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Narrow-bandwidth sensing of high-frequency fields
with continuous dynamical decoupling
Alexander Stark1,2, Nati Aharon3, Thomas Unden 2, Daniel Louzon2,3, Alexander Huck 1, Alex Retzker 3,

Ulrik L. Andersen1 & Fedor Jelezko2,4

State-of-the-art methods for sensing weak AC fields are only efficient in the low frequency

domain (<10MHz). The inefficiency of sensing high-frequency signals is due to the lack of

ability to use dynamical decoupling. In this paper we show that dynamical decoupling can be

incorporated into high-frequency sensing schemes and by this we demonstrate that the high

sensitivity achieved for low frequency can be extended to the whole spectrum. While our

scheme is general and suitable to a variety of atomic and solid-state systems, we experi-

mentally demonstrate it with the nitrogen-vacancy center in diamond. For a diamond with

natural abundance of 13C, we achieve coherence times up to 1.43 ms resulting in a smallest

detectable magnetic field strength of 4 nT at 1.6 GHz. Attributed to the inherent nature of our

scheme, we observe an additional increase in coherence time due to the signal itself.
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Improving the sensitivity of high-frequency sensing schemes is
of great significance, especially for classical fields sensing1–3,
detection of electron spins in solids4, 5, and nuclear magnetic

resonance spectroscopy6. The common method to detect high-
frequency field components is based on relaxation measurements,
where the signal induces an observable effect on the lifetime, T1,
of the probe system4, 5, 7. Nevertheless, the sensitivity of this
method is limited by the pure dephasing time T�

2 of the probe
system.

Pulsed dynamical decoupling8–10 can substantially increase the
coherence time11–18. In order to carry out sensing with a
decoupling scheme, the frequency of the decoupling pulses has to
be matched with the frequency of the target field19, 20. This largely
restricts the approach to low frequencies, as the repetitive appli-
cation of pulses is limited by the maximum available power per
pulse21. The same power restrictions are present for very rapid
and composite pulse sequences aimed to decrease both external
and controller noise22–26.

With continuous dynamical decoupling (CDD)21, 27–38

robustness to external and controller noise can be attained,
especially for multi-level systems39–42. However, the significance
of CDD for sensing high-frequency fields remained elusive.
Indeed, it was unclear whether it is possible to incorporate such a
protection into the metrology task of sensing frequencies in the
GHz domain. The first step towards this goal was done recently
by integrating CDD in the sensing of high-frequency fields with
three level systems42.

In this article, we propose, analyze, and experimentally
demonstrate a sensing scheme that is capable of probing high-
frequency signals with a coherence time, T2, limited sensitivity.
Unlike relaxation measurements comprising a bandwidth ∝1=T�

2 ,
determined by the pure dephasing time, T�

2 , of the sensor (up to
the MHz range), our protocol overcomes the imposed limitation
by protecting the addressed two-level system (TLS) with an
adapted concatenated CDD approach. We use and adjust it such
that high-frequency sensing becomes feasible even for not phase-
matched signals. As a result, the proposed scheme is generic and
works for many atomic or solid-state TLS, in which the energy
gap matches the frequency of the signal under interrogation. A
remarkable feature of our scheme is the fact that the signal to be
probed also works partially as a decoupling drive and thus
improves further the sensitivity of the sensor.

We demonstrate the performance of CDD by applying it to a
nitrogen-vacancy (NV) center in diamond with natural abun-
dance of 13C. Here, we utilize two of its ground sub-levels as the
TLS. The states of the NV center can be read out and initialized
by a 532 nm laser, which reveals spin-dependent fluorescence
between the two levels43–45. The system can be manipulated by
driving it with microwave fields. We show that by using a con-
catenation of two drives, an improvement in coherence time of
the sensor by more than one order of magnitude is achieved.
Taking into account the effect of an external signal, g, on the
sensor during a concatenation of two drive fields, we obtain an
improvement in bandwidth for high-frequency sensing by three
orders of magnitude in comparison to the relaxometry approach.
Moreover, we report on the measurement of a weak high-
frequency signal with strength g, which relates to a smallest
detectable magnetic field amplitude of δBmin≈ 4 nT.

