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A general framework for the 
Quantum Zeno and anti-Zeno 
effects
Adam Zaman Chaudhry

Repeated measurements can slow down (the quantum Zeno effect) or speed up (the quantum anti-Zeno 
effect) the temporal evolution of a quantum system. In this paper, a general treatment of the quantum 
Zeno and anti-Zeno effects is presented which is valid for an arbitrary system-environment model in the 
weak system-environment coupling regime. It is shown that the effective lifetime of a quantum state 
that is subjected to repeated projective measurements depends on the overlap of the spectral density 
of the environment and a generalized ‘filter function’. This filter function depends on the system-
environment Hamiltonian, the state of the environment, and the measurement being performed. Our 
general framework is then used to study explicitly the Zeno to anti-Zeno crossover behaviour for the 
spin-boson model where a single two-level system is coupled to a bosonic environment. It is possible 
to not only reproduce results for the usual population decay case as well as for the pure dephasing 
model, but to also study the regime where both decay and dephasing take place. These results are 
then extended to many two-level systems coupled collectively to the bosonic environment to further 
illustrate the importance of the correct evaluation of the effective decay rate.

It is well-known that if a quantum system is subjected to rapidly repeated measurements, the temporal evolu-
tion of the quantum system slows down1. This effect, known as the Quantum Zeno effect (QZE), has attracted 
widespread interest both theoretically and experimentally due to its relevance to the foundations of quantum 
mechanics as well as possible applications in quantum technologies2–23. Surprisingly, however, it has also been 
found that if the measurements are not rapid enough, the opposite effect can occur, that is, the measurements 
can actually accelerate quantum transitions. This effect has been appropriately dubbed the quantum anti-Zeno 
effect (QAZE)24–26. Since this discovery, both the QZE and QAZE have been studied in many different physical 
setups such as superconducting qubits10,23,27, nanomechanical oscillators28, Josephson junctions29, disordered spin 
systems30, and localized atomic systems31. Generally speaking, the focus has been to study the population decay 
of quantum systems, whereby the quantum system is prepared in an excited state, and the system is thereafter 
repeatedly checked to see if the system is still in the excited state or not24,26,28–37. It has then been shown that the 
decay rate depends on the overlap of the spectral density of the environment and a measurement-induced level 
width24. This overlap changes as the measurement rate changes, generally leading to a crossover from the Zeno 
regime with large measurement rates to the anti-Zeno regime with relatively smaller measurement rates.

With increasingly sophisticated quantum technologies, it becomes important to investigate what happens 
beyond such population decay models. For instance, we can envisage repeatedly preparing not simply the excited 
state, but rather a superposition state of the ground and excited states. Such a superposition state will undergo 
not only population decay but also dephasing38. To this end, the QZE and the QAZE have been studied for a pure 
dephasing model in ref. 39. It was found therein that there are considerable differences between this case and the 
population decay case. For example, for the pure dephasing model in the weak coupling regime, the lifetime of 
the quantum state depends on the overlap of the spectral density of the environment and a ‘filter function’ that is 
different from the usual sinc-squared function obtained for the population decay model. Moreover, by examining 
the collective dephasing of many two-level systems, it was found that multiple Zeno and anti-Zeno regimes can 
be found. At the same time, however, these results are limited in the sense that they are only applicable for exactly 
solvable pure dephasing models. Nevertheless, these differences motivate us to investigate the QZE and the QAZE 
for more arbitrary system-environment Hamiltonians and state preparations. To this end, in this work, we derive 
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an expression for the effective lifetime of a quantum state, subjected to repeated projective measurements, that 
is valid for weak system-environment coupling strength. This effective lifetime depends on the overlap between 
the spectral density of the environment and a generalized ‘filter function’ that in turn depends on the state that 
is repeatedly prepared, the environment correlation function, the system Hamiltonian parameters, the measure-
ment interval, and the system-environment coupling. This expression is general in the sense that no assumption is 
made beforehand about the actual form of the system-environment Hamiltonian or the state that is being repeat-
edly prepared. The effective decay rate of the quantum state can thereby be controlled by suitably engineering the 
spectral density of the environment40.

