGKII acti-

vation is also required for HIV gp120-induced Ca2+ hyperactivation. These results thus
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provide a novel neurobiological mechanism of cGKII-mediated synaptic hyperexcitation in

HAND.

Author summary

Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HANDs)

occur in as many as 50% of individuals infected with HIV, including patients receiving

combination antiretroviral therapy (cART). Notably, while neuronal death is mitigated

with cART, neuronal dysfunction persists. This study investigates HAND-associated

alteration of neuronal function, in particular, synaptic activity. The development of

therapies designed to prevent HAND requires a detailed understanding of pathogenic

mechanisms—processes difficult to study in humans. Here, we develop a feline immu-

nodeficiency virus (FIV) model to study this question. FIV is genetically and function-

ally similar to HIV and produces a naturally occurring AIDS that is frequently

associated with the development of neurological disease. We demonstrate that FIV

and HIV share the core cellular pathway that alters neuronal activity via aberrant neuro-

nal activation of cGMP-dependent protein kinase II. Thus, FIV infection of cats can be a

valuable model to investigate the neurobiological mechanisms of HAND-associated

neuropathogenesis.

Introduction

Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HANDs) occur

in as many as 50% of individuals infected with HIV, including patients receiving combination

antiretroviral therapy (cART) [1]. HANDs range from mild neurological disorder (MND) and

asymptomatic neurocognitive impairment (ANI) to severe and disabling dementia, and confer

an increased risk of early mortality [1,2]. As cART enables individuals infected with HIV to

survive to older ages, the prevalence of HAND continues to increase [1], and thus treatments

targeting HIV’s pathological processes in the brain are greatly needed. Previous knowledge of

HAND neuropathogenesis is dependent on studies that have been predominantly carried out

in the pre-ART era [3]. In fact, the majority of basic research on HAND has been focused on

evaluating neuronal damage in the context of active viral replication and outcomes related to

encephalitis and neuronal death [3]. Despite suffering from HAND, in patients with cART, the

classical features of HIV encephalitis and/or brain atrophy often are absent [4]. In fact, the

severity of HAND is strongly associated with the loss of synaptic markers in patients on cART

[5]. However, the molecular mechanisms underlying HAND-associated synaptic alteration

remain largely unclear [6].

One of the major limitations in searching for HAND cures has been the lack of an animal

model that recapitulates all of the features of HIV infection in humans [7]. Thus, new animal

models to examine how chronicity and aging affect HIV-induced neuropathology are an

important current and future need [8]. Previous work has heavily relied on rodent models

for the study of HIV pathology [9]. However, results obtained in rodent models are often not

easily translated to treatment of humans, given that rodents are not naturally susceptible to

HIV infection and do not reflect the in vivo nature of infection [10]. Although nonhuman

primates infected with simian immunodeficiency virus (SIV) or genetic chimeras of SIV and

HIV have a number of important advantages over small-animal models, they have obvious
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disadvantages, including considerable genetic variation, that greatly complicate studies using

small numbers of animals and high maintenance costs [7]. Moreover, SIV is unable to cause

acquired immune deficiency syndrome (AIDS) in its natural host [11,12]. In contrast, feline

immunodeficiency virus (FIV) infection in domestic cats represents an animal model of

immunodeficiency and shares similarities in pathogenesis with that of HIV in humans [11–

13]. Certain strains of FIV can infect the central nervous system (CNS), leading to neurological

symptoms similar to those observed in some individuals infected with HIV [13,14]. Impor-

tantly, FIV is a naturally occurring virus inducing both AIDS and neurological complications

in animal models [15]. Furthermore, the combination of HIV antiretroviral drugs on naturally

infected FIV cats in the late phase of the asymptomatic state of the disease significantly reduces

viral load, indicating a similar pathogenesis of these viruses [16]. Therefore, FIV infection of

cats is an attractive model to study the chronic neuropathogenesis of HAND. Little is known,

however, about neuronal mechanisms underpinning overlapping neuropathology between

FIV and HIV.

Both HIV and FIV are tropic for lymphocytes and monocytes, utilizing CD4 (HIV) and

CD134 (FIV) primary receptors together with the alpha chemokine receptor CXCR4 as a co-

receptor to infect cells [17–19]. Even though lentiviral infection in the brain produces cortical

and subcortical neuronal loss [20,21], HIV and FIV do not directly infect neurons but instead

use a noninfectious interaction between the viral envelope and the neuronal surface [22,23].

Among HIV-induced neuron-damaging products, HIV envelope glycoprotein gp120 is one of

the most prominent viral antigens found in the lysates of HIV-infected cells [24]. HIV gp120

indirectly and/or directly interacts with neurons, which enhances excitatory synaptic receptor

activity, resulting in synaptic damages, but the mechanisms are not currently understood [25–

27]. In neurons, the gp120 interaction with CXCR4 enhances Ca2+-regulating systems through

NMDA receptors (NMDARs) in the synaptic membrane and inositol trisphosphate receptors

(IP3Rs) in the endoplasmic reticulum (ER), resulting in apoptosis [28–34]. In addition, Ca2+

fluxes through NMDARs promoting the production of nitric oxide (NO) by neuronal nitric

oxide synthase (nNOS), which is tethered by the scaffolding protein postsynaptic density 95

(PSD95) [35–39]. NO subsequently exerts its effects by activating cGMP-dependent protein

kinase II (cGKII) through the production of cGMP [40]. Notably, the NMDAR-nNOS-cGK

pathway has been implicated in HIV-induced neurotoxicity [41,42]. However, the exact cellu-

lar role of the pathway on synaptic dysfunction in HAND has not been determined.

We have shown previously that cGKII can phosphorylate serine 1756 in neuronal IP3Rs

and increase ER Ca2+ release [43]. cGKII also phosphorylates the AMPA receptor (AMPAR)

subunit GluA1, which triggers its synaptic trafficking, a critical step for inducing synaptic plas-

ticity [43,44]. This suggests that cGKII activation is critical for HAND-associated synaptic dys-

function. Here, we demonstrate that FIV envelope glycoprotein, gp95, binds to CXCR4 on the

neuronal plasma membrane and utilizes the same pathway as HIV gp120 to significantly

increase intracellular Ca2+ activity and synaptic activity in neurons. Thus, our results indicate

that FIV serves as a model for HAND-associated synaptic hyperexcitation. Most notably, our

study reveals the inclusion of cGKII in both FIV gp95 and HIV gp120-induced Ca2+ hyperac-

tivity, suggesting that cGKII inhibition may be a novel therapeutic target for HAND.

Results

FIV gp95-induced elevation of neuronal Ca2+ activity

Neuronal Ca2+ is the second messenger responsible for transmitting depolarization status and

synaptic activity [45]. These features make Ca2+ regulation a critical process in neurons, and

thus altered Ca2+ activity in neurons is one of the major contributors to many neurological
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disorders, including HAND [45]. It has been found that HIV gp120 increases Ca2+ dynamics

in neurons, contributing to neuronal dysfunction [28–34]. We thus hypothesized that FIV

gp95 was able to enhance Ca2+ activity in neurons, as seen with HIV gp120. To test this idea,

we measured Ca2+ activity in cultured mouse hippocampal neurons transfected with

GCaMP5, a genetically encoded Ca2+ indicator, as described previously (S1 Fig) [43,46,47].