Results
The sensing scheme. The basic idea of utilizing concatenated
continuous driving to create a robust qubit is illustrated in Fig. 1a,
b. The concatenation of two phase-matched driving fields results
in a robust qubit36, 42. In what follows we show that such a robust
qubit can be utilized as a sensor for frequencies in the range of the

qubit’s energy separation and hence, dynamical decoupling can
be integrated into the sensing task.

By the concatenated driving, the qubit is prepared in a state
that allows for strong coherent coupling to the high-frequency
signal to be probed (corresponding to the last TLS in Fig. 1c). In
the total Hamiltonian, H, we consider the concatenation of two
driving fields of strength (the Rabi frequency) Ω1 and Ω2,
respectively. The Hamiltonians of the TLS, H0, the protecting
driving fields, HΩ1 ;HΩ2 and the signal, Hs, are given by

H ¼ H0 þ HΩ1 þ HΩ2 þ Hs

¼ ω0
2 σz þ Ω1σx cos ω0tð ÞþΩ2σy cos ω0tð Þcos Ω1tð Þ þ gσx cos ωst þ φð Þ;

ð1Þ

where ω0 is the energy gap of the bare states (ħ= 1), ωs is the
frequency of the signal, and g is the signal strength which we want
to determine. We tune the system, i.e., ω0, Ω1, and Ω2, such that
ωs=ω0 +Ω1 +Ω2/2.

It is an important feature that phase matching between the
signal and the control is not required, which means that the signal
phase φ can be unknown and moreover, it may vary between
experimental runs. In addition, we make the assumption that
ω0 � Ω1 � Ω2 � g. Moving to the interaction picture (IP) with
respect to H0 ¼ ω0

2 σz and making the rotating-wave approxima-
tion, we obtain

HI ¼ Ω1
2 σx þ Ω2

2 σy cos Ω1tð Þ

þ g
2 σþe�i Ω1þΩ2=2ð Þtþφð Þ þ σ�eþi Ω1þΩ2=2ð Þtþφð Þ� �

:

ð2Þ

This picture incorporates the effect of Ω1 onto a TLS and express
the new system in eigenstates of σx, the ±j i (dressed) states,
which separates the contributions from Ω2 and g. For a large
enough drive Ω1, the ±j i eigenstates are decoupled (in first
order) from magnetic noise, δBσz, because ± σzj j±h i ¼ 0.
However, power fluctuations δΩ1 of Ω1 limit the coherence time
of the dressed states. The resulting IP is illustrated in the second
TLS in Fig. 1c.

We continue by moving to a second IP with respect to
H01 ¼ Ω1

2 σx , which leads to

HII ¼ Ω2

4
σy þ g

4
�iσþe�i Ω2

2 tþφð Þ þ iσ�eþi Ω2
2 tþφð Þ� �

: ð3Þ

Once again, we incorporate Ω2 into the dressed states, so that
solely the contribution of the signal g becomes obvious, which is
depicted in the last TLS of Fig. 1c. The second drive, Ω2, which is
larger than δΩ1, creates effectively doubly dressed states (the σy
eigenstates). These doubly dressed states are immune to power
fluctuations of Ω1 and hence prolong the coherence time (see
Supplementary Note 2 for more details). Moving to the third IP
with respect to H02 ¼ Ω2

4 σy results in

HIII ¼ g
8

σþe�iφ þ σ�eþiφ
� �

; ð4Þ

where we can clearly see that the signal g induces rotations in the
robust qubit subspace (either with σ+ or σ−). These rotations are
obtained for any value of an arbitrary phase φ and the bandwidth
(∝1/T2) is now limited by the coherence time, T2, of the sensor.
Hence, if a given TLS exhibits the possibility of manipulating it
via drive fields HΩ1 and HΩ2 , we can achieve a high-frequency
sensor in the range of ω0.
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By this, we overcome the low frequency limit that is common
to state-of-the-art pulsed dynamical decoupling sensing methods.
In addition, we present an analog pulsed version of our scheme,
where the pulsing rate is much lower than the frequency of the
signal (Supplementary Note 9). However it is not a direct
measurement of the signal, but based on a signal demodulation
approach. Compared to the pulsed schemes, CDD does not suffer
from being susceptible to higher harmonics of the decoupling
window appearing naturally from the periodic character of the
pulsed sequence46. Eventually, less power per unit time is used in
the continuous scheme leading to a smaller overall noise
contribution from the drive.