Once we have derived a general expression for the effective lifetime of a quantum state, our main task then 
is to actually evaluate the generalized filter function. To illustrate the application of our formalism, the task of 
evaluating this filter function is first performed for the usual population decay model to show that we reproduce 
the well-known sinc-squared filter function. Similarly, we produce results that are in agreement with the exactly 
solvable pure dephasing model in the weak-coupling regime. We then consider the QZE and QAZE for the gen-
eral spin-boson model where generally both population decay and dephasing take place. In particular, we show 
that the filter function is different for the general case as compared with the pure dephasing and decay cases and 
must be carefully evaluated. We then calculate the effective lifetime of the quantum state, and thereby the Zeno to 
anti-Zeno crossover behaviour, to further illustrate the differences as compared to the pure dephasing and decay 
cases. We next consider a collection of two-level systems collectively coupled to an environment that causes both 
dephasing and decay. In this case, we find that the effective decay rate is amplified depending on the number of 
particles coupled to the environment, thereby making the use of the correct filter function even more important.

Results
The general expression for the effective decay rate. We start by considering a general system-envi-
ronment Hamiltonian written in the form H =  HS +  HB +  V, where HS is the system Hamiltonian, HB is the 
Hamiltonian of the environment, and V describes the system-environment interaction. At time t =  0, we prepare 
the initial system state ψ . N repeated projective measurements, given by the projector ψ ψ=ψP , are now 
applied with equal time interval τ. It should be noted that before each measurement, we apply the operator τeiH S  
in order to remove the system evolution due to HS itself 39,41. In other words, following refs 39 and 41, we consider 
the so-called ‘dynamical fidelity’ to characterize the effective decay rate. If the survival probability of the quantum 
state is S after N time intervals, it is convenient to write S ≡  e−Γ(τ)Nτ, thereby allowing us to interpret 1/Γ (τ) as the 
effective lifetime of the quantum state. Alternatively, Γ (τ) can be interpreted as the effective decay rate of the 
quantum state. We assume that the system-environment interaction is weak enough such that we can safely ignore 
the build-up of the system-environment correlations as the system and the environment evolve together39. That 
is, we are neglecting any disturbance to the environment induced by measuring the system. In this case, S =  [s(τ)]N 
where s(τ) is the survival probability associated with one measurement. The effective decay rate is then 
τ τΓ = −

τ
s( ) ln ( )1 . Now, assuming that the coupling V can be written as F ⊗  B where F is an operator acting in 

the Hilbert space of the system and B is an operator acting in Hilbert space of the environment, we have found 
that the effective decay rate can be written as an overlap integral of the spectral density of the environment J(ω) 
and a generalized ‘filter function’ Q(ω, τ). That is,

∫τ ω ω ω τΓ =
∞

d J Q( ) ( ) ( , ), (1)0

where the generalized filter function Q(ω, τ) is

∫ ∫ω τ
τ

ω ρ=






′ ′ − ′
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τ
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 Q dt dt f t P F t t F t( , ) 2 Re ( ( , )Tr{ ( ) (0) ( )})
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Here ρ ψ ψ=(0)S , ψ⊥P  is a projector onto the subspace orthogonal to ρS(0), and = −
F t e Fe( ) iH t iH tS S . The envi-

ronment correlation function is given by ρ= C t B t B( ) Tr { ( ) }B B  where = −
B t e Be( ) iH t iH tB B , ρB is the initial state 

of the environment, and TrB denotes taking trace over the environment. The function f(ω, t) can then be extracted 
from ∫ ω ω ω=

∞C t d J f t( ) ( ) ( , )
0

. Details regarding the derivation of Eq. (1) can be found in the Methods 
section.