First, we acutely treated 12–14 day in vitro (DIV) neurons with 10-pM, 100-pM, and 1-nM

gp95 and determined Ca2+ activity immediately after gp95 treatment (Fig 1A). We found

active spontaneous Ca2+ transients in control cells (CTRL) and neurons treated with gp95 (Fig

1A). However, total Ca2+ activity in 1-nM gp95-treated cells was significantly higher than in

controls (CTRL, 1 ± 0.09 ΔF/Fmin; gp95, 1.98 ± 0.22 ΔF/Fmin, p = 0.0001), confirming that

1-nM gp95 was sufficient to increase neuronal Ca2+ activity, while 10-pM (1.34 ± 0.18 ΔF/

Fmin) and 100-pM gp95 (1.35 ± 0.23 ΔF/Fmin) slightly elevated Ca2+ activity but were not sig-

nificantly different from control cells (Fig 1A). Importantly, the average frequency (CTRL,

18.05 ± 1.26 events; gp95, 25.65 ± 1.89 events, p = 0.001) and amplitude (CTRL, 0.62 ± 0.03

ΔF/Fmin; gp95, 0.73 ± 0.03 ΔF/Fmin, p = 0.018) were significantly elevated in gp95-treated neu-

rons (Fig 1B). Next, we treated neurons with 700-nM FIV p26 capsid protein and found that

p26 had no effect on neuronal Ca2+ activity (Fig 1C), suggesting that Ca2+ hyperactivity is

caused selectively by FIV gp95.

Cellular pathway of gp95-induced Ca2+ overactivation

HIV gp120 interacts with CXCR4 on neurons, subsequently elevating intracellular Ca2+

through mobilizing ER Ca2+ [48], as well as by NMDARs [32]. Similarly, FIV gp95 also inter-

acts with CXCR4 [18,49,50]. We thus hypothesized that HIV gp120 and FIV gp95 shared a

core Ca2+ hyperexcitation pathway in neurons. Using GCaMP5, we confirmed that 1-nM gp95

was sufficient to increase Ca2+ activity compared with control neurons (CTRL, 1 ± 0.06 ΔF/

Fmin; gp95, 1.94 ± 0.19; ΔF/Fmin p< 0.0001) (Fig 2i and 2ii). We used 200-nM bicyclam deriva-

tive plerixafor hydrochloride (AMD3100) to block the interaction between gp95 and CXCR4

and identified that AMD3100 treatment was sufficient to inhibit gp95-induced Ca2+ hyperac-

tivity (1.18 ± 0.12 ΔF/Fmin, p< 0.0001) (Fig 2iv), while 200-nM AMD3100 alone had no effect

on Ca2+ activity (1.04 ± 0.16 ΔF/Fmin) (Fig 2iii). This suggests that CXCR4 is required for the

gp95 effects on Ca2+ activity. HIV gp120 binds to CXCR4, promoting ER Ca2+ release through

a rapid hydrolysis of phospholipase C to generate IP3, which then activates ER Ca2+ channels,

IP3Rs [51–53]. To confirm whether gp95 increased Ca2+ activity via IP3Rs, we treated neurons

with 25-μM 2APB, an IP3R blocker and found that 2APB blocked the gp95-induced elevation

of Ca2+ activity (1.08 ± 0.13 ΔF/Fmin, p< 0.0001) (Fig 2vi). However, 25-μM 2APB alone was

unable to alter GCaMP5 activity (1.22 ± 0.17 ΔF/Fmin) (Fig 2v). Ryanodine receptors (RyRs)

are another ER-associated Ca2+ channel [54]. To test whether RyRs were involved in gp95-in-

duced Ca2+ hyperactivity, we treated neurons with 10-μM dantrolene, a RyR blocker, and

found that inhibition of RyRs also abolished gp95 effects (1.37 ± 0.15 ΔF/Fmin, p = 0.0047) (Fig

2viii). Treatment with 10-μM dantrolene alone had no effect on Ca2+ activity (0.92 ± 0.11 ΔF/

Fmin) (Fig 2vii). This suggests that the gp95-induced elevation of Ca2+ activity is dependent on

ER Ca2+ release. Finally, we treated neurons with 1-nM gp95 and 50-μM DL-APV, a NMDAR

antagonist, and found that 50-μM DL-APV completely inhibited GCaMP5 activity in both

control and gp95-treated cells (DL-APV, 0.13 ± 0.04 ΔF/Fmin, p<0.0001; DL-APV+gp95,

0.1 ± 0.06 ΔF/Fmin, p< 0.0001) (S2 Fig). However, a lower dose of DL-APV (25 μM) was

unable to affect basal Ca2+ activity (0.77 ± 0.13 ΔF/Fmin) (Fig 2ix). We thus used 25-μM

DL-APV to avoid the inhibition of basal Ca2+ activity and directly assay the gp95 effects.

Importantly, 25-μM DL-APV was sufficient to block gp95 effects (1.03 ± 0.16 ΔF/Fmin,
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p< 0.0001) (Fig 2x). This suggests that synaptic NMDAR activity is critical for gp95-induced

Ca2+ overexcitation. Taking these data together, we confirm that gp95 interacts with CXCR4

and activates ER Ca2+ channels and synaptic NMDARs, enhancing neuronal Ca2+ activity,

similar to HIV gp120.

Gp95-induced Ca2+ hyperexcitation is dependent on cGKII-mediated IP3R

activation

Ca2+ flux through the NMDAR-nNOS pathway activates cGKII by the production of cGMP

[40]. We thus hypothesized that gp95 stimulated the NMDAR-nNOS pathway, leading to the

activation of cGKII to phosphorylate IP3Rs, resulting in enhanced neuronal Ca2+ dynamics.

Indeed, we found that inhibition of nNOS blocked gp95 effects on Ca2+ activity by treating

neurons with 2-μM Nω-Propyl-L-arginine hydrochloride (NPA), a nNOS inhibitor (CTRL,

Fig 1. FIV envelope glycoprotein gp95, not capsid protein p26, increases neuronal Ca2+ activity. (A) Representative traces of GCaMP5 fluorescence intensity and a

summary graph of normalized average of total Ca2+ activity in control, 10-pM, 100-pM, and 1-nM gp95-treated neurons showing that 1-nM gp95 treatment

significantly increases neuronal Ca2+ activity (n = number of neurons, ��p< 0.01, one-way ANOVA, uncorrected Fischer’s LSD, F (3,195) = 5.204, p = 0.0018). (B)

Average frequency and amplitude of Ca2+ activity in control and gp95-treated neurons showing that gp95 elevates both frequency and amplitude of Ca2+ activity (n =

number of neurons, �p< 0.05 and ��p< 0.01, unpaired two-tailed Student t tests). (C) FIV capsid protein 700-nM p26 treatment has no effect on neuronal Ca2+

activity (n = number of cells). A scale bar indicates 20 seconds. FIV, feline immunodeficiency virus; LSD, Least Significant Difference.

