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Abstract

Radiation therapy is part of the standard of care for gliomas and kills a subset of tumor

cells, while also altering the tumor microenvironment. Tumor cells with stem-like proper-

ties preferentially survive radiation and give rise to glioma recurrence. Various tech-

niques for enriching and quantifying cells with stem-like properties have been used,

including the fluorescence activated cell sorting (FACS)-based side population (SP) assay,

which is a functional assay that enriches for stem-like tumor cells. In these analyses,

mouse models of glioma have been used to understand the biology of this disease and

therapeutic responses, including the radiation response.We present combined SP analy-

sis and single-cell RNA sequencing of genetically-engineered mouse models of glioma to

show a time course of cellular response to radiation. We identify and characterize two

distinct tumor cell populations that are inherently radioresistant and also distinct effects

of radiation on immune cell populations within the tumormicroenvironment.
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1 | INTRODUCTION

Glioblastoma (GBM) is the most common primary malignant brain

tumor and has a median survival of less than 2 years (Stupp

et al., 2017). Radiation therapy is a mainstay of treatment, but its

effectiveness is limited by a subset of tumor cells that survive irradia-

tion and lead to recurrence. A reliable method for identifying these

radioresistant cells in a mixed population of tumor and non-tumor

cells is required to allow their biological characterization and subse-

quent advances in treatments for this aggressive disease.

The radioresistant subpopulation of GBM tumor cells has charac-

teristics of stem cells, including therapeutic resistance and high tumori-

genicity when transplanted into recipient mice (Bao et al., 2006). Stem-

like glioma cells have been shown to reside in the perivascular niche,

physically contacting endothelial cells (Calabrese et al., 2007; Charles

et al., 2010; Venere, Fine, Dirks, & Rich, 2011). Multiple approaches

have been used to enrich for these stem-like cells including “side popu-

lation” (SP) analysis. In this technique, fluorescence-activated cell

sorting (FACS) is used to quantify the “side population” (SP) phenotype,

which occurs in cells that use the ABCG2 efflux pump to exclude the

fluorescent dye Hoechst 33342. SP cells have been shown to reside in

the perivascular niche and to be self-renewing and highly tumorigenic,

confirming their stemness (Bleau et al., 2009). This SP study was per-

formed in the RCAS/tv-a based, PDGF-driven genetically engineered

mouse glioma model, which has been used extensively for studying the

biology of the radiation therapeutic response (Halliday et al., 2014;

Leder et al., 2014; Ozawa et al., 2014). To date, SP analysis has not

been used to characterize the effects of radiation, in vivo.

Recently, single-cell RNA sequencing (scRNA-seq) has been applied

to human GBM and low grade glioma tumor samples obtained prior to,

but not after, therapy (Darmanis et al., 2017; Müller et al., 2017; Patel

et al., 2014; Venteicher et al., 2017). Since these studies were publi-

shed, scRNA-seq technologies have advanced and now allow the use

of frozen tissues for sequencing nuclear RNA, which results in similar

transcriptomic profiles to cellular RNA (Cao et al., 2017). A type of

scRNA-seq, single-cell combinatorial indexing RNA sequencing

(sciRNA-seq), along with Uniform Manifold Approximation and Projec-

tion (UMAP) embedding and Louvain clustering for visualization and

analysis of sequencing data have resulted in extensive and detailed

mappings of cell types in mouse organogenesis (Cao et al., 2019).

UMAP, in contrast to the more commonly used t-Distributed Stochastic

Neighbor Embedding (t-SNE), consistently places similar cell types next

to each other, making it easier to visualize the relationships between

them (McInnes, Healy, Saul, & Großberger, 2018).

In this study, to characterize the effects of radiation at early time

points, we applied SP analysis followed by sciRNA-seq, as comple-

mentary approaches to the same samples from the aforementioned

PDGF-driven mouse glioma model (Figure S1). Mouse models were

chosen because in glioma patients radiation therapy is never followed

by immediate surgery and, therefore, human samples are not available.

We found that at 72 hr after 10 Gy of ionizing radiation, SP cells are

enriched, and by sciRNA-seq, the bulk of tumor cells are lost, with

two populations of radioresistant tumor cells remaining. One is slowly

proliferating neuronal and oligodendrocyte progenitors, and the sec-

ond is rapidly proliferating cells with stem-like characteristics. Finally,

while most non-tumor cell-types appear unaffected by radiation, the

myeloid cell lineage shows radiation-induced shifts in microglia and

bone marrow-derived macrophage populations.

2 | MATERIALS AND METHODS

2.1 | Mice, generation of murine gliomas, radiation
treatment, and dissection

All mouse experiments were approved by Memorial Sloan Kettering

Cancer Center's Institutional Animal Care and Use Committee

(IACUC) and followed NIH guidelines for animal welfare. Gliomas

were generated by intracranial injection of RCAS-PDGFB producing

DF1 chick fibroblast cells into neonatal Nestin (Nes) tv-a (N-tva)

Ink4a/Arf−/− Ptenfl/fl pups as previously described (Helmy et al., 2012;

Shih et al., 2004). Pten is still expressed in this model because Cre rec-

ombinase was never expressed. In this model, mice develop high

grade gliomas with near 100% penetrance at around 4–5 weeks post-

injection. For radiation treatment, mice were followed daily for devel-

opment of glioma symptoms (weight loss, lethargy, gait or behavioral

abnormalities, head tilt, swelling, or seizures). Upon symptom develop-

ment mice were sedated with isoflurane and irradiation of the head

was done using an X-RAD 320 from Precision X-Ray at 115 cGy/min

to a total of 10 Gy. Tumor and contralateral normal brain tissue were

identified and dissected at the indicated times after radiation or with-

out radiation. Tumor and normal brain tissue that was not used imme-

diately for SP analysis was snap-frozen in liquid nitrogen and archived

at −80�C.

2.2 | Hoechst staining and SP (side population)
analysis

Hoechst staining and SP analysis was done as previously described

(Bleau et al., 2009). Dissected tumor tissue was sliced into 1 mm coro-

nal sections. Cells were dissociated using papain digestion and were

resuspended at 1 × 106 cells/ml in neural basal media, pre-incubated

at 37�C for 30 min with or without 100 μM verapamil (Sigma–Aldrich,
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St. Louis) and incubated with 5 μg/ml Hoechst 33342 (Sigma–Aldrich)

for 90 minutes at 37�C. Hoechst dye was excited at 407 nm by trigon

violet laser, and its dual wavelengths were detected using 450/40

(Hoechst 33342-Blue) and 695/40 (Hoechst 33342-Red) filters. Dead

cells were excluded by gating on forward and side scatter and elimi-

nating the propidium iodide positive population. SP and MP (main

population) cells were then identified in Hoechst red and blue chan-

nels by comparing to verapamil incubated controls. The data were

analyzed by FlowJo (Ashland, OR).

2.3 | Statistics

Comparisons between two groups were made using Student's t test.

Log-rank (Mantel-Cox) test was used to compare groups in the Kaplan–

Meier graph. Analysis of covariance (ANOVA) was used when more

than two groups were analyzed and Tukey's multiple comparison test

was used for post hoc comparisons. Data represent the mean ± SE of

the mean (SEM). p-values <.05 were considered statistically significant.

2.4 | Nuclei extraction and fixation for single-cell
combinatorial indexing RNA sequencing (sciRNA-seq)

The nuclei extraction was performed as previously described in Cao

et al. (2017). Previously snap frozen tissuewas diced into a fine suspension

in cell lysis bufferwith a clean razor blade in a sterile dish placed on ice. Cell

lysis buffer was composed of stock nuclei buffer (10 mM Tris–HCl,

10 mM NaCl, 3 mM MgCl2, pH 7.4) with 0.1% IGEPAL CA-630 (Sigma–

Aldrich), 1% SUPERase-in RNase inhibitor (20 U/μl; ThermoFisher Scien-

tific, #AM2696), 2% protease inhibitors (Sigma–Aldrich, #P8340), and 1%

Bovine Serum Albumin (BSA, 20 mg/ml; New England BiosLabs, Inc,

#B9000S). The nuclei suspension was transferred to an Eppendorf tube

and, after being incubated on ice for approximately 1 hr, was put through

a 20 μm strainer (pluriStrainer, PluriSelect). The suspension was then pel-

leted by centrifugation in a table top centrifuge at 4�C for 5 min at 500g.