Thus, we have found that if the system-environment coupling is weak, the effective decay rate of a quantum 
state Γ (τ) depends on the overlap of the spectral density of the environment J(ω) and an effective filter function 
Q(ω, τ). This filter function depends on the frequency of the measurement, the state that is repeatedly prepared, 
the way that the system is coupled to the environment, and part of the environment correlation function. Note 
that the behaviour of Γ (τ) as a function of τ allows us to identify the Zeno and anti-Zeno regimes. One possible 
approach, followed for instance in refs 25 and 32, is to compare the ‘free’ effective decay rate in the absence of any 
measurements with the measurement-modified effective decay rate. An alternative approach, which we adopt 
in this paper, is to simply say that if Γ (τ) decreases when τ decreases, we are in the Zeno regime, while if Γ (τ) 
increases if τ decreases, then we are in the anti-Zeno regime24,33,36,39. We also note that for the more generalized 
system-environment coupling V =  ∑ μFμ ⊗  Bμ, Γ (τ) is again given by Eq. (1), but now the filter function is

∫ ∫∑ω τ
τ

ω ρ=








′ ′ − ′






µν

τ

µν ψ ν µ⊥ Q dt dt f t P F t t F t( , ) 2 Re ( ( , )Tr{ ( ) (0) ( )}) ,
(3)

t

S0 0

where fμν(ω, t) is extracted from ∫ ω ω ω= = 〈 〉µν µν µ ν
∞

 C t d J f t B t B( ) ( ) ( , ) ( ) (0) B0
.
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Application to the population decay model. To illustrate the formalism that we have developed, let us 
start from the system-environment Hamiltonian (we set ħ =  1 throughout this work)

∑ ∑εσ ω σ σ= + + + .+ −† ⁎ †H b b g b g b
2

( )z
k

k k k
k

k k k k

Here a two-level system with level spacing ε interacts with an environment, which is modeled as a collection of 
harmonic oscillators, and undergoes population decay. σz is the standard Pauli matrix, σ+ and σ− are the raising 
and lowering operators respectively, ωk are the frequencies of the environment oscillators, †bk  and bk are the crea-
tion and annihilation operators for the oscillators, and the gk describe the interaction strength between the 
two-level system and the environment modes. This system-environment Hamiltonian is widely used to study, for 
instance, spontaneous emission42. Note that this Hamiltonian is the same as

∑ ∑εσ ω σ= + + +† ⁎ †H b b g b g b
2

( ),z
k

k k k x
k

k k k k

except that the non-rotating wave approximation terms have been dropped. To calculate the filter function, we 
identify F1 =  σ+, = ∑ ⁎B g bk k k1 , F2 =  σ− and = ∑ †B g bk k k2 . Let us first calculate the environment correlation func-
tions. We find that = ∑ ω

′ ′
−

′
⁎ †C t g g e b b( ) k k k k

i t
k k B12 , k , where 〈 ...〉 B denotes taking an average over the environ-

ment state. At zero temperature, all the oscillators are in their ground state, and we get = ∑ ω−C t g e( ) k k
i t

12
2 k . 

This sum is converted to an integral over the environment frequencies via the substitution 
∫ ω ω∑ … → …
∞g d J( ) ( )( )k k

2
0

, thus allowing us to identify f12(ω, t) =  e−iωt. On the other hand, it is straightfor-
ward to show that C11(t) =  C22(t) =  0, and C21(t) =  0 at zero temperature as well. The state initially prepared is the 
excited state which we denote by ↑ . It follows that = ↓ ↓ψ⊥P , where σ ↓ = − ↓z . Using σ= ε+

F t e( ) i t
1  

and σ− ′ = ε− − − ′
F t t e( ) i t t

2
( ), we find ∫ ∫ω τ ε ω= ′ − ′

τ

τQ dt dt t( , ) cos[( ) ]t
k

2
0 0

. Performing the integrals, we 
end up with ω τ τ= 





ε ω τ−Q( , ) sinc2 ( )
2

, which is the usual filter function24,26. Thus, our formalism reproduces the 
well-known sinc-squared function for the case where we study the Zeno to anti-Zeno transition in the context of 
population decay. In particular, if τ is small, then we obtain ∫τ τ ω ωΓ ≈

∞ d J( ) ( )
0

, thus putting us in the Zeno 
regime. However, for larger τ, decreasing τ can increase the overlap between J(ω) and Q(ω, τ), leading to the 
anti-Zeno effect.