https://doi.org/10.1371/journal.pbio.2005315.g001
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1 ± 0.06 ΔF/Fmin; gp95, 2.24 ± 0.21 ΔF/Fmin, p< 0.0001; NPA+gp95, 0.99 ± -0.16 ΔF/Fmin,

p<0.0001) (Fig 3Ai, 3Aii and 3Aiv). Next, we tested the possibility that cGKII was a down-

stream effector of gp95. We found that gp95 was unable to increase Ca2+ activity when cGKII

activity was blocked by treating neurons with 1-μM Rp8-Br-PET-cGMPS (RP), a cGKII inhibi-

tor (1.02 ± 0.13 ΔF/Fmin, p< 0.0001) (Fig 3Avi). Notably, NPA or RP itself was unable to affect

GCaMP activity (NPA, 1.12 ± 0.16 ΔF/Fmin; RP, 1.12 ± 0.16 ΔF/Fmin) (Fig 3Aiii and 3Av). We

additionally cultured neurons from cGKII knockout (KO) animals as described previously

[43] and confirmed that 1-nM gp95 had no effect on Ca2+ dynamics in KO neurons (CTRL,

1 ± 0.08 ΔF/Fmin; gp95, 0.88 ± 0.09 ΔF/Fmin, p = 0.39) (Fig 3B). This suggests that cGKII activa-

tion is required for gp95-induced Ca2+ hyperactivity. Significantly, cGKII can phosphorylate

serine 1756 in neuronal IP3Rs (pIP3Rs), increasing Ca2+ currents in neuronal tissues [43,55].

We thus tested whether neuronal IP3R phosphorylation was altered by gp95 treatment. As

expected, 1-nM gp95 treatment for 1 hour was sufficient to increase pIP3Rs, while RP by

itself had no effect on IP3R phosphorylation (Fig 3C), consistent with elevated Ca2+ activity

Fig 2. Cellular pathway of gp95-induced Ca2+ hyperactivity. Representative traces of GCaMP5 fluorescence intensity and a summary graph of normalized average of

total Ca2+ activity in (i) control neurons and neurons treated with (ii) 1-nM gp95, (iii) 200-nM AMD3100, (iv) 200-nM AMD3100 and 1-nM gp95, (v) 25-μM 2APB,

(vi) 25-μM 2APB and 1-nM gp95, (vii) 10-μM Dantrolene, (viii) 10-μM Dantrolene and 1-nM gp95, (ix) 25-μM DL-APV, and (x) 25-μM DL-APV and 1-nM gp95,

showing that the gp95-induced elevation of neuronal Ca2+ activity is dependent on CXCR4, IP3Rs, RyRs, and NMDARs (n = number of neurons, ����p< 0.0001, one-

way ANOVA, uncorrected Fischer’s LSD, F (9,481) = 6.289). A scale bar indicates 20 seconds. AMD3100, bicyclam derivative plerixafor hydrochloride; IP3R, inositol

triphosphate receptor; LSD, Least Significant Difference; NMDAR, NMDA receptor; RyR, Ryanodine receptor.

https://doi.org/10.1371/journal.pbio.2005315.g002
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(Fig 3A). However, pharmacological inhibition of cGKII activity or genetic deletion of the

cGKII gene abolished the gp95-mediated elevation of pIP3Rs (Fig 3C and 3D). In summary,

gp95 interacts with CXCR4, promoting IP3 production and NMDAR-nNOS-cGKII-mediated

IP3R phosphorylation, resulting in ER Ca2+ release.

Fig 3. Gp95-induced Ca2+ hyperactivity is mediated by nNOS-cGKII activation. (A) Representative traces of GCaMP5 fluorescence intensity and a summary graph

of normalized average of total Ca2+ activity in (i) control neurons and neurons treated with (ii) 1-nM gp95, (iii) 2-μM NPA, (iv) 2-μM NPA and 1-nM gp95, (v) 1-μM

RP, and (vi) 1-μM RP and 1-nM gp95 showing that nNOS activity and cGKII activity are required for gp95-induced Ca2+ hyperactivity (n = number of neurons,
����p< 0.0001, one-way ANOVA, uncorrected Fischer’s LSD, F (5,253) = 12.38). A scale bar indicates 20 seconds. (B) gp95 is unable to induce neurotoxic effects

when the cGKII gene is deleted (n = number of neurons). A scale bar indicates 20 seconds. (C) Representative immunoblots and quantitative analysis of pIP3R(S1756)

levels in each condition showing that gp95 treatment is able to increase pIP3Rs, which are dependent on cGKII activity (n = 4 experiments, �p< 0.05, one-way

ANOVA, uncorrected Fischer’s LSD, F (3,20) = 3.795, p = 0.0264). (D) Representative immunoblots and quantitative analysis of pIP3R(S1756) levels in WT and cGKII

KO neurons showing that gp95 treatment has no effect on IP3R phosphorylation (n = 4 experiments). cGKII, cGMP-dependent protein kinase II; IP3R, inositol

triphosphate receptor; KO, knockout; LSD, Least Significant Difference; nNOS, neuronal nitric oxide synthase; NPA, Nω-Propyl-L-arginine hydrochloride.

https://doi.org/10.1371/journal.pbio.2005315.g003
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Gp95 increases surface expression of the AMPAR GluA1 subunit via cGKII

activation

cGKII mediates phosphorylation of serine 845 of GluA1 (pGluA1), important for activity-

dependent trafficking of GluA1-containing AMPARs, and increases the level of extrasynaptic

receptors [43,44]. Moreover, cGKII-mediated GluA1 phosphorylation is critical for hippocam-

pal long-term potentiation (LTP) and learning and memory [43,44]. As gp95 was sufficient

to induce cGKII activation (Fig 3), we hypothesized that gp95-induced cGKII activation

increased GluA1 phosphorylation, which led to enhanced AMPAR-mediated synaptic activity.

To test this idea, we first biochemically measured GluA1 phosphorylation levels when gp95

was applied. Mouse cultured cortical neurons were treated with 1-nM gp95 for 1 hour, and

synaptosomes were isolated as described previously [47] (S3 Fig). We found that gp95 treat-

ment was sufficient to increase GluA1 phosphorylation, while total GluA1 and GluA2 levels

were not affected (Fig 4A). To confirm whether such an increase was dependent on cGKII, we

treated neurons with gp95 and 1-μM RP for 1 hour and measured pGluA1 levels. We revealed

that inhibition of cGKII activity abolished the gp95 effects, while RP by itself was unable to

affect AMPAR synaptic expression (Fig 4A). To further confirm the role of cGKII in the

elevation of GluA1 phosphorylation, we used cGKII KO neurons and found that gp95 treat-

ment had no effect on GluA1 phosphorylation in KO neurons (Fig 4B). Given that GluA1

