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Abstract 

The likelihood of development of degenerative
joint disease (DJD) of the temporomandibular
joint (TMJ) is related to the integrity of the TMJ
disc. Predilection for mechanical failure of the
TMJ disc may reflect inter-individual differences
in TMJ loads. Nine females and eight males in
each of normal TMJ disc position and bilateral
disc displacement diagnostic groups consented
to participate in our study. Disc position was
determined by bilateral magnetic resonance
images of the joints. Three-dimensional (3D)
anatomical geometry of each subject was used in
a validated computer-assisted numerical model
to calculate ipsilateral and contralateral TMJ
loads for a range of biting positions (incisor,
canine, molar) and angles (1-13). Each TMJ load
was a resultant vector at the anterosuperior-
most mediolateral midpoint on the condyle and
characterized in terms of magnitude and 3D ori-
entation. Analysis of variance (ANOVA) was
used to test for effects of biting position and
angle on TMJ loads. Mean TMJ loads in subjects
with disc displacement were 9.5-69% higher
than in subjects with normal disc position.
During canine biting, TMJ loads in subjects with
disc displacement were 43% (ipsilateral condyle,
p=0.029) and 49% (contralateral condyle,
p=0.015) higher on average than in subjects
with normal disc position. Biting angle effects
showed that laterally directed forces on the den-
tition produced ipsilateral joint loads, which on
average were 69% higher (p=0.002) compared
to individuals with normal TMJ disc position.
The data reported here describe large differ-
ences in TMJ loads between individuals with
disc displacement and normal disc position. The
results support future investigations of inter-
individual differences in joint mechanics as a
variable in the development of DJD of the TMJ.

Introduction

Degenerative changes of the human tem-
poromandibular joint (TMJ) are evident in 3-
29% of the population aged 19-40 years.1

Although degenerative joint disease (DJD) is
common in the human TMJ, the pathomechan-
ics are poorly understood. The mean age of
onset of DJD of the human TMJ is between 25
and 35 years1-9 and approximately 20 years earli-
er than reported for the hip.10-12 Therapeutic
interventions to ameliorate the effects of DJD
in the TMJ, like other synovial joints, have not
been predictably successful.13 The intra-articu-
lar disc is the main mechanism of load distribu-
tion and lubrication in the TMJ.14-18 Although the
high prevalence of disc displacement in other-
wise asymptomatic adults has led some
researchers to propose that it is a non-patholog-
ical variation of anatomy,19,20 disc displacement
is absent mostly in the young, increases with
time through adolescence and early adulthood,
and thus precedes the precocious time-line of
DJD in the TMJ.21-23 It has been postulated that
the propensity to develop DJD of the TMJ
depends on the health of the disc,22 which is
anisotropic with respect to mechanical fatigue.24

The objective of our study was to use a
numerical modeling approach25-27 to test the hy-
pothesis that TMJ loads during static biting are
larger in subjects with TMJ disc displacement
compared to subjects with normal disc position. 

Materials and Methods

Thirty-four subjects gave informed consent
to participate. The study protocol was approved
by Institutional Review Boards. Subjects had
generally intact dentitions, and did not report
or exhibit postcranial DJD, orofacial pain, gross
asymmetries in craniomandibular anatomy as
determined by examination, and were not preg-
nant as determined by medical history.
Diagnostic classification was established by a
clinical examiner using research diagnostic
criteria for temporomandibular disorders28 and
a radiologist using magnetic resonance imag-
ing and three-dimensional (3D) computed
tomography.29 The subjects, 18 females and 16

males, were divided evenly into two diagnostic
groups (Table 1). Mean ages (SD) were 35 (14)
and 34 (15) years for disc displacement and
normal disc position groups, respectively. 

A geometry file was created for each subject
that described positions of the mandibular
condyles, teeth, and five pairs of masticatory
muscles (masseter, anterior temporalis, medial
pterygoid, lateral pterygoid, anterior digastric),
determined from standardized lateral and pos-
teroanterior cephalographs according to a 3D
coordinate system25,27 (Figure 1). Geometry files
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Table 1. Subjects in two diagnostic groups.

Gender Number of subjects with normal Number of subjects with disc
disc position bilaterally displacement (II) according to

RDC/TMD categories (a, b, c):
IIa IIb IIc

Female 9 6 1 2

Male 8 6 1 1
Where: IIa = disc displacement with reduction, IIb = disc displacement without reduction with limited opening, IIc = disc displacement
without reduction without limited opening (more complete criteria and definitions have been published previously 28,29). 
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were used in a previously described numerical
model,30 first to validate the accuracy of the
model in predicting data in each subject, and
then to investigate inter-group differences in
magnitudes of TMJ loads. Model-predicted ipsi-
lateral and contralateral TMJ loads for a given
static mandibular loading situation were
resultant vectors at the anterosuperior-most
mediolateral midpoint on the corresponding
condyle and characterized in terms of magni-
tude and 3D orientation.