Implementation and analysis of the presented scheme. After
determining the optimal drive parameters, Ω1 and Ω2, for the
concatenated sensing sequence, and thereby maximize the
coherence times, TΩ1

2 and TΩ1;Ω2
2 , respectively, of the sensor

(Supplementary Note 6), we apply an external high-frequency
signal (according to Hs in Eq. (2)) tuned to one of the four
appearing energy gaps ωs of the doubly dressed states. In these
energy gaps an effective population transfer can occur between
the states of the robust TLS, evidenced by signal induced Rabi
oscillations at a rate g″= g′/2= g/4 in the double drive case
(Supplementary Note 2).

The measurements take place in the laboratory frame, i.e., all
three contributions Ω1, Ω2, and g to the population dynamics of
the TLS will be visible. In order to see solely the effect of g on the
TLS, we alter the modulation of the second drive in Eq. (2) to cos
(Ω1t + π/2). This does not change the performance of the scheme,
but only changes the axis of rotation to σz for the second drive Ω2.
Since the readout laser is effectively projecting the population in
the σz eigenbasis, we can make the Rabi rotations of Ω2 invisible
to the readout. To remove the effect of Ω1 in the data, we can
simply sample the measurement at multiple times of
τΩ1 ¼ 2π=Ω1, i.e., we measure at times t ¼ NτΩ1 (N 2 N). This
procedure reveals directly g″(g′) as the signal induces Rabi
oscillations of the robust qubit under double (single) drive
(Fig. 2). Alternatively, we could have applied at the end of the
drive a correction pulse in order to complete the full Ω1 and Ω2

rotations, so that just the effect of g″ remains.

Without a signal, g, we achieve coherence times of TΩ1
2 � 60 μs

with a single drive (Ω2= 0, compare Supplementary Fig. 3 in
Supplementary Note 6A) and TΩ1;Ω2

2 � 393 μs with a double drive
(compare Supplementary Fig. 4 in Supplementary Note 6B). The
results for long and slow Rabi oscillations induced by an external
signal, g, under single and double drive (Ω2/Ω1≈ 0.15) are shown
in Fig. 2. These illustrate a significant increase of the coherence
time of the sensor by two orders of magnitude, from TΩ1

2 � 60μs
to a lifetime limited coherence time of (T1/2≈)
TΩ1;Ω2;g
2 � 1:43ms. It should be noted that the signal itself can

be considered as an additional drive (cf. Eq. (3)), correcting
external errors δΩ of the previous drive and thereby prolonging
the coherence time even further. Consequently, we can improve
the bandwidth for high-frequency sensing by almost three orders
of magnitude from ~900 kHz (for T�

2 � 1:1 μs) to ~700 Hz (for a
TΩ1;Ω2;g
2 � 1:43ms). Moreover, in Supplementary Note 3 we

discuss an improved version of our scheme which has the
potential to push the coherence time of the sensor further towards
the lifetime limit.

To benchmark the double drive scheme against a standard
single drive approach, we determine the smallest magnetic field
which can be sensed after an accumulation time t. The smallest
measurable signal S is eventually bounded by the smallest
measurable magnetic field change δBmin, which is found to be

δBminðt; τÞ ¼ δS
max ∂S

∂B

�� �� ¼
1

γNV

σðtÞ
ατC

: ð5Þ

Here, γNV/2π= 28.8 GHz T−1 is the gyromagnetic ratio of the NV
defect, σ(t) is the standard deviation of the measured normalized
fluorescence counts after time t, α accounts for a different phase
accumulation rate depending on the decoupling scheme, and C is
the contrast of the signal (see Supplementary Note 5 for detailed
derivation). Since the photon counting is shot noise limited, we
have σðtÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nph � N

p
, with Nph being the number of photons

measured in τ and N= t/τ is the number of sequence repetitions.
With this, Eq. (5) will transform in the commonly known
form47, 48 with some measurement dependent constants.