Fig 4. Gp95 increases surface expression of the AMPAR GluA1 subunit via cGKII activation. (A) Representative immunoblots and quantitative analysis of the

synaptosome fraction from cultured cortical neurons in each condition showing that gp95 is capable of elevating GluA1 S845 phosphorylation (pGluA1), which is

mediated by cGKII (n = 3 experiments, �p< 0.05, one-way ANOVA, uncorrected Fischer’s LSD, F (3,22) = 3.884, p = 0.0228). (B) Representative immunoblots and

quantitative analysis of the synaptosome fraction from cultured WT and cGKII KO cortical neurons showing that gp95 is unable to increase pGluA1 in cGKII KO

neurons (n = 5 experiments). (C) Representative immunoblots and quantitative analysis of surface biotinylation in each condition showing that gp95 is able to increase

surface GluA1 via cGKII activation (n = 6 experiments, �p< 0.05, one-way ANOVA, uncorrected Fischer’s LSD, F (3,20) = 3.839, p = 0.0254). (D) Representative

immunoblots and quantitative analysis of surface biotinylation in WT and KO hippocampal neurons showing that cGKII is required for gp95-induced GluA1 surface

trafficking (n = 5 experiments). (E) Representative traces of mEPSC recordings in control and gp95-treated neurons showing average mEPSC amplitude and frequency

are significantly increased by gp95 treatment (n = number of neurons, �p< 0.05 and ����p< 0.0001, unpaired two-tailed Student t tests). AMPAR, AMPA receptor;

cGKII, cGMP-dependent protein kinase II; KO, knockout; LSD, Least Significant Difference; mEPSC, miniature excitatory postsynaptic current.

https://doi.org/10.1371/journal.pbio.2005315.g004
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phosphorylation promotes AMPAR surface expression, we next measured surface GluA1 lev-

els by biotinylation after 1-nM gp95 was applied for 1 hour. We found that gp95 treatment

increased surface GluA1 levels, which was blocked by pharmacological and genetic inhibition

of cGKII (Fig 4C and 4D). Notably, cGKII inhibition by itself had no effect on GluA1 surface

expression (Fig 4C). Furthermore, gp95 treatment was unable to alter GluA2 and NMDAR

subunit NR1 surface expression (S4 Fig). This suggests that cGKII is required for gp95-in-

duced GluA1 up-regulation. To further confirm whether such an increase in surface expres-

sion of AMPARs elevates AMPAR-mediated synaptic transmission, we measured miniature

excitatory postsynaptic currents (mEPSCs) in DIV14-17 cultured mouse hippocampal neurons

(Fig 4E). We found that acute treatment of 1-nM gp95 significantly increased both average

mEPSC amplitude (CTRL, 11.45 ± 1.07 pA; gp95, 21.07 ± 5.06, p = 0.04) and frequency

(CTRL, 5.35 ± 0.37 Hz; gp95, 23.17 ± 3.29, p< 0.0001) (Fig 4E). This suggests that gp95-in-

duced activation of cGKII increases surface expression of AMPARs, contributing to enhanced

synaptic transmission.

Activity-dependent gp95 effects on AMPAR-mediated Ca2+ hyperactivity

We next examined whether an elevation of AMPAR function was responsible for gp95-in-

duced Ca2+ hyperactivity. We carried out Ca2+ imaging in the presence of an AMPAR inhibi-

tor, 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) (Fig 5). Treatment with 30-μM CNQX

significantly blocked GCaMP5 activity in both control and gp95-treated neurons (S5 Fig).

However, 10-μM CNQX alone had no effect on Ca2+ activity (0.9 ± 0.12 ΔF/Fmin) (Fig 5iii);

thus, we used 10-μM CNQX to avoid the inhibition of basal Ca2+ activity and directly assay the

gp95 effects. Notably, the gp95-induced increase in Ca2+ activity (CTRL, 1 ± 0.07 ΔF/Fmin;

gp95, 1.74 ± 0.21 ΔF/Fmin, p< 0.0001) (Fig 5i and 5ii) was completely inhibited by treating

neurons with a lower dose of CNQX (1.00 ± 0.15 ΔF/Fmin, p = 0.009) (Fig 5iv), suggesting that

gp95-induced elevated AMPAR activity is required for Ca2+ hyperactivity. Notably, there are

two general types of AMPARs formed through combination of the subunits, Ca2+-imperme-

able GluA2-containing and Ca
2+

-permeable, GluA2-lacking/GluA1-containing receptors [56].

Fig 5. Activity-dependent gp95 effects on AMPAR-mediated Ca2+ hyperactivity. Representative traces of GCaMP5 fluorescence intensity and a summary graph of

normalized average of total Ca2+ activity in (i) control neurons and neurons treated with (ii) 1-nM gp95, (iii) 10-μM CNQX, (iv) 10-μM CNQX and 1-nM gp95, (v)

20-μM NASPM, and (vi) 20-μM NASPM and 1-nM gp95, showing that CP-AMPARs are required for gp95-induced Ca2+ hyperactivity (n = number of neurons,
����p< 0.0001, one-way ANOVA, uncorrected Fischer’s LSD, F (7,179) = 12.1). A scale bar indicates 20 seconds. AMPAR, AMPA receptor; CNQX, 6-Cyano-

7-nitroquinoxaline-2,3-dione; CP-AMPAR, Ca2+-permeable AMPAR; LSD, Least Significant Difference; NASPM, 1-naphthyl acetyl spermine.

https://doi.org/10.1371/journal.pbio.2005315.g005
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Ca2+-permeable AMPARs (CP-AMPARs) are generally sensitive to polyamine block [57]. As

we found that gp95 selectively elevated GluA1 surface expression (Fig 4 and S4 Fig), these

AMPARs could be CP-AMPARs. We thus used 20-μM 1-naphthyl acetyl spermine (NASPM),

an antagonist of CP-AMPARs, to determine if CP-AMPARs were responsible for the gp95-

mediated Ca2+ hyperactivity. We found that 20-μM NASPM treatment was sufficient to block

the gp95 effects on Ca2+ activity (1.10 ± 0.20 ΔF/Fmin, p = 0.02) (Fig 5vi), while NASPM alone

was able to alter Ca2+ dynamics (0.96 ± 0.13 ΔF/Fmin) (Fig 5v). To further test whether the

gp95 effects were dependent on neuronal activity, we treated neurons with 1-μM tetrodotoxin

(TTX) and found that TTX treatment completely blocked GCaMP5 activity in both control

and gp95-treated neurons (S6A Fig). Taking these data together, FIV gp95-induced Ca2+

hyperexcitation is dependent on AMPAR- and NMDAR-mediated neuronal activity.

FIV gp95-induced Ca2+ hyperactivity in cultured feline hippocampal

neurons

We next examined gp95-induced Ca2+ overactivation in cultured feline neurons. We first

treated 14–16 DIV cultured feline hippocampal neurons with 1-nM gp95 and determined

Ca2+ activity. Consistent with the findings in cultured mouse neurons (Fig 1A), total Ca2+

activity in 1-nM gp95-treated feline cells was significantly higher than in controls (CTRL,

1 ± 0.13 ΔF/Fmin; gp95, 2.03 ± 0.27 ΔF/Fmin, p< 0.0001) (Fig 6i and 6ii), indicating that 1-nM

gp95 was also capable of increasing neuronal Ca2+ activity in feline neurons. To determine

whether CXCR4 was involved in the gp95 effect on cat neurons, we treated neurons with

200-nM AMD3100, which was sufficient to inhibit gp95-induced Ca2+ hyperactivity

(0.99 ± 0.15 ΔF/Fmin, p< 0.0001) (Fig 6iv). We also treated neurons with 10-μM RP and

revealed that inhibition of cGKII was sufficient to block gp95 effects (1.26 ± 0.12 ΔF/Fmin,

p< 0.0001) (Fig 6vi). This confirms that cGKII activation is also required for gp95-induced