Cell lysis buffer was aspirated and nuclei were resuspended in nuclei

buffer (stock nuclei buffer with 1% SUPERase-in RNase inhibitor, 2% pro-

tease inhibitors, and 1% Bovine Serum Albumin). The nuclei were pelleted

at 4�C for 5 min at 500g and the buffer was aspirated. The nuclei were

resuspended in nuclei buffer with a final concentration of 4% paraformal-

dehyde and incubated on ice for 15 min with agitation every 5 min. The

fixed nuclei were washed twice. Each wash consisted of centrifugation for

pelleting at 4�C for 5 min at 500g, aspirating the buffer, and resuspending

in nuclei buffer. Nuclei were counted using a Countess II FL Automated

Cell Counter (Invitrogen). The fixed nuclei were then snap-frozen in liquid

nitrogen and stored in liquid nitrogen.

2.5 | sciRNA-seq

sciRNA-seq was performed as previously described in Cao et al. (2017).

For reverse transcription, frozen extracted, fixed nuclei were thawed

and resuspended in nuclei buffer at 5000 nuclei per μl. Two microliters

of nuclei (10,000 nuclei) and 0.25 μl of 10 mM dNTPs (New England

BioLabs, # N0447L) were mixed and distributed to wells of 96-well

LoBind plates (Eppendorf, # 0030129512). Twelve wells were used per

experimental sample. Control samples, which consisted of a 50:50 mix-

ture of mouse NIH 3T3 cells and humanHEK 293T cells, were included.

Additionally, human cells from unrelated experiments were also

included as samples, but were not included in the bioinformatic analy-

sis. As a result, a total of 384 wells were used. One microliter of 25 μM

indexed oligo-dT primers (ACGACGCTCTTCCGATCTNNNNNNNN

[10 bp index]TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-30, where

“N” is any base and “V” is either “A”, “C” or “G”; IDT) were added to each

well. The plates were incubated at 55�C for 5 min and then placed on

ice. One microliter of 5× Superscript IV First-Strand Buffer

(ThermoFisher Scientific, #18091200), 0.25 μl of 100 mMDTT, 0.25 μl

of SuperScript IV Reverse Transcriptase, and 0.25 μl RNaseOUT

Recombinant Ribonuclease Inhibitor (ThermoFisher Scientific,

#10777019) were mixed and added to each well with nuclei. The plates

were incubated at 55�C for 10 min and then placed on ice. Five microli-

ters of 40 mM EDTA and 1 mM Spermidine were added to each well to

stop the reverse transcription reactions. Wide bore tips were used for

pooling all the wells and the pool was transferred to 15 ml conical for

fluorescence-activated cell sorting (FACS).

Immediately prior to FACS, 300 μM 40 ,6-diamidino-

2-phenylindole (DAPI; ThermoFisher Scientific, #D1306) was added

to the pooled nuclei at a final concentration of 3 μM. DAPI solution

was prepared by dissolving the powder in deionized water to form a

14.3 mM solution and then diluted in phosphate-buffered saline (PBS)

to 300 μM. One hundred nuclei were sorted into each well of ten

96-well plates containing 5 μl of Qiagen elution buffer (EB; Qiagen).

Gates were set to include only DAPI positive singlets based on a for-

ward scatter (FSC)/side scatter (SSC) plot and a cell cycle profile. An

85 μm nozzle and 50 μm filter were used on the input line. After

sorting, plates were centrifuged briefly to force any droplets on the

sides of the wells to the bottom and the plates were stored at −80�C.

For second strand synthesis, a mix of 0.5 μl of second strand syn-

thesis (SSS) buffer and 0.75 μl of SSS enzyme (NEBNext Ultra II Non-

Directional RNA Second Strand Synthesis Module; New England Bio-

Labs, # E6111L) was added to each well of the plates containing the

sorted nuclei and incubated at 16�C for 150 min. The reaction was

terminated by incubating the plate at 75�C for 20 min. Tagmentation

was performed by adding to each well, a mix of 2.5 μl of Nextera TD

buffer (Illumina, #FC-121-1031) and 0.25 μl of 20 ng/μl human geno-

mic DNA (Promega, #G147A) diluted in water followed by addition of

a mix of 2.5 μl of Nextera TD Buffer and 0.5 μl of TDE1 enzyme

(Illumina, FC-121-1031), and incubating the plates at 55�C for 5 min.

The reactions were stopped by adding 12 μl of DNA binding buffer

(Zymo, #D4004-1-L) to each well and incubating the plates at room

temperature for 5 minutes. DNA clean-ups were performed with 3 μl

of Ampure XP beads (Beckman-Coulter, #A63882) per well and other-

wise as per manufacturer's instructions. DNA was eluted in 17 μl of

EB per well and 16 μl of the eluate in each well was transferred to

new 96-well LoBind plates.

2488 ALEXANDER ET AL.



PCR was performed by adding to each well 2 μl each of 10 μM P5

(50 AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTTTCCCT

ACACGACGCTCTTCCGATCT-30; IDT)and P7 primers (50-CAAGCA

GAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG-30; IDT) and

20uL of NEBNext High-Fidelity 2X PCRMaster Mix (New England Bio-

Labs, #M0541L) and using the following cycling parameters: 75�C for

3 min, 98�C for 30 s, 18 cycles of 98�C for 10 s, 66�C for 30 s, and

72�C for 1 min, and ending with 1 cycle of 72�C for 5 min. After PCR, all

samples were pooled. DNA was purified using an Zymo DNA Clean &

Concentrator-100 kit (#D4029) with Zymo-Spin Column with Reser-

voir (#C1016-50) and vacuummanifold and a 2:1 ratio of binding buffer

to PCR reaction volume, but otherwise as per manufacturer's instruc-

tions. DNAwas eluted in 150 μl of EB. The DNA underwent an Ampure

XP bead clean-up using 0.8× volume of beads as per manufacturer's

instructions and the concentration of the amplicon was estimated by

Agilent Bioanalyzer using the region between 200 and 750 base pairs.

Finally, the library was sequenced using an Illumina Nextseq 550 with a

High Output v2 kit (75 cycles) as per manufacturer's instructions; Read

1was 18 cycles, Read 2was 52 cycles, Index 1was 10 cycles, and Index

2 was 10 cycles.