Model validation was determined by the
ability to predict right and/or left sagittal plane
projections of the TMJ stress-field trajectory in
each subject31 during symmetrical protrusion
and retrusion of the mandible. That is, model-
predicted orientations of TMJ loads were used
as described previously and compared to indi-
vidual-specific jaw tracking data measured in
vivo.25,27,32,33 Accuracy between model-predicted
and measured data was deemed to be accept-
able based on average errors of 16% (Iwasaki
et al., personal communication). Then the val-
idated model was used to predict magnitudes of
TMJ forces per unit biting force (BF) using an
objective function of minimization of muscle
effort (MME).26,34 The MME model calculated
joint forces for biting on incisor, canine, and
molar teeth, at a variety of angles (Tables 2, 3).
Data were pooled and averaged by group.
Analysis of variance (ANOVA) was used to test
for significant differences between groups for
magnitudes of TMJ loads during biting on inci-
sors, canines, and molars at 13 angles.

Results

Among all biting positions and angles, mean
predicted TMJ loads were 9.5-69% higher in
subjects with disc displacement compared to
subjects with normal disc position. The high-
est mean predicted TMJ loads occurred during
canine biting in subjects with disc displace-
ment (Table 2), where mean contralateral joint
loads were 138% of the BF. During canine bit-
ing, between-group differences in mean TMJ
loads of 43% (ipsilateral, p=0.029) and 49%
(contralateral, p=0.015) were statistically sig-
nificant (Figure 2).

With respect to the effects of biting angle,
vertical and laterally-directed BF produced sig-
nificant differences in joint loads between the
two diagnostic groups. In all cases, ipsilateral
and contralateral joint loads in the subjects
with disc displacement were higher, with sta-
tistically significant differences (all p<0.05)
occurring during vertical (biting angle 1), lat-
erally-directed (biting angles 2, 3), and antero-
laterally-directed biting (biting angle 12;
Figure 3; Table 3 a,b). 

Figure 3. Between-group differences (disc displacement group – normal disc position
group) in mean ipsilateral and contralateral TMJ loads for 13 biting angles. Mean differ-
ences between disc displacement (DD, n= 17) and normal disc position (n= 17) groups in
ipsilateral and contralateral TMJ loads are plotted on the vertical axis for 13 biting angles
(see Table 2 for descriptions) along the horizontal axis. Differences in TMJ loads were
expressed as a percentage of the applied bite force. For all biting angles, subjects with TMJ
disc displacement had higher joint loads. *indicates p<0.05, **indicates p<0.005.

Figure 1. Force vectors involved in numerical models of isometric biting in humans. Forces
of biting (BF, 100 units), at the joints (Fcondyle), and representing five muscle pairs
(M1,2=masseter, M3,4=anterior temporalis, M5,6= lateral pterygoid, M7, 8= medial pterygoid,
M9,10=anterior digastric muscles) are illustrated. The axis system used to characterize the rel-
ative positions of the condyles, teeth, and muscle vectors, based on an individual’s anatomy,
is shown also. Force magnitudes were expressed as percentages of BF. Enlargement (upper
right) shows the azimuth angle (θxz°), measured parallel to the occlusal plane, which varies
between 0 and 359°, and the vertical angle (θy°) where θy=0° is normal to the occlusal plane.
For example, laterally-directed molar BFs had θxz=270° and θy=20°, 40°, and were biting
angles 2, 3, respectively. (Modified from previous work.26)

Figure 2. Between-group differences (disc displacement group - normal disc position group)
in mean ipsilateral and contralateral TMJ loads for three biting positions. Mean differences
between disc displacement (DD, n=17) and normal disc position (n=17) groups in ipsilat-
eral and contralateral TMJ loads are plotted on the vertical axis for three biting positions
(canines, incisors, molars) along the horizontal axis. Differences in TMJ loads were
expressed as a percentage of the applied bite force. For all biting positions, subjects with
TMJ disc displacement had higher joint loads. *indicates p<0.05. 
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Discussion

The data presented here are the first to
imply that subjects with TMJ disc displacement
have higher joint loads compared to subjects
with normal disc position. During daily activi-
ties, subjects with disc displacement were
capable of producing TMJ loads >60% higher
than control subjects. TMJ loads predicted by
validated computer modeling showed inter-
group differences and suggest that inter-indi-
vidual differences in joint mechanics are
potential variables in DJD of the TMJ. 