We recorded σ(t) as a function of time and use this to
determine δBmin. The results of this measurement for both the
single and double drive are summarized in Fig. 3. The sensitivity
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Fig. 1 Schematic representation of our setup. a The NV center probes an external signal while it is being manipulated by the control fields. b Schematic
representation of the sequence applied in this work. c The protected TLS: the bare system, H0, is subjected to strong environmental noise δB. Applying a
strong drive, Ω1, opens a protected gap, now subjected mainly to drive fluctuations δΩ1. A second drive, Ω2, is then applied to protect the TLS, HI, from
these fluctuations, resulting in a TLS, HII, on resonance with the signal, g″= g/4, with noise mainly from the second weak drive δΩ2 � δΩ1
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can be obtained by ηðτÞ ¼ δBminðt; τÞ
ffiffi
t

p
, which is optimal in the

vicinity of the coherence time of the sensor, τ≈ T2. With our
system, we achieve a sensitivity of ηΩ1;Ω2;g ≲1 μTHz−0.5 in the
double drive case at ~1.6 GHz, which should be compared to
ηΩ1;g ≲20 μTHz−0.5 for a single drive approach.

Both traces in Fig. 3 were recorded while a signal g was applied.
Apart from the mere fact, that the number of driving fields are
different, the specific choice for τ will also determine the
magnitude of the smallest measurable magnetic field change
δBmin. Obtaining the coherence time without a signal, g, (which
are TΩ1

2 and TΩ1;Ω2
2 ), is a common practice in the field, but will

not result in a correct choice of τ for the sensitivity measurement
and also for Eq. (5), since the signal has an impact on the sensor’s
sensitivity. However, if δBmin shall be evaluated correctly, then the
non-linearity, i.e., the coherence time prolonging effect of the
signal, has to be taken into account. Otherwise an even worse
δBmin will be measured as it is exemplarily shown for the
single drive case in Fig. 3, where δBmin was evaluated and
measured under the naive assumption that the signal has no

effect on the coherence time of the sensor (i.e., we measure at
τ ¼ TΩ1

2 and not at τ ¼ TΩ1;g
2 ). This effect was included in the

double drive case.
To examine the signal protection effect more in detail, the

coherence time of the sensor is measured as a function of signal
strength, g, in a single drive configuration (Supplementary
Note 7). From these measurements we project the sensitivity
associated with a specific signal strength (Fig. 4), assuming σ(t) is
unchanged for the same repetition N. This is a reasonable
assumption given that the only difference between measurements
is the signal strength, g, and sequence length, τ.

Eventually, this phenomenon, which seems to be an inherent
part of this continuous scheme, can be used to further
increase the performance of the sensor by fine tuning the
controlled parameters (static bias field Bbias and thereby
changing ω0, Ω1 and Ω2) to match the signal frequency, ωs,
and strength, g (see Supplementary Note 3 for further
discussions).

Discussion
We have demonstrated that dynamical decoupling can be used in
the context of sensing high frequency fields. In contrast to state-
of-the-art pulsed dynamical decoupling protocols, we can show
that CDD can be simultaneously integrated into the sensing task.
By utilizing a NV center in diamond we have demonstrated by
pure concatenation of two drives a coherence time of ~393 μs
which constitutes an improvement of more than two orders of
magnitude over T�

2 , and an increase of resolution from the
MHz to a few kHz. The application of this method for wireless
communication49 could have a transformative effect due to the
high resolution of the protocol. Since the protocol is applicable to
a variety of solid-state, molecular, and atomic systems, we
believe that it has a great potential to have a significant impact on
many fields and tasks that involve high frequency sensing
(up to frequencies in the THz range). Eventually, this method
could also be used to improve the coupling to quantum systems30.
We would like to note that during the preparation of this
manuscript we became aware of a related independent work by
Joas et al.50.
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= (2πδgmin)/γNV as a function of total measurement time. To show the total
improvement, we obtain σ(t) at τ ¼ TΩ1

2 � 60 μs in the single drive case and
σ(t) at τ ¼ TΩ1 ;Ω2 ;g

2 � 1:43ms in the double drive case. Note, that for both
data traces a signal was always present, g/2π= 26.9 kHz and g/2π= 69.2
kHz in the single and in the double drive, respectively. But only in the
double drive the coherence time prolonging effect of g was included into
the choice of τ for Eq. (5) (i.e., the measurement was performed at τ ¼
TΩ1 ;Ω2 ;g
2 instead at τ ¼ TΩ1 ;Ω2

2 � 393 μs)
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