2.6 | Aligning reads and creation of cell by gene
expression matrix

Alignment and creation of the gene expression matrix was performed

as previously described (Cao et al., 2017). Bcl2fastq (Illumina) was

used to convert base calls to FASTQ format, tolerating one mis-

matched base in barcodes. After demultiplexing, sequencing adapters

were removed using trim-galore (version 0.4.1, https://www.

bioinformatics.babraham.ac.uk/projects/trim_galore/). Using STAR

(version 2.5.2b) with default settings, trimmed reads were aligned to a

reference genome including both the human (hg19) and the mouse

(mm10) genome with annotations from GENCODE V19 for human

and VM11 for mouse (Dobin et al., 2013). Reads that did not map

uniquely were removed, as were duplicates based on unique molecu-

lar index (UMI), reverse transcription (RT) index, and read 2 end coor-

dinates. Finally, reads were mapped to cells by further demultiplexing

using the RT index. A digital gene expression matrix was created by

counting, in a strand-specific manner, the number of unique

sequences based on UMIs that map to either exonic or intronic

regions of each gene using bedtools (version 2.26.0) (Dobin

et al., 2013; Quinlan & Hall, 2010). RCAS virus reads were added back

to the matrix by first aligning previously unaligned reads to the RCAS

LTR reference sequence (AATGTAGTCTTATGCAATACTCTTGTAG

TCTTGCAACATGGTAACGATGAGTTAGCAACATGCCTTACAAGGAG

AGAAAAAGCACCGTGCATGCCGATTGGTGGAAGTAAGGTGGTACG

ATCGTGCCTTATTAGGAAGGCAACAGACGGGTCTGACATGGATTGA

CGAACCACTGAATTCCGCATTGCAGAGATATTGTATTTAAGTGCCTA

GCTCGATACAATAAACGCCATTTGACCATTCACCACA) using bowtie

(version 2.2.3). Aligned reads were deduplicated based on the UMIs,

reverse transcription index, and rear 2 end coordinates. Counts were

then added for the RCAS LTR transcript to the appropriate cells in the

digital gene expression matrix based on the barcode mappings. These

counts were added under the gene name “RCAS” and the Ensembl-like

accession number, ENSMUSG00000000LTR.1, both of which were cre-

ated to fit the format of the data files, but do not represent officially sanc-

tioned identifiers.

The overall collision rate was calculated using the control mouse-

human mixture samples as twice the rate of cells with less than 90%

of UMIs mapping to a single species. This overall collision rate was

�10%. Cells from experimental samples with less than 90% of UMIs

uniquely mapping to a single species were considered “collisions” and

were not included in the final gene expression matrix. In cells with

90% of UMIs mapping to a single species, reads mapping to the other

species were removed. Cells with fewer than 100 unique UMIs were

also not included in the final gene expression matrix. Custom software

written in Bash, Python, and R was used for the above.

2.7 | UMAP visualization and Louvain clustering

For all subsequent analyses, custom R scripts were used. For visualiza-

tion of the digital gene expression matrix, UMAP embedding and Lou-

vain clustering were performed via the Monocle 3 alpha package (Cao

et al., 2019). The 3,000 genes with the highest variation were used as

the input to principal components analysis (PCA). The top 50 compo-

nents were then used as input to UMAP for two-dimensional embed-

ding, with the min_dist parameter set to 0.4 and all other parameters

set to default. For Louvain clustering, the res parameter was set to

1.64e−3, resulting in the embedding and clustering in Figure 2a. For

sub-clustering of oligodendrocyte lineage cells (Figure 4a) and macro-

phage/microglia cells (Figure 6a), the UMAP min_dist parameter was

set to 1 and the Louvain clustering parameter was 1e−2.

2.8 | Gene set enrichment analysis (GSEA) of the
OPC/tumor supercluster

To analyze the left-to-right shift in the UMAP embedding of the

OPC/tumor cluster between No IR and 8 hr after IR samples, the sup-

port vector machine (SVM) algorithm as implemented in the e1071

package (https://cran.r-project.org/web/packages/e1071/index.html)

was used to define a line dividing the cluster into left and right parts

(Figure 3b). An SVM with a linear kernel was trained on the cells of

the No IR samples (left) vs. the cells in the 8 hr after IR samples (right).

The OPC/tumor cells of the 8 hr after IR samples were downsampled

to the same number of cells as were in the No IR samples for training.

Since there was no concern for overfitting because the model would

not be used for classification of other datasets, a high value for the

cost (1e10) was used to get the best line for separating the cells into

right and left parts. All cells in the OPC/tumor cluster across all sam-

ples were then classified as either in the right or the left parts based

on their UMAP coordinates relative to this best line. Differential

expression between the left and right parts of the tumor/OPC cluster

was calculated using the FindMarkers function of the Seurat package
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assuming a negative binomial distribution, and setting the logfc.

threshold parameter to 0.15, the min.pct parameter to 0, and pos.

only parameter to FALSE with all other parameters set to their defaults

(Stuart et al., 2019; Butler, Hoffman, Smibert, Papalexi, & Satija, 2018).

GSEA was performed using the fgsea function from the fGSEA package

with the nperm parameter set to 100,000 and all other parameters set

to their defaults. The biological process GO terms from version 6.2 of

the MSigDb database (http://software.broadinstitute.org/gsea/msigdb/

download_file.jsp?filePath=/resources/msigdb/6.2/c5.bp.v6.2.symbols.

gmt) were used with fGSEA (Sergushichev, 2016). Enriched terms were

collapsed to independent ones using the collapsePathways function

limiting the adjusted p-values to less than .1.

2.9 | Gene ontology enrichment analysis

To generate a ranked list of genes discriminating each cluster of cells

from all others, we performed supervised differential analysis of

Clusters 17, 22, and 23. We generated a ranked list of differentially

expressed genes between each cluster and all the other clusters

according to the Mann–Whitney–Wilcoxon (MWW) statistics.

Then, for each cluster we computed the gene ontology enrichment

analyses using the MWW-Gene Set Test (MWW-GST) as described

(Frattini et al., 2018).

2.10 | Master regulator analysis

To identify the master regulators (MR) that are most active within

each cluster, we implemented an approach similar to that used to

identify MRs of the mesenchymal subtype of glioma (Carro

et al., 2010). More specifically, we first reconstructed a global

context-specific regulatory network from the scRNA-Seq data and a

list using the RGBM algorithm, a computational tool in which a

machine learning framework is based on gradient boosting machines

(Mall et al., 2018). RGBM has three major steps. In the first step, a

Gradient Boosting Machine ranks transcription factors (TF) that regu-

late a target gene according to variable importance scores. In the sec-

ond step, a regularization procedure locates the corner of the variable

importance L-curve to identify the optimal set of TFs for a target

gene. In the third step, the boosting procedure re-iterates with the

optimal set of TFs for each target gene to reconstruct the final net-

work between TFs and targets. RGBM has been validated on

DREAM3, DREAM4 and DREAM5 network inference datasets and

simulated RNA-Seq datasets showing that it obtains higher perfor-

mance in terms of AUpr and AUroc than the current state-of-the-art

methods on the majority of these datasets. Moreover, RGBM was

used to identify the main regulators of the molecular subtypes of

brain tumors (Ceccarelli et al., 2016; Mall et al., 2018). To build our

network we used a list of 1,138 mouse transcriptional regulators, the

networks contain a total of 152,607 transcriptional interactions.

To identify MRs of the Clusters 17, 22, and 23 we first generated

a ranked list of differentially expressed genes between each cluster

and all the other clusters according to the Mann–Whitney–Wilcoxon

statistics. The ranked lists were used to compute the activity of each

MR. Master Regulator Analysis (MRA) is an algorithm used to identify

transcriptional regulators whose targets are enriched for a particular

gene signature. The enrichment is evaluated using a statistical test.

We applied the MWW gene set test to evaluate the enrichment of

the positive targets of the MRs at the top of the ranked list and the

negative targets at the bottom of the ranked list (Frattini et al., 2018).

The MWW gene set test (available at https://github.com/miccec/

yaGST) provides a Normalized Enrichment Score (NES), the value of

the activity, which is calculated as Act = log2(NES/[1-NES]), and a p-

value of the enrichment. The greater the Act the greater the associa-

tion between the MR and its target genes in terms of upregulation of

positive targets and downregulation of negative targets.

2.11 | sciRNA-seq data availability

All sciRNA-seq data have been deposited in NCBI's Gene Expression

Omnibus and are accessible through GEO Series accession number

GSE142168.

2.12 | H & E, immunohistochemical, and
immunofluorescence staining

Mouse brains were paraffin-embedded, sectioned, and stained with

H & E as described previously (Hambardzumyan, Amankulor, Helmy,

Becher, & Holland, 2009; Holland et al., 2000). Immunohistochemical

staining of mouse brains was performed with an automated staining

processor using the Discovery DAB Map Detection Kit according to

standard protocols as described previously (Ventana Medical Systems,

Tucson, AZ) (Hambardzumyan et al., 2008). The following antibodies

were used for the IHC: OLIG2 (Millipore, AB9610) at a 1:300 dilution,

Ki67 (Vector Laboratories, VP-RM04) at a 1:200 dilution, Nestin

(BD Biosciences, 556309) at a 1:100 dilution, PDGFRA (Cell Signaling,

3174) at a 1:300 dilution, PDGFRB (Cell Signaling, 3169), and YAP1

(Cell Signaling, 14074) at a dilution of 1:300.