Ca2+ hyperactivity in feline neurons. We finally inhibited AMPAR function by treating neu-

rons with 10-μM CNQX and revealed that gp95 was unable to elicit Ca2+ overactivation when

AMPARs were inhibited (0.89 ± 0.13 ΔF/Fmin, p< 0.0001) (Fig 6viii). Notably, inhibitors by

themselves had no effect on Ca2+ activity in feline neurons as well (AMD3100, 1.22 ± 0.19 ΔF/

Fig 6. Gp95-induced Ca2+ hyperactivity in feline cultured hippocampal neurons. Representative traces of GCaMP5 fluorescence intensity and a summary graph of

normalized average of total Ca2+ activity in (i) control neurons and neurons treated with (ii) 1-nM gp95, (iii) 200-nM AMD3100, (iv) 200-nM AMD3100 and 1-nM

gp95, (v) 10-μM RP, (vi) 10-μM RP and 1-nM gp95, (vii) 10-μM CNQX, and (viii) 10-μM CNQX and 1-nM gp95, showing that the gp95-induced Ca2+ hyperactivity

in cat hippocampal neurons is dependent on CXCR4, cGKII, and AMPARs (n = number of neurons, ����p< 0.0001, one-way ANOVA, uncorrected Fischer’s LSD,

F (7,260) = 5.296). A scale bar indicates 20 seconds. AMD3100, bicyclam derivative plerixafor hydrochloride; AMPAR, AMPA receptor; cGKII, cGMP-dependent

protein kinase II; CNQX, 6-Cyano-7-nitroquinoxaline-2,3-dione; LSD, Least Significant Difference.

https://doi.org/10.1371/journal.pbio.2005315.g006

HIV induces synaptic hyperexcitation via cGKII activation

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005315 July 27, 2018 10 / 23

https://doi.org/10.1371/journal.pbio.2005315.g006
https://doi.org/10.1371/journal.pbio.2005315


Fmin; RP, 0.91 ± 0.1 ΔF/Fmin; CNQX, 0.85 ± 0.12 ΔF/Fmin) (Fig 6iii, 6v and 6vii). This suggests

that FIV gp95 is also sufficient to induce activity-dependent Ca2+ hyperexcitation in cultured

feline neurons.

cGKII activation is required for HIV gp120 and SDF-1-induced Ca2+

hyperactivity

We finally investigated whether cGKII activation was required for HIV gp120-induced Ca2+

hyperactivity. We treated 12–14 DIV cultured mouse hippocampal neurons with 1-nM

CXCR4-tropic gp120 (IIIB) and determined Ca2+ activity (Fig 7A). As expected, total Ca2+

activity in gp120-treated cells was significantly higher than in controls (CTRL, 1 ± 0.22 ΔF/

Fmin; gp120 (IIIB), 2.20 ± 0.51 ΔF/Fmin, p = 0.0075) (Fig 7Ai and 7Aii), consistent with previous

Fig 7. cGKII activation is required for HIV gp120 and SDF-1-induced Ca2+ hyperactivity. (A) Representative traces of GCaMP5 fluorescence intensity and a

summary graph of normalized average of total Ca2+ activity in (i) control neurons and neurons treated with (ii) 1-nM gp120 (IIIB), (iii) 200-nM AMD3100 and 1-nM

gp120 (IIIB), and (iv) 1-μM RP and 1-nM gp120 (IIIB), showing that an increase in Ca2+ activity by 1-nM CXCR4-tropic gp120 (IIIB) treatment is dependent on

CXCR4 and cGKII (n = number of neurons, �p< 0.05, one-way ANOVA, uncorrected Fischer’s LSD, F (3,51) = 3.936, p = 0.0133). A scale bar indicates 20 seconds.

(B) Representative traces of GCaMP5 fluorescence intensity and a summary graph of normalized average of total Ca2+ activity in (i) control neurons and neurons

treated with (ii) 1-nM gp120 (JRFL), (iii) 200-nM AMD3100 and 1-nM gp120 (JRFL), and (iv) 1-μM RP and 1-nM gp120 (JRFL), showing that an increase in Ca2+

activity by 1-nM CCR5-tropic gp120 (JRFL) treatment is dependent on CXCR4 and cGKII (n = number of neurons, �p< 0.05, one-way ANOVA, uncorrected

Fischer’s LSD, F (3,115) = 3.903, p = 0.0107). A scale bar indicates 20 seconds. (C) Representative traces of GCaMP5 fluorescence intensity and a summary graph of

normalized average of total Ca2+ activity in (i) control neurons and neurons treated with (ii) 20-nM SDF-1, (iii) 1-μM RP and 20-nM SDF-1, and (iv) 200-nM

AMD3100 and 20-nM SDF-1, showing that 20-nM SDF-1 induces cGKII- and CXCR4-dependent Ca2+ overactivation (n = number of neurons, ���p< 0.001, one-way

ANOVA, uncorrected Fischer’s LSD, F (3,63) = 6.234, p = 0.0009). A scale bar indicates 20 seconds. AMD3100, bicyclam derivative plerixafor hydrochloride; cGKII,

cGMP-dependent protein kinase II; LSD, Least Significant Difference; SDF-1, stromal cell-derived factor-1.

https://doi.org/10.1371/journal.pbio.2005315.g007
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findings [27, 58]. Furthermore, 200-nM AMD3100 treatment was sufficient to inhibit

gp120-induced Ca2+ hyperactivity (0.85 ± 0.22 ΔF/Fmin, p = 0.0025) (Fig 7Aiii), confirming

that CXCR4 is required for gp120-induced Ca2+ overexcitation. Importantly, neurons treated

with 1-μM RP and gp120 together exhibited no increased Ca2+ activity (1.16 ± 0.20 ΔF/Fmin,

p = 0.0141) (Fig 7Aiv), suggesting that cGKII activity is critical for CXCR4-tropic gp120

(IIIB)-induced aberrant Ca2+ activation. Unlike T-cell tropic viruses that use CXCR4, macro-

phage-tropic HIV uses a chemokine receptor CCR5 as a co-receptor [59]. We next treated

neurons with 1-nM CCR5-tropic gp120 (JRFL) and found that gp120 (JRFL) was also able to

induce Ca2+ overactivation (CTRL, 1 ± 0.09 ΔF/Fmin; gp120 (JRFL), 1.87 ± 0.15 ΔF/Fmin,

p< 0.0001) (Fig 7Bi and 7Bii), which was abolished by RP treatment (1.05 ± 0.16 ΔF/Fmin,

p = 0.0014) (Fig 7Biv). This suggests that cGKII activation is required for CXCR4 and

CCR5-tropic gp120-indcued Ca2+ hyperactivity. We further examined whether CXCR4 inhibi-

tion affected the CCR5-tropic gp120 (JRFL) effects on Ca2+ activity by treating neurons

with 1-nM gp120 (JRFL) and 200-nM AMD3100 together. We found that AMD3100 treat-

ment was also able to block gp120 (JRFL)-induced Ca2+ hyperexcitation (0.84 ± 0.13 ΔF/Fmin,

p< 0.0001) (Fig 7Biii). This suggests that there is cross talk between the two chemokine recep-

tors. Additionally, the natural agonist of CXCR4, stromal cell-derived factor-1 (SDF-1), is by

itself neurotoxic [60,61]. We thus examined whether SDF-1 was sufficient to induce cGKII-

dependent Ca2+ overactivation. Notably, 20-nM SDF-1 treatment was able to increase neuro-

nal Ca2+ activity (CTRL, 1 ± 0.23 ΔF/Fmin; SDF-1, 2.28 ± 0.29 ΔF/Fmin, p = 0.0002) (Fig 7Ci

and 7Cii), which was abolished by RP or AMD3100 treatment (RP, 1.14 ± 0.18 ΔF/Fmin,

p = 0.0029; AMD3100, 1.26 ± 0.19 ΔF/Fmin, p = 0.0028) (Fig 7Ciii and 7Civ), confirming that

CXCR4 stimulation is sufficient to induce cGKII-dependent Ca2+ overactivation. In summary,

we confirm that both FIV gp95 and HIV gp120 interact with CXCR4 and subsequently pro-

mote cGKII-mediated Ca2+ hyperexcitation.