Application to the pure dephasing model. Let us now consider the system environment model specified 
by the Hamiltonian

∑ ∑εσ ω σ= + + + .† ⁎ †H b b g b g b
2

( )z
k

k k k z
k

k k k k

A two-level system with level spacing ε is interacting with an environment that is again modeled as a collection of 
harmonic oscillators. However, now there is no population decay. Instead, the system undergoes dephasing  
only, which is the reason why this model is known as the pure dephasing model39. Once again, we start 
 by calculating the environment correlation function. Assuming the environment to be in the standard 
 equilibrium state, that is ρ = β−e Z/B

H
B

B  with ZB the partition function, it is straightforward to show  
that ω ω ω= −βω( )f t t i t( , ) cos( )coth sin( )

2
. We consider the system state that we start off with to be 

↑ = ↑ + ↓( )x
1
2

, where, as before, σ ↑ = ↑z  and σ ↓ = − ↓z . We repeatedly measure to check if the 
state is still ↑x  or not with time interval τ . Now σ σ↑ ↑ =ψ⊥PTr{ } 1z x x z , leading to ω τ =Q( , )  
∫ ∫ ω′ ′
τ

τ βω( )dt dt tcos( )cotht2
0 0 2

.  Per forming the  integra ls  and s impl i f y ing ,  we  obtain  τΓ =( )

∫ ω ω 



τ

βω ωτ

ω

∞ −( )d J ( ) coth
0

2
2

1 cos( )
2

.

On the other hand, the pure dephasing model can be solved exactly. Using the exact solution, it can be shown 
that39 τΓ = − 


− − 

τ
γ τ−e( ) ln 1 (1 )1 1

2
( ) , where ∫γ τ ω ω ωτ= −

ω

βω∞ ( )d J( ) ( ) [1 cos( )]coth
0

4
22 . For weak cou-

pling, however, 1 −  e−γ(τ) ≈  γ(τ), leading to ∫τ γ τ ω ωΓ ≈ = 



τ τ

βω ωτ

ω

∞ −( )d J( ) ( ) ( ) coth1
2 0

2
2

1 cos( )
2 , in agreement 

with the result obtained using the formalism that we have developed.

Application with both dephasing and decay present. We now consider the more general 
system-environment model given by the Hamiltonian

∑ ∑εσ σ ω σ= +
∆

+ + +† ⁎ †H b b g b g b
2 2

( ),z x
k

k k k z
k

k k k k

where Δ  can be understood as the tunneling amplitude for the system, and the rest of the parameters are defined 
as before. This is the well-known spin-boson model43–45, which can be considered as an extension of the previous 
two cases in that we can now generally have both population decay and dephasing taking place. We revert to the 
usual dephasing model by setting Δ  =  0, while setting ε =  0 leads to the population decay Hamiltonian (with the 
non-rotating wave approximation terms now included) after rotation about the y-axis. Experimentally, such a 
model can be realized, for instance, using superconducting qubits23,46,47 and the properties of the environment 
can be appropriately tuned as well48.
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We start from the general system initial state ψ = ↑ + ↓θ φ θ( ) ( )ecos sini
2 2

, where the states ↑  and ↓  
are defined as before, and θ and φ are parameters that characterize the state preparation. Measurements, with time 
interval τ, are now carried out to check if the system is still in this state or not. To evaluate Q(ω, τ), we first need 
to find the environment correlation function. We again consider the environment to be in a thermal equilibrium 
state. Consequently, as in the pure dephasing model, f(ω, t) =  cos(ωt)coth(βω/2) −  i sin(ωt). Next, we find F t( ). 
This is done using the standard commutation relation [σk, σl] =  2iεklmσm. A straightforward application of the 
Baker-Hausdorff lemma49 shows that σ σ σ= + +F t a t a t a t( ) ( ) ( ) ( )x x y y z z, with