For immunofluorescence stainings, formalin-fixed paraffin-

embedded tissues were subjected to de-paraffinization and antigen-

retrieval on the DISCOVERY XT platform (Ventana Medical Systems,

Inc., Tucson) using standard protocols. Subsequently, slides were

rehydrated and stained as described previously (Wirsching

et al., 2019). Images were taken on a Leica DM5500B fluorescence

microscope. Image analysis was done using TissueQuest software

(version 6.0.1, Tissue Gnostics, Vienna, Austria). Primary antibodies

used were: YAP1 (D8H1X) XP® Rabbit mAb #14074 (Cell Signaling)

at a 1:100 dilution, OLIG2 AF2418 (R&D Systems) at a 1:300 dilution,

Ki67 (Cat #14-5698-82, Invitrogen) at 1:100 dilution, Nestin

(CH23001, Neuromics) at a 1:500 dilution. Secondary antibodies used

were Donkey Anti-rat-488 (A-21208, Invitrogen), Donkey Anti-goat-

647 (705-605-147, Jackson ImmunoResearch), Donkey anti-rabbit-

Cy3 (711-165-152, Jackson ImmunoResearch), Donkey anti-chicken-
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488 (703-545-155, Jackson ImmunoResearch). All secondary anti-

bodies were used at a 1:200 dilution.

2.13 | Bulk RNA-seq data analysis and flow
cytometry of myeloid cell lineage

Bulk RNA-sequencing was performed previously and the data were

deposited in the Sequence Read Archive (SRA) database under the

accession number PRJNA349180. Detailed description of the proce-

dure can be found in the online supplemental materials of Chen

et al. (2017). Four genes of interests Csf1r, Ptprc, Tmem119, and Ctsb

were queried from the database and their FPKM (Fragments Per Kilo-

base of transcript per million mapped reads) values presented.

Flow cytometry was performed as previously described (Chen

et al., 2017). Briefly, mice were anesthetized with ketamine (100 mg/

kg, intraperitoneal) and xylazine (10 mg/kg, intraperitoneal), and per-

fused with cold PBS. The brains were dissected and digested with

Neural Tissue Dissociation Kit (Miltenyi Biotec) following the manu-

facturer's instructions. Cells were passed through a 70 μm cell

strainer, centrifuged and resuspended in 30% Percoll (GE Healthcare)

solution. Cells were separated by centrifuging at 800g for 30 min at

4�C. Cell pellets were collected and washed with FACS buffer

(Dulbecco's phosphate buffered saline with 0.5% bovine serum albu-

min and 0.1% NaN3) and blocked with 100 μl of 2× blocking solution

(2% fetal bovine serum, 5% normal rat serum, 5% normal mouse

serum, 5% normal rabbit serum, 10 μg/ml 2.4G2 anti-FcR, and 0.2%

NaN3 in DPBS) on ice for 30 minutes. Cells were then stained on ice

for 30 min and washed with FACS buffer. Antibodies used in the

study include: CD45-APC, CD11b-PerCP-Cy5.5, Ly6C-PE-Cy7,

F4/80-APC-Cy7 (BD Pharmingen), and Ly6G-V450 (BioLegend). All

data were collected on a BD LSR flow cytometer and analyzed using

FlowJo software (version 10, Tree Star Inc.).

3 | RESULTS

3.1 | Radiation enriches for tumor cells with the
stem-like, SP phenotype

Using SP analysis, we examined the effects of radiation on tumors

in vivo in an Ink4a/Arf−/−, PDGF-induced mouse model of glioma. Gli-

omas were generated by intracranial injection of RCAS-PDGFB virus

into Nestin-tva mice (Shih & Holland, 2006). Upon symptom presenta-

tion, mice were irradiated with 10 Gy of ionizing radiation (IR) to the

whole head and SP analysis was performed at 8 ± 2 hr, approximately

72 hr, and upon tumor recurrence (Figure S1). We chose 10 Gy

because a previous radiation dose–response assay in this model, vary-

ing dose delivered in a single fraction, showed a plateau in tumor

response at 10 Gy while heavily enriching for radioresistant, stem-like

tumor cells (Badri, Pitter, Holland, Michor, & Leder, 2016; Leder

et al., 2014). Similar to prior studies, 10 Gy resulted in an increased

median survival of approximately 20 days as compared to sham

treated mice (p < .0001) (Figure 1a) At 72 hr after IR, the SP percent-

age was five-fold greater than that of unirradiated controls (3.4% ±

0.8 vs 16.9% ±3, p < .05), but returned to baseline upon tumor recur-

rence (4.3% ± 2) (Figure 1b,c). These results include both tumor and

non-tumor cells, which we cannot distinguish in this simple SP

analysis.

To determine whether tumor cells fall within the SP or main pop-

ulation (MP) we generated tumors in an Olig2-GFP genetic back-

ground that expresses GFP under the control of the Olig2 promoter.

The transcription factor, Olig2, is expressed by oligodendrocyte pro-

genitors and the bulk of tumor cells. Cells expressing it are excluded

from the perivascular niche (PVN). However, since not every Olig2-

expressing cell is tumor, and it is possible that not all tumor cells

express Olig2, we used the RCAS-PDGFB-RFP vector to generate

tumors. In this model, in addition to Olig2-driven GFP-expression,

tumor cells derived from the original RCAS-infected cells express RFP

(Figure S2a). We found that no Olig2-expressing cells (GFP+) were in

the SP in any condition (Figure 1d). In unirradiated tumors, we found

that 2–5% of cells derived from the original RCAS-infected cells

(RFP+, Olig2−) were found in the SP (Figure 1d, Figure S2b). At 72 hr

after 10 Gy, the percentage of RFP+, Olig2− tumor cells in the SP was

substantially increased (p < .0001), and at recurrence, the percentage

reverted back to that seen in the unirradiated tumors (Figure 1d,

Figure S2b).

This binary analysis suggests that the cell-types in the SP, which

include some tumor cells derived from the original RCAS-infected

cells, are relatively radioresistant as compared to the cell types in the

MP, including Olig2-expressing tumor cells and other tumor cells

derived from the original RCAS-infected cells. For a deeper under-

standing of the tumor cell types involved, we needed to go beyond

this binary phenotype analysis.

3.2 | Single-cell RNA sequencing of tumors
identifies cell types

We applied sciRNA-seq to 15 archived, frozen samples that were also

used in Figure 1, which consisted of normal brain and tumor-

containing hemisphere for each of three treatment conditions: no IR

and 8 ± 2 hr and approximately 72 hr after 10 Gy (Figure S1). Normal

brain samples were obtained from the uninjected, non-tumor-bearing

side of the brain of tumor-bearing mice. On this sciRNA-seq data, we

applied UMAP embedding for dimensionality reduction and Louvain

clustering for assigning clusters, which constitute cell types. The data

included 15,648 cells with a median number of unique transcripts

of 589.

We first examined the data as a whole, that is, the union of all

6 conditions. UMAP embedding resulted in 5 superclusters, which

were well separated suggesting very different cell types (Figure 2a).