The numerical modeling approach has limi-
tations that have been discussed in detail pre-
viously.28 One of these limitations is the simpli-
fied representation of joint and muscle forces.
The model predicts magnitudes of these forces
and also the direction of joint forces based on
individual-specific anatomical data that inc-
lude the position and direction of masticatory
muscle forces. The area of joint loading in the
individual is an important variable and should
be investigated in future studies; for example,
through dynamic stereometry.31 Furthermore,
the muscles of mastication are multi-pennate
muscles and, theoretically, each anatomical
portion of a muscle can be represented by a
vector. These vectors can be summed to produ-
ce a single unit vector. Variation in the direc-
tion of this unit vector depends on whether or
not discrete areas of a muscle can be differen-
tially activated. Contrary to reported conclu-
sions, documented data for the masseter and
temporalis muscles fail to show discrete differ-
ential activation of portions of muscles except
with cortical feedback. That is, for the mas-
seter muscle no single portion was solely ac-
tive for a variety of tasks performed35 and near
absence of differential activation was shown
for most biting loads.36 The posterior deep por-
tion behaved most differently from the rest of
the masseter muscle, but behaved similarly to
the neighboring temporalis muscle,37 which
may indicate cross-talk from the latter muscle.
Similarly all portions of the temporalis muscle
were active during biting tasks and extremes
of unit vector orientation were relatively in-
consequential (<10°).37 These findings sup-
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Table 3a. Mean (SE) ipsilateral TMJ loads for thirteen biting angles in two diagnostic
groups.

Unilateral right BF directions (°) Mean ipsilateral TMJ load p
biting angle θxz θy (% of BF)
(Description)

Displaced TMJ Normal TMJ disc 
disc group position group
(SE = 15) (SE = 15)

1 (Vertical) 90 0 116 69 0.028

2 (Laterally-directed) 270 20 91 42 0.023

3 (Laterally-directed) 270 40 113 44 0.002

4 (Medially-directed) 90 20 115 100 0.469

5 (Medially-directed) 90 40 131 121 0.655

6 (Posterolaterally-directed) 355 20 103 77 0.237

7 (Posterolaterally-directed) 355 40 107 85 0.293

8 (Posteromedially-directed) 5 20 104 81 0.273

9 (Posteromedially-directed) 5 40 107 89 0.400

10 (Anteromedially-directed) 175 20 94 70 0.268

11 (Anteromedially-directed) 175 40 94 73 0.314

12 (Anterolaterally-directed) 185 20 108 66 0.049

13 (Anterolaterally-directed) 185 40 101 65 0.096

Table 3b. Mean (SE) contralateral TMJ loads for thirteen biting angles in two diagnostic
groups.

Unilateral right                     BF directions (°) Mean contralateral TMJ load p
biting angle θxz θy (% of BF)
(Description)

Displaced TMJ Normal TMJ disc 
disc group position group
(SE = 16) (SE = 15)

1 (Vertical) 90 0 127 76 0.023

2 (Laterally-directed) 270 20 150 105 0.047
3 (Laterally-directed) 270 40 160 121 0.074

4 (Medially-directed) 90 20 86 54 0.144
5 (Medially-directed) 90 40 84 50 0.120

6 (Posterolaterally-directed) 355 20 122 100 0.319
7 (Posterolaterally-directed) 355 40 127 114 0.545

8 (Posteromedially-directed) 5 20 119 97 0.309
9 (Posteromedially-directed) 5 40 122 108 0.500

10 (Anteromedially-directed) 175 20 91 64 0.224
11 (Anteromedially-directed) 175 40 80 54 0.242

12 (Anterolaterally-directed) 185 20 114 69 0.043
13 (Anterolaterally-directed) 185 40 101 62 0.079

Table 2. Mean (SD) TMJ loads for three biting positions in two diagnostic groups.

Displaced TMJ disc group Normal TMJ disc position group
Biting Ipsilateral TMJ Contralateral TMJ Ipsilateral TMJ Contralateral TMJ
position Load (% BF) Load (% BF) Load (% BF) Load (% BF)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Canines 124a (14) 138b (14) 81a (13) 89b (14)

Incisors 119 (14) 118 (14) 94 (13) 92 (14)
Molars 76 (14) 87 (14) 52 (13) 67 (14)

Where similar superscript letters indicate significant differences, p<0.05.
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port the use of a unit vector as a reasonable
first approximation of the force vector. Another
limitation is the 2D validation currently used;
however, capabilities for 3D validation using
dynamic stereometry should be possible in
future. In addition, further validation of mus-
cle force magnitudes during modeled jaw tasks
using EMG data recorded in vivo during simi-
lar tasks should be carried out in future. 

Nevertheless, currently there are no other
acceptable means known, besides the validat-
ed numerical modeling approach, to determine
individual-specific TMJ forces during static or
dynamic loading of the jaws. Additional future
work should focus on diagnostic group differ-
ences in intracapsular mechanics and fre-
quency of loading as variables associated with
fatigue failure of the TMJ articulating tissues. 
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