ε
=

∆
Ω




Ω 

 =

∆
Ω
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a t t a t t a t t( ) 2 sin

2
, ( ) sin( ), ( ) 1 2 sin

2
,

(4)x y z2
2

2

2
2

and Ω2 =  ε2 +  Δ 2. Now, given ψ , we can deduce that ψ ψ=ψ
⊥ ⊥

⊥P  with ψ = ↑ − ↓θ φ θ⊥ ( ) ( )esin cosi
2 2

. 
The rest of the calculation for the filter function proceeds in a straightforward manner, leading to

ω τ
τ

βω ω τ ω τ=
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Q D D( , ) 2 coth
2

( , ) ( , ) ,
(5)1 2

w i t h  ∫ ∫ω τ ω= ′ ′ − ′ + − ′
τD dt dt t r t t r t r t t r t( , ) cos( )[ ( ) ( ) ( ) ( )]t

1 0 0 1 1 2 2 ,  a n d  ∫ ∫ω τ = ′
τD dt dt( , ) t

2 0 0
 

ω ′ − ′ − − ′t r t t r t r t r t tsin( )[ ( ) ( ) ( ) ( )]1 2 1 2 . Here r1(t) =  − ax(t)cos φ cos θ −  ay(t)sin φ cos θ +  az(t)sin θ, and 
r2(t) =  ay(t)cos φ −  ax(t)sin φ.

We next evaluate D1(ω, τ) and D2(ω, τ). Although the integrals can be done, the final analytical results for 
arbitrary θ and φ are, unfortunately, very long and not very illuminating. Instead, let us choose θ =  π/2 and φ =  0. 
This choice of state has the advantage that we can then compare our results with the already well-known cases 
of the population decay model and the pure dephasing model. In particular, the choice Δ  =  0 then corresponds 
to the pure dephasing model (in the weak coupling limit). On the other hand, ε =  0 corresponds to (almost) the 
population decay model since we can rotate both the system-environment Hamiltonian and the state that we are 
measuring about the y-axis. The only difference is that we now have additional non-rotating wave approximation 
terms, but we expect these additional terms to not play a role in the weak system-environment coupling regime 
that we are in. It must be emphasized that we are now no longer restricted to these two models only. Rather, by 
varying the values of θ, φ, ε, and Δ , we can explore regimes where both dephasing and relaxation play a role in 
the quantum Zeno and anti-Zeno effects.

With θ =  π/2 and φ =  0, the calculation for D1(ω, τ) and D2(ω, τ) becomes less laborious since r1(t) and r2(t) 
simplify greatly. Analytical expressions for D1(ω, τ) and D2(ω, τ) are given in the Supplemental Material. A few 
points are in order. First, if Δ  =  0, then D2(ω, τ) =  0, while D1(ω, τ) =  [1 −  cos(ωτ)]/ω2, which, as expected, leads 
back to the filter function for the pure dephasing model. Similarly, for zero temperature with ε =  0, D1(ω, τ) and 
D2(ω, τ) simplify such that we get back the filter function for the population decay model. For intermediate values 
of ε and Δ , however, the filter function is very different. This is illustrated in Fig. 1 where Q(ω, τ) has been plotted 
(in dimensionless units with ħ =  1) as a function of ω for two different values of τ. The dashed, red curve is the 
filter function for the population decay model with ε =  0 and Δ  =  1, and is thus consequently peaked at ω =  1 in 
both Fig. 1(a,b). The dot-dashed, magenta curve is the filter function for the pure dephasing model (with ε =  1 
and Δ  =  0), while the solid, blue curve shows the intermediate case with ε =  2 and Δ  =  1. Clearly, if the value of 
τ is not too small, the filter function for the intermediate case resembles neither the population decay model nor 
the pure dephasing model. This means that for an arbitrary spectral density of the environment, the value of Γ (τ) is 
expected to be quite different with both Δ  and ε non-zero as compared to the population decay and pure dephas-
ing cases. On the other hand, as τ becomes smaller, we must have that Γ (τ) →  0, and thus the filter functions must 
start to resemble each other more for smaller τ. This is entirely consistent with what we see in Fig. 1(b).