Using cell type-specific markers, these superclusters were identified

as distinct, major cell types of the brain: astrocytes expressing Gja1,

myeloid cells expressing Csf1r, neurons expressing Snap25 and Gad1

(GABAergic) or Slc17a7 (Glutamatergic), oligodendrocytes expressing
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Mog, and oligodendrocyte precursor cells (OPC)/tumor expressing

Pdgfra (Figure 2a,b) (Butovsky et al., 2014; Clarke et al., 2018; Gin-

houx et al., 2010; Nishiyama, Komitova, Suzuki, & Zhu, 2009; Scolding

et al., 1989; Tasic et al., 2016; Zhang et al., 2016). Adjacent to the

OPC/tumor cluster is the endothelial cell cluster expressing Flt1 and

Igfbp7, suggesting a similar expression profile. Consistent with the

F IGURE 1 Side population (SP) analysis of a PDGF-drivenmousemodel of glioblastoma at early time points after radiation shows that stem-like cells
of the SP are relatively radioresistant and are enriched. (a) A Kaplan–Meier plot showing thatmice treatedwith 10 Gy lived amedian of 20 days longer
than untreatedmice. (b) SP analysis, usingHoechst 33342 dye exclusion assay, of tumors frommice harvested at symptomonset or 8 or 72 hr after IR
shows a higher percentage of cells in the SP at 72 hr as compared to control. Error bars represent the SE of themean. (c) Representative flow cytometry
plots, as quantified in (b). SP cells are poorly stained byHoechst dyes due to efflux pump dye removal, whereas themain population (MP) is highly stained.
The percentage of SP cells is highest at 72 hr after IR, but returns to the same level as the control at recurrence. Insets show treatment prior to SP analysis
with verapamil as a control, which inhibits the efflux pump, abrogates the SP, and confirms the SP analysis gating strategy. (d) Flow cytometry plots of
tumorswithout and at 72 hr after IR showing SP analysis ofOlig2-expressing tumor cells (GFP+) and tumor cells derived from the earliest tumor cells
(RFP+). SP analysis of all tumor cells (Total) are shown prior to gating for GFP positivity (GFP only, top row) or RFP positivity (RFP only, bottom row). GFP+

cells are exclusively in theMPwithout and at 72 hr after IR, and RFP+ cells are heavily enriched at 72 hr after IR in the SP as compared to control
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histology of these tumors and human GBM, T cells were not found.

The OPC/tumor supercluster could be subdivided into immature oli-

godendrocytes/OPC expressing Enpp6 and OPC/tumor expressing

the RCAS viral transcript (Figure 2a,b) (Nishiyama et al., 2009; Tasic

et al., 2016). The assignment of tumor is supported by the much

higher representation of the OPC/tumor cluster in tumor as compared

to normal brain samples, as expected (Figure 2c). In contrast, normal

cell types, such as endothelial cells and immature oligodendrocytes,

are fairly evenly represented in normal brain and tumor samples.

The OPC/tumor portion of the supercluster consists of multiple

expression profiles (Clusters 1, 2, 3, 11, 14, 16, and 22; Figure 2d),

and RCAS expression is different between these clusters. Cluster

14 has the highest fraction of cells expressing RCAS, while the imma-

ture oligodendrocyte/OPC cluster has the lowest (Figure 2d). This

could be an artifact of random sampling of the RCAS transcript caused

by the sparsity of scRNA-seq data. Alternatively, RCAS expression

may affect or reflect the overall expression profile. So, clusters with

different expression profiles have varying RCAS transcript levels.

However, it is also possible that individual clusters are actually com-

posed of some cells expressing RCAS, which are progeny of the origi-

nal RCAS-infected cells, and others that do not express RCAS, but

have similar expression profiles to those that do. Consistent with this

interpretation, relatively rare cells from normal brain samples, which

do not express RCAS, cluster with tumor cells, suggesting similar

expression patterns between these cells. (Figure 2c). This is also con-

sistent with our previous finding that tumor cells recruit and cause an

expansion of rare normal cell-types with a tumor-like phenotype

(Fomchenko et al., 2011).

Overall, sciRNA-seq along with UMAP embedding and Louvain

clustering is very effective at identifying different cell-types and illu-

minating the relationships between them in our mouse glioma model.

Additionally, we found that rare cells with similar expression patterns

F IGURE 2 Single-cell RNA sequencing (scRNA-seq) identifies tumor and normal brain cell-types, including normal cells with tumor-like
expression patterns. (a) UMAP embedding and Louvain clustering of scRNA-seq data including all normal brain and tumor samples across all

treatment groups (no IR and 8 ± 2 and 72 hr after 10 Gy) colored by cell-types. Each dot represents a cell. (b) UMAP plots with each cluster
colored by the fraction of cells in the cluster expressing common cell-type-specific markers or the RCAS viral transcript confirm cell-type
assignments. (c) Separate UMAP plots of brain and tumor samples show much higher representation of the OPC/tumor cluster in the tumor
samples confirming that this cluster includes tumor. Some tumor-like normal cells are also present in normal brain. (d) Louvain clustering shows
multiple expression profiles within the OPCs and Tumor supercluster (left). Clusters are numbered for easier reference. RCAS viral transcript
expression varies in this supercluster being lowest in the “OPC & Oligo (Immature)” cluster (Cluster 17) and highest in the OPC/tumor Cluster
14 (right)
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to tumor cells exist in normal brain. In the context of tumor, there

may be an expansion of these tumor-like cells that are not derived

from the original RCAS-infected cells.

3.3 | Tumor cell clusters are differentially sensitive
to radiation

Next, we examined the effect of IR on the gene expression of cells in

the OPC/tumor supercluster (Figure 3a). In tumor samples, a left-to-

right shift between no IR (Figure 3a, lower left panel) and 8 hr after IR

(Figure 3a, lower middle panel) occurred, suggesting expression

changes shortly after IR. This was followed by a reduction in the

number of tumor cells recovered at 72 hr after IR, which is likely due

to massive cell death (Figure 3a, lower right panel). No clear differ-

ences were seen in the normal brain samples (Figure 3a, upper

panels).

To determine what expression changes drive the left-to-right

shift, we trained a support vector machine (SVM) to determine the

best line for dividing the OPC/tumor supercluster into left and right

parts. This approach keeps cells with similar expression patterns

together irrespective of which treatment group (no IR or 8 hr after IR)

they originated from (Figure 3b). We then applied Gene Set Enrich-

ment Analysis (GSEA) to determine which gene sets were enriched at

8 hr after IR (right) as compared to no IR (left). The enriched gene sets

were associated with senescence, p53-mediated DNA damage

F IGURE 3 Tumor cell expression at 8 hr after IR shifts toward genes associated with the DNA damage signaling response and cell cycle
arrest, followed by cell death leaving two radioresistant groups of cells (Clusters 17 and 23 and Cluster 22) at 72 hr after IR. (a) UMAP plots of the
OPC/tumor supercluster by treatment group (No IR and 8 and 72 hr after IR) and sample type (brain and tumor) shows little change in normal
brain samples, but a left-to-right shift between No IR and 8 hr after IR samples followed by a loss of most tumor cells at 72 hr after IR. Two
groups of cells (Clusters 17 and 23 and Cluster 22) remain. Cluster numbers are shown in the upper left panel. (b) UMAP plots of samples without
and 8 hr after IR showing the tumor supercluster with a best line drawn by support vector machine (SVM) to divide the cells into right (more

similar to 8 hr after IR) and left (more similar to No IR) sides of the shift. (c) GO terms for enriched gene sets, as determined by Gene Set
Enrichment Analysis (GSEA) comparing cells on the right of the left-to-right shift to those on the left, are associated with processes that are
expected after IR. (d) Transcripts per cell of Mki67, Top2a, Hmga2, and RCAS in the OPC/tumor supercluster without (No IR) and 8 and 72 hr after
IR are shown. The green to red spectrum represents cells with at least 1 transcript (see scales). Gray represents cells without any transcripts.
Rapidly proliferating cells (Cluster 22 expressing Mki67 and Top2a) and slowly proliferating cells (Clusters 17 and 23) are enriched at 72 hr after
IR, whereas Hmga2 expressing cells are enriched at 8 hr after IR and then depleted by 72 hr. RCAS viral transcript expression is similar in all
treatment groups
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signaling response, and cell cycle arrest (Figure 3c). This was consis-

tent with our previous study of early effects of IR on this tumor model

using bulk polysome RNA sequencing of Olig2-expressing cells

(Halliday et al., 2014).