Discussion

Although synaptic dysfunction, not neuronal death, is strongly associated with HAND [5], the

molecular mechanisms underlying HAND-associated synaptic impairment remain largely

unclear [6]. Previous studies document that FIV envelope proteins also elevate neuronal Ca2+

and induce cell death in neurons [22,62,63]. However, cellular mechanisms of such FIV enve-

lope protein-induced neurotoxic effects are unknown. We reveal that FIV envelope glycopro-

tein gp95 binds to CXCR4 on the neuronal plasma membrane and subsequently elevates

intracellular Ca2+ through mobilizing ER Ca2+ via the stimulation of IP3Rs, as well as

NMDARs, the same pathway of HIV gp120-induced Ca2+ overactivation [18,49,50] (Fig 8).

Most notably, our study identifies that gp95-stimulated NMDARs activate the nNOS-cGMP-

cGKII pathway, which subsequently phosphorylates IP3Rs and AMPAR subunit GluA1, lead-

ing to the elevation of surface GluA1 expression and AMPAR-mediated synaptic activity, a cel-

lular basis of synaptic dysfunction in HAND (Fig 8). Moreover, we show that cGKII activation

is required for Ca2+ hyperactivity caused by HIV gp120 (Fig 7A and 7B), suggesting that cGKII

activation plays crucial roles in synaptic dysfunction in both HIV and FIV models and there is

a conserved cellular pathophysiology from mice and cats to humans.

Although treatment of a lower dose of CNQX or DL-APV was unable to inhibit basal Ca2+

activity, lower doses in combination completely inhibited Ca2+ activity in both control and

gp95-treated neurons (S5 Fig), suggesting that inhibition of both receptors induces additive

effects on Ca2+ activity. Given that there is NMDAR-independent Ca2+ influx via L-type volt-

age-gated Ca2+ channels [64], a lower dose of DL-APV alone is unable to block neuronal Ca2+

activity completely. In fact, we found that 10-μM nifedipine, an antagonist of L-type voltage-
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gated Ca2+ channels, was sufficient to abolish GCaMP5 activity in both control and gp95-

treated cells (S6B Fig). In addition, NMDARs significantly contribute to signaling at rest in the

absence of AMPAR activity [65], although Ca2+ permeability through NMDARs at negative

membrane potentials is restricted because of their blockade by extracellular Mg2+ ions [66,67].

Taken together, although AMPAR-mediated dendritic depolarization is required for removal

of Mg2+ ions for NMDAR activity, both receptors can also contribute to neuronal Ca2+ activity

in parallel.

We found that both amplitude and frequency of Ca2+ activity and mEPSCs are significantly

elevated in gp95-treated neurons (Figs 1B and 4E). Although the current study identifies

cellular mechanisms of gp95-induced postsynaptic changes, it is possible that there can be

gp95-induced presynaptic processes that induce synaptic hyperexcitation. Notably, neuroin-

flammatory processes mediated by activated microglia have been strongly implicated in a

number of neurodegenerative diseases, including HAND [68]. Similar to neuronal mecha-

nisms, HIV gp120 interacts with microglial CXCR4 and stimulates cGMP-dependent kinase,

Fig 8. Model for gp95/120-induced activity-dependent synaptic hyperexcitation. Both FIV gp95 and HIV gp120 stimulate

CXCR4 and NMDARs, inducing activity-dependent synaptic dysfunction via cGKII activation. The gp95/120 stimulation of

NMDARs activates nNOS, production of NO, leading to activation of soluble guanylyl cyclase and the production of cGMP,

which in turn activates cGKII. Both the production of IP3 by the gp95/120 stimulation of CXCR4 and cGKII-induced

phosphorylation of IP3Rs enhance ER Ca2+ release, contributing to Ca2+ hyperactivity. In addition, gp95-induced cGKII

activation increases GluA1 phosphorylation, promoting elevation of surface AMPARs, which leads to the elevation of synaptic

excitation. Therefore, the gp120/gp95-induced stimulation of cGKII is critical for synaptic hyperexcitation in HAND

pathophysiology. AMD3100, bicyclam derivative plerixafor hydrochloride; AMPAR, AMPA receptor; cGKII, cGMP-

dependent protein kinase II; cGMP, cyclic GMP; CNQX, 6-Cyano-7-nitroquinoxaline-2,3-dione; ER, endoplasmic reticulum;

FIV, feline immunodeficiency virus; HAND, HIV-associated neurocognitive disorder; HIV, human immunodeficiency virus;

IP3R, inositol triphosphate receptor; NMDAR, NMDA receptor; nNOS, neuronal nitric oxide synthase; NO, nitric oxide; NPA,

Nω-Propyl-L-arginine hydrochloride; PSD95, postsynaptic density 95.

https://doi.org/10.1371/journal.pbio.2005315.g008
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leading to microglial activation during neurodegenerative inflammation [69]. Importantly,

gp120 elevates synaptic receptor activity by enhancing the release of pro-inflammatory cyto-

kines from activated microglia [70,71]. Among those cytokines, tumor necrosis factor alpha

(TNFα) induces a rapid increase in mEPSC amplitude and frequency [72–74], as seen in

gp95-treated neurons (Fig 4E). Although we used Neurobasal Medium designed for signifi-

cantly less proliferation of glia [75], we were unable to completely remove microglia in our cul-

ture. This thus suggests that microglial activation by gp120 and gp95 can promote TNFα
release, resulting in elevation of mEPSC frequency and amplitude.

Both HIV gp120 and FIV gp95 interact with CXCR4 to produce IP3, which can induce

IP3R-mediated Ca2+ efflux from the ER (Fig 2). However, we found that TTX completely abol-

ished Ca2+ activity (S6 Fig). This suggests that IP3 production through the interaction between

gp120/gp95 and CXCR4 is not sufficient to increase neuronal Ca2+ activity in the absence of

neuronal activity. Furthermore, gp95-induced stimulation of AMPARs and NMDARs is insuf-

ficient to elevate Ca2+ activity in neuronal cell bodies in the absence of IP3R-mediated ER

Ca2+ release (Fig 8), as indicated by decreased Ca2+ activity via the inhibition of ER Ca2+

channels (Fig 2). In our model, we thus propose that neuronal activity–driven stimulation of

extracellular Ca2+ influx through L-type voltage-gated Ca2+ channels and NMDARs and Ca2+

efflux from the ER coordinate and contribute to somatic Ca2+ activity (Fig 8). Further work

is necessary to differentiate the roles of these Ca2+ channels on HIV-induced neuronal

hyperexcitability.