At 72 hr, most OPC/tumor cells are lost, but three clusters,

17 (immature oligodendrocytes and OPC), 23 and 22, remain signifi-

cantly populated (Figure 3a). Clusters 17 and 23 are adjacent to each

other suggesting similar expression profiles, whereas Cluster 22 is on

the opposite side of the supercluster suggesting a different expression

profile. Cluster 22 is highly proliferative at baseline as indicated by

high expression of the cell cycle genes, Marker of Proliferation Ki67

(Mki67) and Topoisomerase 2a (Top2a), whereas Clusters 17 and

23 are not (Figure 3d). Additionally, IR either induces proliferation or

selects for cells that are proliferative since the fraction of cells

expressing Mki67 and Top2a in Cluster 22 increases from no IR to

8 and 72 hr after IR. High Mobility Group AT-Hook 2 (Hmga2), which

is involved in DNA damage signaling, is highly upregulated shortly

after IR in most OPC/tumor clusters, with the exception of Clusters

17 and 23 (Figure 3d) (Fedele et al., 2006). At 72 hr, clusters previ-

ously expressing Hmga2 are lost, with the exception of Cluster

22, which no longer expresses Hmga2. Hmga2 appears to be a marker

of impending cell death, suggesting that Clusters 17, 23, and the

remaining portion of 22, which do not express Hmga2 at 72 hr are

likely to survive to repopulate the tumor. By contrast, RCAS expres-

sion remains similar between treatment groups in all three clusters. It

is unclear what fraction of these surviving clusters are composed of

tumor cells, but the lower bound is the fraction or RCAS-expressing

cells, which is lowest in Cluster 17 and highest in Cluster 23. These

3 clusters fall towards the lower end of the RCAS-expression spec-

trum suggesting that they may have a smaller fraction of RCAS-

derived tumor cells than other clusters, such as 14 and 16, which are

lost after radiation.

Taken together, IR results in early tumor expression shifts toward

the DNA damage signaling response and cell cycle arrest. This is

followed by cell death leaving two radioresistant groups of cells at

72 hr after IR. One group is highly proliferative (Cluster 22) and the

other (Clusters 17 and 23), which includes immature oligodendrocytes

and OPC, is not, but both groups are at least partially composed of

RCAS-expressing tumor cells. These groups are likely to survive and

one or both is likely to be the source of recurrent tumor.

3.4 | Gene ontology (GO) term enrichment and
master regulator analyses reveal biological functions
and drivers of the surviving cell clusters

To further characterize the surviving cell clusters, we performed GO

term enrichment analysis (GOTEA) to extract the biological properties

distinguishing each cluster and Master Regulator Analysis (MRA) for in

silico identification of the master regulators activated within each

cluster. In this context, master regulators (MR) are proteins, mostly

transcription factors (TF), which work as mechanistic regulators of the

transcriptional signatures that define distinct tumor phenotypes

(e.g., proneural vs. mesenchymal). This MRA approach compensates

for the sparse sequence coverage inherent in scRNA-seq (Methods)

(Frattini et al., 2018; Mall et al., 2018).

GOTEA confirmed that Cluster 17 includes OPC and immature

oligodendrocytes, as the enriched gene sets were associated with oli-

godendrocyte development and myelination (Figure S3a). Enriched

gene sets for Cluster 23 were associated with neurogenesis and neu-

ronal functions including dendrite and synapse development,

suggesting this cluster is neural precursor cells or

NG2/polydendrocytes (Figure S3b). Although in the overall UMAP

embedding Clusters 17 and 23 are separated from the mature oligo-

dendrocyte cluster, when these three clusters are removed from the

context of all other clusters and re-embedded by UMAP, these three

clusters are found to be contiguous (Figures 2a and 4a). This shows a

continuum of expression profiles between these clusters and suggests

that they belong to the same cell lineage, consistent with the GOTEA.

There is also a separate smaller cluster that expresses Mog and

Snap25, which are markers of mature oligodendrocytes and neurons,

respectively, and likely represents doublets and/or collisions.

Consistent with expression of Mki67 and Top2a in Cluster

22, enriched gene sets for this cluster were associated with prolifera-

tion, including DNA replication and mitosis (Figure S3c). Importantly,

other associations were with stemness and early development (includ-

ing regulation of stem cell proliferation), DNA damage repair, apopto-

sis, angiogenesis, and steroid signaling.

MRA showed that the MRs of each cluster were consistent with

their enriched biological functions by GOTEA. Among the TFs that

exhibit MR activity in Cluster 17, were Sirtuin 2 (Sirt2), an NAD-

dependent histone deacetylase specifically expressed in oligodendro-

cytes to modulate the cytoskeleton during differentiation and matura-

tion and the NK2 Homeobox 2 (Nkx2-2) homeodomain TF, a well-

known MR of cell fate determination and differentiation in the oligo-

dendrocyte lineage (Figure S3d) (Qi et al., 2001; Tang & Chua, 2008).

The MRs activated in Cluster 23 included, TOX High Mobility Group

Box Family Member 3 (Tox3), a TF regulating neural progenitor iden-

tity, and Forkhead Box P2 (Foxp2), a TF crucial for specialized neuro-

nal activities (Figure S3e) (Enard, 2011; Sahu et al., 2016). Finally, the

TFs acting as specific MRs of Cluster 22 include TEA Domain Tran-

scription Factor 1 (Tead1) and Smad family member 3 (Smad3)

(Figure 4b). These TFs are activated downstream of the Hippo signal-

ing pathway by binding YAP/TAZ. Yap1/Tead1 expression has been

shown to promote oncogenesis and radioresistance, increase prolifer-

ation, and confer cancer stem cell-like traits, which are the pheno-

types associated with the enriched gene sets of this cluster

(Fernandez-L et al., 2012; Zanconato, Cordenonsi, & Piccolo, 2016).

Taken together, Clusters 17 and 23 are pre-oligodendroglial and

pre-neuronal, respectively, and fall along the cell lineage leading to

mature oligodendrocytes. In contrast, Cluster 22 has an expression

profile suggesting vascular and stem-like characteristics, which may at

least in part be contributed to by YAP/TAZ signaling via Tead1 and

Smad3. Therefore, at least some of Cluster 22 may correspond to the

SP. However, it is still unclear if Cluster 22 also includes cells in the

MP or if some of the cells in the SP are also in Clusters 17 and 23.
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3.5 | Histologic analysis identifies the location of
the radioresistant tumor cells at 72 hr

For more information about the surviving cell types, we histologically

examined tumor without IR, at 72 hr after IR, and at recurrence. At

72 hr after IR, the tumor density was 3 to 4-fold lower than in

unirradiated tumor, consistent with the loss of most cells in

OPC/tumor clusters in our scRNA-seq data at this time point

(Figures 3a and 5a). At recurrence, the density returned to similar

levels as unirradiated tumor. Expression of OLIG2 and Ki67 followed

the same trends as the tumor density with a reduction in cells staining

for these proteins at 72 hr, but not complete loss (Figure 5a). Nestin,

which is expressed by neural stem and progenitor cells, remained at

approximately the same level at all three time points. Nestin staining

is primarily perivascular or endothelial, while OLIG2 staining is

excluded from this region. Ki67 staining is in both regions, but is

higher in the PVN or endothelial cells at 72 hr after IR.

To determine the location of the surviving radioresistant clusters

including oligodendrocyte and neuronal progenitors (17 and 23) and

the highly proliferative vascular/stem-like cells (22), we compared

tumors without IR and at 72 hr after IR by double immunofluores-

cence staining using antibodies to OLIG2 and Ki67 (Figure 5b). We

found that the most radioresistant population was OLIG2−/Ki67−, dis-

tributed throughout the tumor, and likely enriched in cells of the

(a) (b)

F IGURE 4 Clusters 17 and 23 belong to the cell lineage leading to mature oligodendrocytes, while Cluster 22 has characteristics of stemness
and proliferation. (a) UMAP re-embedding of Clusters 17, 23, and the mature oligodendrocyte cluster outside the context of all other cells (top
panel) shows a continuum of expression between these clusters. The fractions of cells in each cluster expressing cell-type specific markers
(bottom panels) confirm the cell-types represented by each cluster. The smaller cluster likely represents collisions or doublets. (b) Dot plot
showing NES and −Log(q-value) of master regulators for Cluster 22, including Tead1, Smad3, and Fosl2 (red), which are activated downstream of
Hippo signaling and promote oncogenesis, stemness, proliferation, and radioresistance
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tumor microenvironment such as macrophages and endothelial cells,

which is also seen in the scRNA-seq data (data not shown). At 72 hr,

these cells were viable, offsetting tumor cell loss, and made up as

much as 45% of total cells (Figure 5b, Figure S4a). The most radiosen-

sitive population was OLIG2+/Ki67+, was excluded from the PVN and

vasculature, comprised 40% of total cells in unirradiated tumors, and

showed nearly a 95% loss at 72 hr after IR (Figure 5b, Figure S4b).

The two remaining populations were relatively radioresistant since

they did not follow the general trend towards the loss of OLIG2+ and

Ki67+ cells (compare Figure S4c,d to Figure S4e,f). The OLIG2+/Ki67−

population, was distributed throughout tumors and comprised 40% of

total cells both before and after IR, consistent with the non-

proliferating oligodendrocyte and neuronal progenitors of Clusters

17 and 23 (Figure 5b, Figure S4c). The OLIG2−/Ki67+ population was

rare (3–4% both before and after RT), preferentially in the PVN or vas-

culature, and, by virtue of Ki67 levels, was likely to be enriched in the

proliferative, vascular/stem-like cells of Cluster 22 (Figure 5b,

Figure S4d). Consistent with this interpretation and the MRA, which

suggested that Cluster 22 was enriched in Tead1/Yap signaling, YAP1

staining was enriched in both the nuclei and cytoplasm of cells in the

PVN or endothelial where it co-stains with Nestin, suggesting that

YAP1 is actively directing transcription there (Figure S5).

Taken together, at 72 hr after IR, the OLIG2+ tumor bulk is lost,

but the OLIG2−/Nestin+/Ki67+ tumor cells of the PVN or endothelium

survive. This is consistent with the SP analysis which showed a rela-

tive loss of the Olig2-GFP expressing cells and enrichment of RFP+

cells. Since these cells are Ki67+ and YAP1+, the surviving cells of

Cluster 22 are likely to be these cells of the PVN, but are not endothe-

lial cells, which are in Cluster 26. It is not clear, though, that all of

Cluster 22 are tumor cells derived from the original RCAS-infected

cells.

3.6 | Myeloid cell populations in tumor are
affected by radiation

Finally, we examined the early effects of IR on normal cell types. Nor-

mal cell clusters were mostly unaffected by radiation, with the excep-

tion of the myeloid cell supercluster (Figure 2a). To understand the

radiation-induced changes, this supercluster was removed from the

F IGURE 5 Immunohistochemistry and immunofluorescence microscopy show loss of the bulk of tumor cells, which express OLIG2, but
survival of the Cluster 22-like, YAP1-expressing, proliferative cells of the perivascular niche at 72 hr after IR. (a) Hematoxylin and eosin (H&E)
staining and immunohistochemistry with antibodies to OLIG2, Ki67, and Nestin were performed on tumors without IR (no IR) and at 72 hr and at
recurrence after IR. Tumor density and the percentage of OLIG2-expressing cells, which make up the bulk of tumor cells, are reduced significantly
at 72 hr after IR, but return to baseline at recurrence, that is, levels similar to unirradiated tumor. The percentage of Ki67-expressing cells is also
reduced at 72 hr after IR, and those that remain are located in the perivascular niche. Ki67-expressing cells also return to baseline at recurrence.
Nestin-expressing cells, which are located within the perivascular niche, remain at similar levels between treatment conditions.
(b) Immunofluorescence microscopy using antibodies to OLIG2 (white), Ki67 (green), and YAP1 (red) was performed on tumor without and at
72 hr after IR (two examples shown). The top row (Merge + DNA) shows an overlay of the staining by all three antibodies along with DAPI to
indicate DNA (blue). At 72 hr after IR, the rare cells expressing Ki67 also express YAP1, which are both specific to Cluster 22, while the OLIG2
expressing cells, which make up the tumor bulk, are distinct from those expressing either Ki67 or YAP1 and are mostly lost
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context of all other clusters, re-embedded by UMAP, and reclustered,

resulting in four new clusters (Figure 6a).

We used previously published bulk RNA-seq data from sorted

naïve microglia, blood monocytes, tumor-associated microglia, and

bone marrow-derived macrophages (BMDM) to identify markers to

assign cell types to these clusters. We chose four commonly used

myeloid markers that are dynamically regulated in the myeloid lineage

in the context of tumor, Csf1r, Ptprc, Tmem119, and Ctsb (Figure 6b,c)
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F IGURE 6 Subclustering of the myeloid cell supercluster reveals four clusters of microglia and bone marrow-derived macrophages (BMDM)
that vary in percentage by sample type and treatment group, some of which have phagocytosed tumor cells. (a) UMAP re-embedding and Louvain
clustering of the myeloid cell supercluster outside the context of all other cells reveals four clusters: Cluster A is tumor-associated, activated
microglia and BMDM that have not phagocytosed tumor cells; Cluster B is non-tumor-associated, resting microglia; Cluster C is tumor-associated
microglia and BMDM that have phagocytosed tumor cells; and cluster D is non-tumor-associated microglia that have phagocytosed neural cells.
(b) UMAP plots with each cluster colored by the fraction of cells in the cluster expressing common cell-type-specific markers or the RCAS viral
transcript. (c) Fragments per kilobase of transcript per million mapped reads (FPKM) from bulk RNA-seq of sorted naïve microglia (Naïve MG),
blood monocytes (Naïve Mo), tumor-associated microglia (Tumor MG), and tumor-associated BMDM (Tumor MF) for common cell type-specific
markers. Combining data from (b) and (c) allows assignment of cell-types to clusters in (a). (d) Percentages of clusters by treatment group (No IR
and 8 and 72 hr after IR) and sample type (brain and tumor) are shown. In normal brain, the percentage of resting microglia (Cluster B), is mostly
unchanged between treatment groups. In tumor without IR, the percentage of tumor-associated, activated microglia and BMDM (Cluster C) is
elevated as compared to normal brain. The percentage of tumor-associated microglia and BMDM (Clusters A and C) increase at the expense of
the resting microglia at 8 hr after IR. At 72 hr, the tumor-associated microglia and BMDM that have not phagocytosed tumor cells (Cluster A)
increase further, but those that have phagocytosed tumor cells (Cluster C) decrease consistent with loss of most of the tumor cells at this time.
(e) Flow cytometry using cell surface markers (Figure S6 and Methods) was performed on brain with tumor to examine RFP-positivity in microglia
(CD11b+CD45LoLy6g−Ly6c−) and BMDM (CD11b+CD45Hi Ly6g−Ly6c−) without IR and at 8 and 72 hr after IR. RFP-positivity indicates cells that
had phagocytosed RFP-expressing tumor cells. RFP+ cells are mostly BMDM without IR, but are mostly microglia at 8 hr after IR. (f) Percentages
of myeloid cells (CD45+CD11b+) that are RFP+ without IR and at 8 and 72 hr after IR in brain with tumor. Error bars represent the standard
deviation. RFP+ cells peak at 8 hr after IR and mostly disappear by 72 hr. These data are consistent with Cluster C in (a)
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(Bennett et al., 2016; Butovsky et al., 2014; Chen et al., 2017; Gin-

houx et al., 2010; Sevenich, 2018). Csfr1 and Tmem119 are highly

expressed by naïve microglia in normal brain, but are downregulated

in tumor-associated microglia, whereas Ptprc is most highly expressed

in naïve monocytes, but is expressed at lower levels in the other mye-

loid cell types (Figure 6c). Expression of Ctsb is low in naïve myeloid

cells but increased in both tumor-associated microglia and BMDM.