The chemokine receptors CCR5 and CXCR4 are co-receptors together with CD4 for HIV

entry into target cells [17]. Macrophage-tropic HIV viruses use CCR5 as a co-receptor [76–

80], whereas T-cell line–tropic viruses use CXCR4 [81,82]. Given that most of the HIV-

infected cells in the brain are macrophages and microglia, it is thought that CCR5 strains of

HIV are the predominant viral species in the brain [83,84]. However, once HIV infection is

established, dual tropic and CXCR4-preferring viruses slowly evolve from macrophage-tropic

HIV viruses as an indication of progression to AIDS and HIV-associated dementia [17, 85–

88]. Moreover, CXCR4- and dual-tropic strains of HIV have been isolated from the brains of

infected individuals [86]. Therefore, CXCR4-tropic strains of HIV also play critical roles in the

pathogenesis of HAND. Several studies have shown that the HIV gp120 binding to both CCR5

and CXCR4, even without CD4, contributes to neuronal injury and death both in vitro and in

vivo [29–31, 89–93]. Interestingly, a CCR5 antagonist prevents gp120 neurotoxicity [94, 95],

and natural CCR5 ligands confer protection upon neurons against gp120 toxicity [61]. Con-

versely, HIV-induced apoptosis can be prevented by AMD3100, a CXCR4 antagonist, both in

vitro and in vivo [96–98]. This suggests that CXCR4-mediated signaling can trigger HIV-

induced neurotoxicity while CCR5 either protects or disrupts the CNS, depending on the con-

text, ligand characteristics, and resultant signaling pathway. Surprisingly, CCR5-tropic gp120

(JRFL) also requires cGKII activation to induce Ca2+ hyperexcitation (Fig 7B). It has been

shown that chemokines and their receptors coordinate the signaling at the immunological syn-

apses. In fact, during T-cell activation, CXCR4 and CCR5 chemokine receptors are recruited

into the immunological synapse by antigen-presenting cell-derived chemokines [99]. In addi-

tion, the co-stimulatory properties of CCR5 and CXCR4 depend on their ability to form het-

erodimers [100]. Thus, gp120 (JRFL)-induced stimulation to CCR5 can interact with CXCR4,

resulting in cGKII activation. Notably, the natural ligand of CXCR4, SDF-1, is also sufficient

to induce cGKII-dependent Ca2+ overactivation (Fig 7C). Taken together, CCR5–CXCR4

stimulation is sufficient to induce hyperexcitation in neurons. While both CXCR4 and CCR5

are important in the neuropathogenesis of HIV, it is clear that further study of the downstream

pathways of CCR5 and CXCR4 activation in neurons will widen the understanding of HIV-

induced neuronal toxicity. Given that FIV also targets primary CD4 T cells but uses CD134
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instead of CD4 as a primary receptor and uses its sole co-receptor CXCR4 for efficient infec-

tion of target cells, similarly to T cell–tropic strains of HIV [18,19,49], FIV infection of cats is

an ideal in vivo model to investigate CXCR4-mediated neuropathology in chronic HIV

infection.

Our work extends beyond understanding of molecular mechanisms underlying HIV-

induced neuronal dysfunction. One of the challenges that the HAND research community has

faced in the treatment of this disorder is the lack of a viable target [1]. By identifying cGKII as

the downstream effector of the gp95/120-induced synaptic hyperexcitation, our study com-

pletes the pathway and identifies cGKII as a new therapeutic target for limiting gp95/120-

induced synaptic dysfunction. Moreover, we reveal that CCR5-tropic gp120-induced Ca2+

overactivation is also dependent on cGKII (Fig 7B). This thus suggests that cGKII activation is

important for CCR5 and CXCR4-dependent neuropathology in HAND. Inhibition of cGKII

may be superior as a therapeutic target to other forms of ER Ca2+ release control, as its inhibi-

tion will limit the NMDAR-induced and IP3R phosphorylation–dependent Ca2+ increase spe-

cifically, which are likely to be elevated under hyperexcitable conditions, while leaving basal

functions unchanged. Thus, use of cGKII inhibition as a means for neuroprotection in individ-

uals infected with HIV is a novel and innovative approach to this therapeutically challenging

disease pathway.

Materials and methods

Ethics statement

Colorado State University’s Institutional Animal Care and Use Committee reviewed and

approved the animal care and protocol (16-6779A).

Mouse and feline neuron culture

Mouse hippocampal and cortical neuron cultures were prepared as described previously

[43,46,47]. Neurons were isolated from embryonic day 17–18 or postnatal day 0.5 C57Bl6 or

cGKII KO mouse embryonic brain tissues. For feline hippocampal neurons, embryos were

obtained by cesarean section at approximately 35–40 days gestation from specific pathogen-

free cats. Hippocampi were isolated from embryos and digested with 10 U/mL papain

(Worthington Biochemical Corp., NJ). Mouse cortical neurons were plated on polylysine-

coated 15-cm dishes (25 million cells per dish) and 6-well dishes (500,000 cells per well) for

biochemical experiments. Mouse and feline hippocampal cells were prepared in glass-bottom

dishes (500,000 cells in the glass bottom) for Ca2+ imaging. Mouse hippocampal neurons were

also plated on 12-mm coverslips for electrophysiology (200,000 cells per coverslip). Cells were

grown in Neurobasal Medium with B27 and 0.5 mM Glutamax and penicillin/streptomycin

(Life Technologies).

Reagents

Expression, amplification, and purification of FIV envelope glycoprotein gp95 and capsid p26

recombinant proteins were performed using previously described methods [50,101]. Briefly,

gp95 was purified from Chinese hamster ovary (CHO) cells, and the human Fc tag, in frame

with either protein, served as a means to purify the proteins using Staphylococcus Protein

A-Sepharose [102,103], or was isolated following transfection of HEK 293S cells with an

expression vector. Gag antigen was expressed in Escherichia coli and purified using a GST-tag

[101]. HIV CXCR4-tropic gp120 (IIIB) was obtained through the NIH AIDS Reagent Pro-

gram, Division of AIDS, NIAID, NIH: HIV-1 IIIB gp120 Recombinant Protein from
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ImmunoDX, LLC. HIV CCR5-tropic gp120 (JRFL) was obtained from Dr. C.A.L. Kassuya at

the Federal University of Grande Dourados, Brazil [104]. The following inhibitors were used

in this study: 200-nM AMD3100 (Tocris), 25-μM 2APB (Abcam), 10-μM Dantrolene

(Abcam), 25-μM or 50-μM DL-APV (Abcam), 2-μM NPA (Tocris), 1-μM or 10-μM Rp8-Br-

PET-cGMPS (Tocris) for cultured mouse or feline neurons, respectively, 10-μM or 30-μM

CNQX (Abcam), 1-μM TTX (Tocris), 10-μM nifedipine (Abcam), and 20-nM human SDF-1

(Abcam).