Based on these observations, we conclude that Cluster A(Csf1rint/

Ptprchi/Ctsbhi/Tmem119Lo) consists of tumor-associated microglia and

tumor-infiltrating BMDM. Cluster B, which expresses high levels of

Tmem119 and low levels of Ptprc and Ctsb, is resting microglia found

outside of the tumor area. Cluster C, which expresses Ctsb and has

RCAS transcripts, is activated, phagocytic macrophages and microglia,

which have phagocytosed nuclei of RCAS-expressing tumor cells and

thereby contaminated their nuclei with mRNA from those cells. Simi-

larly, cluster D, which expresses high levels of Csfr1 and Ctsb and has

neuronal marker (e.g., Snap25) transcripts, is a subpopulation of

phagocytic microglia residing outside the tumor, pruning dying or pro-

liferating neural progenitors in the hippocampus or subventricular

zone (SVZ).

In the normal brain, resting microglia comprise the vast majority

of the myeloid cell population with little variation without IR, or at

8 or at 72 hr after IR, but tumor is more dynamic (Figure 6d). Before

IR similarly to normal brain, the majority of myeloid cells in the tumor

are resting microglia. However, at 8 hr after IR, there is an influx of

activated, but not phagocytic, tumor-associated microglia and BMDM,

and by 72 hr after IR, these cell-types are the majority of this lineage

in the tumor. Cluster C, increases at 8 hr as tumor cells are dying and

then decreases again by 72 hr when most tumor cells have been lost

from the tumor samples. Cluster D appears to increase by 72 hr after

IR. The slower kinetics may be due to neurons or neuronal progenitors

having slower kinetics of cell death as compared to tumor cells in

response to radiation.

To further delineate whether activated microglia and/or BMDM are

the cell-types in Cluster C phagocytizing tumor cells, we used surface

markers to distinguish microglia (CD11b+CD45Lo), macrophages

(CD11b+CD45Hi), newly infiltrated monocytes (CD45HiCD11b+

Ly6g−Ly6cHi), and neutrophils (CD11b+Ly6g+Ly6cInt) by flow cytometry

on tumors from a mouse model in which tumor cells derived from the

original RCAS-infected cells express RFP (Figure 6e, Figure S6a). We

examined microglia and BMDM for RFP-positivity, which would indicate

phagocytosis of RFP-expressing tumor cells. Without IR, the majority of

RFP-positive phagocytizing cells are tumor-associated BMDM, and

account for about 1.2% of total myeloid cells (Figure 6e,f). At 8 hr after

IR, these phagocytizing BMDM diminish in number, but microglia appear

to increase their phagocytic capability. Consistent with the scRNA-seq

data, the combined percentage of phagocytizing cells from microglia and

BMDM populations peaked at 8 hr after IR at about 1.7% of total mye-

loid cells (Figure 6e,f). At 72 hr, phagocytosis had subsided in both

populations.

Taken together, there are at least four myeloid cell subpopula-

tions that are identifiable by scRNA-seq. These subpopulations consist

of tumor-associated microglia and BMDM that either are not (Cluster

A) or are (Cluster C) phagocytosing tumor cells and non-tumor-

associated resting (Cluster B) and phagocytosing (Cluster D) microglia.

In normal brain without or after IR, the percentages of these subpopu-

lations, which are dominated by resting microglia, are constant. In

tumor, the percentages of tumor-associated, activated microglia and

BMDM (Clusters A and C) start higher and increase dramatically

between samples without IR and at 8 and 72 hr after IR at the

expense of resting microglia (Cluster B). Phagocytosis of tumor cells

by tumor-associated, activated microglia and BMDM peaks at 8 hr

after IR, but the largest percentage of tumor-associated, activated

microglia and BMDM (phagocytosing or not) is at 72 hr after IR. At

this point, most are not phagocytosing tumor cells, likely because very

few tumor cells remain.

4 | DISCUSSION

Glioma cells with stem-like character are thought to be radioresistant

and give rise to recurrences after therapy. Consistent with previous

data, we found that SP cells in our mouse gliomas are relatively resis-

tant to 10 Gy of IR. However, both the SP and MP are mixtures of

cell-types. To dissect out and measure radiation response in these

cell-types we turned to scRNA-seq, which we applied to nuclear RNA.

In this study, we applied nuclear scRNA-seq to archived samples origi-

nally subjected to SP analysis as complementary approaches to better

understand the connection between radioresistance and stemness in

mouse models of glioma.

Nuclear scRNA-seq suggests that these mouse gliomas are com-

prised of multiple expression subtypes, which seem to be similar to

rare cell types found in the normal brain. The bulk of tumor cells are

predictably radiosensitive based on expression patterns. The radio-

resistant cells were divided between two distinct expression patterns.

The majority are similar to oligodendrocyte and neural progenitors

with low proliferation rates (Clusters 17 and 23). A small minority are

highly proliferative with vascular and stem-like expression patterns

that preferentially occupy the PVN (Cluster 22). This cluster is charac-

terized by several critical transcriptional networks including that of

Yap1/Tead1, which is known to promote oncogenesis, proliferation,

and radioresistance. Unfortunately, due to the sparsity of the scRNA-

seq data, we were unable to directly determine the relationship

between the radioresistant clusters and the SP, because appropriate

markers were not represented in the scRNA-seq dataset.

Importantly, the results of our study are consistent with human

GBM data. The RCAS-PDGFB-driven gliomas in this study closely

resemble human proneural GBM subtype (Herting et al., 2017). We

have previously demonstrated that upon irradiation, murine PDGFB-

driven gliomas undergo a proneural to mesenchymal transition

(Halliday et al., 2014). Bhat et al., showed that when RCAS-PDGFB

was overexpressed in combination with TAZ/TEAD overexpression,

the resultant tumors had a mesenchymal signature, providing direct

evidence of TAZ/TEAD playing a key role in driving the proneural to

mesenchymal transition (Bhat et al., 2011). More specifically, recent

evidence shows that upon irradiation, human proneural glioma stem
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cells undergo a mesenchymal transition and upregulate YAP/TAZ

pathway genes (Minata et al., 2019). This is very similar to what we

report in the current manuscript using our murine model.

The expression patterns of non-tumor cells are unaffected by

10 Gy of IR over the time course we examined, with the exception of

the myeloid cell lineage. In normal brain, this lineage predominantly

consists of microglia, and this is not significantly affected by

IR. However, tumor within the brain results in the presence of

BMDM, and IR activates microglia and increases the number of

BMDM significantly. IR results in the presence of phagocytic cells,

peaking at 8 hr after IR, that have engulfed tumor cells (by virtue of

contaminating RCAS mRNA), and a separate group of phagocytic cells

at 72 hr after IR that have engulfed neural progenitors.

The notion that tumor stem cells are relatively nonproliferating is

based on normal tissue. In this particular mouse glioma model, the

majority of radioresistant cells are nonproliferating. However, a

smaller population of radioresistant cells exists that is highly prolifera-

tive and, by gene expression patterns, stem-like. This study does not

address what specific cell-type gives rise to recurrences, but a highly

proliferative cell population is likely to contribute. This highly prolifer-

ative population may be specifically vulnerable to intervention based

on its unique signaling dependencies. Our data suggest that

YAP/TEAD signaling may be a candidate target for intervention for

gliomas in the context of radiation.
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