GCaMP5 Ca2+ imaging

GCaMP5 Ca2+ imaging was carried out by a modification of the previously reported method

[43,46,47]. DIV4 Neurons were transfected with pCMV-GCaMP5 (a gift from Douglas Kin

and Loren Looger, Addgene plasmid #31788) [105] by using Lipofectamine 2000 (Life Tech-

nologies) according to the manufacturer’s protocol. The transfection efficiency is about 5%,

and obvious cellular toxicity has not been observed. Neurons were grown in Neurobasal

Medium without phenol red supplemented with B27 and 0.5-mM Glutamax and penicillin/

streptomycin (Life Technologies) for 8–12 days after transfection and during the imaging.

Glass-bottom dishes were mounted on a temperature-controlled stage on Olympus IX73 and

maintained at 37 ˚C and 5% CO2 using a Tokai Hit heating stage and digital temperature and

humidity controller. The imaging was captured for periods of 50 milliseconds using a 60× oil-

immersion objective. A total of 100 images was obtained with 1-second interval, and Ca2+

activity in the cell body (excluding dendrites) was analyzed using the Olympus CellSens soft-

ware. Fmin was determined as the minimum fluorescence value during the imaging. Total Ca2+

activity was obtained by combining 100 values of ΔF/Fmin = (Ft − Fmin)/Fmin in each image,

and values of ΔF/Fmin < 0.2 were rejected due to bleaching. Twenty to thirty neurons were

used for imaging in one experiment, and one individual neuron was assayed in one imaging.

Synaptosome purification, surface biotinylation, and immunoblots

Synaptosomal fractions from DIV14 primary cortical neurons were prepared as described pre-

viously [43,46,47]. Surface biotinylation was performed according to the previous studies

[43,46,47]. For IP3R phosphorylation, whole cell lysates were collected as described previously

[43]. Equal amounts of protein were loaded on 10% SDS-PAGE gel and transferred to nitrocel-

lulose membranes. Membranes were blotted with GluA1 (Millipore, 1:2,000), GluA2 (Abcam,

1:2,000), pGluA1(S845) (Millipore, 1:1,000), pIP3R(S1756) (Cell signaling, 1:1,000), tubulin

(Sigma, 1:5,000), PSD95 (Neuromab, 1:2,000), synaptophysin (Sigma, 1:5,000), NR1 (Milli-

pore, 1:1,000), and actin (Abcam, 1:2,000) antibodies and developed with ECL (Thermo Fisher

Scientific). Synaptosomes were isolated from at least three independent cultures, and immuno-

blots were at least duplicated for quantitative analysis.

Electrophysiology

To record mEPSCs, aCSF contained bicuculline (20 μM), TTX (1 μM), and glycine (1 μM).

The recording chamber contained aCSF with a composition of (in mM) 119 NaCl, 5 KCl, 2.5

CaCl2, 1.5 MgCl2, 30 glucose, and 20 HEPES and was kept at a constant temperature of

31.0 ˚C. Patch pipettes were filled with (in mM) 120 KGlu, 20 KCl, 2 MgCl2, 10 HEPES, 2

MgATP, 200-μM GTP, and 12.5 mg sucrose and were pH’d with KOH to 7.4. Cells were volt-

age clamped at −70 mV and input resistance and series resistance were monitored throughout

experiments. mEPSCs were amplified and recorded using pClamp10.3. Mini Analysis Program

Demo (Synaptosoft, GA) was used to measure the peak mEPSC amplitude and decay time.

CellSens software (Olympus) was used to visualize cells. Patching pipettes were pulled from
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borosilicate capillary tubing (Sutter Instruments, CA) and the electrode resistance was typi-

cally 4–6 mOhms.

Statistics

Statistical comparisons were analyzed with the GraphPad Prism6 software. Unpaired two-

tailed Student t tests were used in single comparisons. For multiple comparisons, we used one-

way ANOVA followed by Fisher’s Least Significant Difference (LSD) test to determine statisti-

cal significance. Results were represented as mean ± SEM, and p< 0.05 was considered statisti-

cally significant.

Supporting information

S1 Fig. GCaMP5 imaging and analysis. An example of time-lapse images and their responses.

A scale bar indicates 10 μm.

(TIF)

S2 Fig. NMDAR-dependent gp95-induced Ca2+ hyperactivity. Representative traces of

GCaMP5 fluorescence intensity and a summary graph of the normalized average of total Ca2+

activity in each condition showing that a higher dose of DL-APV completely blocks Ca2+ activ-

ity in both control and gp95-treated neurons, while a lower dose of DL-APV selectively inhib-

its the gp95 effects (n = number of neurons, ����p< 0.0001, one-way ANOVA, uncorrected

Fischer’s LSD, F (5,304) = 9.238). A scale bar indicates 20 seconds. LSD, Least Significant Dif-

ference; NMDAR, NMDA receptor.

(TIF)

S3 Fig. Control for synaptosomal fractions. The quality of synaptosomes used in Fig 4A and

4B has been monitored by immunoblots of synaptic proteins in sequential fractions showing

that synaptic proteins such as GluA2, PSD95, and synaptophysin are highly enriched in the

synaptosome fractions. PSD95, postsynaptic density 95.

(TIF)

S4 Fig. Gp95 is unable to alter surface expression of GluA2 and NR1. Representative immu-

noblots and quantitative analysis of surface biotinylation in each condition showing that gp95

has no effect on surface expression of (A) GluA2 (n = 12 experiments) and (B) NR1 (n = 5

experiments, CTRL). Actin is used as an intracellular negative control and absent in the bioti-

nylated samples.

(TIF)

S5 Fig. AMPAR-dependent gp95-induced Ca2+ hyperactivity. Representative traces of

GCaMP5 fluorescence intensity and a summary graph of the normalized average of total Ca2+

activity in each condition showing that a higher dose of CNQX completely blocks Ca2+ activity

in both control and gp95-treated neurons, while a lower dose of CNQX selectively inhibits the

gp95 effects. Furthermore, lower doses of DL-APV and CNQX in combination completely

inhibited Ca2+ activity in both control and gp95-treated neurons, suggesting that inhibition

of both receptors induces additive effects on Ca2+ activity (n = number of neurons, ����p<
0.0001, one-way ANOVA, uncorrected Fischer’s LSD, F (7,179) = 5.933). A scale bar indicates

20 seconds. AMPAR, AMPA receptor; CNQX, 6-Cyano-7-nitroquinoxaline-2,3-dione; LSD,

Least Significant Difference.

(TIF)

S6 Fig. GCaMP5 activity is mediated by neuronal activity and L-type Ca2+ channels. Repre-

sentative traces of GCaMP5 fluorescence intensity and a summary graph of the normalized
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average of total Ca2+ activity in each condition showing that inhibition of (A) neuronal

activity by TTX and (B) L-type Ca2+ channels abolish GCaMP5 activity in both control and

gp95-treated neurons (n = number of neurons, ����p< 0.0001, one-way ANOVA, uncorrected

Fischer’s LSD, (A) F (3,220) = 25.61 and (B) F (3,206) = 17.17). A scale bar indicates 20 sec-

onds. LSD, Least Significant Difference; TTX, tetrodotoxin.

(TIF)

S1 Data. Contains raw numerical values that underlie the summary data displayed in the

following figure panels: Figs 1A–1C, 2, 3A–3D, 4A–4E, 5, 6, 7A–7C, S2, S4A, S4B, S5, S6A

and S6B.

(XLSX)
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