With the different behaviour of the filter function, we expect that when there is both dephasing and decay, the 
effective decay rate will be quite different compared to either of the aforementioned cases, and thus the Zeno and 

Figure 1. Behaviour of the filter function. (a) Graph of Q(ω, τ) (at zero temperature) as a function of ω for 
τ =  2 with Δ  =  1 and ε =  0 (dashed, red curve), Δ  =  0 and ε =  1 (dot-dashed, magenta curve), and Δ  =  1 and 
ε =  2 (solid, blue curve). Here, we have set θ =  π/2 and φ =  0. Throughout, we use dimensionless units with 
ħ =  1. (b) Same as (a), except that now τ =  1.
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anti-Zeno behaviour is expected to be considerably modified. Let us now explicitly examine this claim for the case 
of sub-Ohmic, Ohmic and super-Ohmic environments. To this end, we introduce the spectral density as 
ω ω ω= ω ω− −J G e( ) s

c
s1 / c. Here the parameter s characterizes the Ohmicity of the environment. Namely, s =  1 cor-

responds to an Ohmic environment, s >  1 gives a super-Ohmic environment, while s <  1 corresponds to a 
sub-Ohmic environment. G is a dimensionless parameter characterizing the system-environment coupling 
strength, and we have introduced an exponential cutoff function with a cutoff frequency ωc. Let us first investigate 
an Ohmic environment. In Fig. 2(a), we illustrate the behaviour of the effective decay rate Γ (τ) as a function of the 
measurement interval τ, clearly showing the very different behaviour of Γ (τ) when both population decay and 
dephasing are present. For the population decay case (the dashed, red curve), with the chosen values of the 
system-environment parameters, Γ (τ) by and large decreases as τ decreases. Thus, we are in the Zeno regime. On 
the other hand, the pure dephasing case (dot-dashed, magenta curve) displays a distinct Zeno regime and an 
anti-Zeno regime. For small values of τ, Γ (τ) decreases as τ is decreased, meaning that a shorter measurement 
interval helps to protect the quantum state, thus putting us in the Zeno regime. For larger values of τ, however, as 
the τ is decreased the opposite happens, namely, Γ (τ) increases as τ decreases, thus indicating the anti-Zeno 
regime. Now, when both dephasing and population decay take place (solid, blue curve), the behaviour of Γ (τ) is 
considerably different. Besides the quantitative differences in the values of Γ (τ), the effective decay rate displays 
qualitatively different behaviour in the sense that we now have clearly distinct multiple Zeno and anti-Zeno 
regions. This is evident from the fact that Γ (τ) displays multiple extrema, meaning that sometimes decreasing the 
measurement interval reduces the decay rate, while sometimes the opposite happens.

The effective decay rate, as we have emphasized, depends on the overlap of the spectral density and the gener-
alized filter function. Thus, we expect that changing the environment, and in particular the Ohmicity parameter, 
should alter the decay rate, at least quantitatively. In Fig. 2(b), we have calculated the decay rate with a similar 
set of parameters as was done with the Ohmic environment. The only difference is that we are now considering a 
sub-Ohmic environment with s =  0.8. Once again, while the population decay case exhibits the QZE, and the pure 
dephasing case exhibits both the QZE and the QAZE, the more general case displays multiple transitions between 
the QZE and the QAZE. We have also examined a super-Ohmic environment [see Fig. 2(c)] with s =  2. Now the 
population decay case also exhibits both the QZE and the QAZE. With both dephasing and population decay 
present, we again have multiple Zeno to anti-Zeno transitions, but these transitions are less clear cut as compared 
to what we observed in the previous cases. These results illustrate the importance of the type of environment in 
determing the QZE-QAZE crossover behaviour.

Figure 2. Behaviour of the effective decay rate for the spin-boson model. (a) Graph of Γ (τ) (at zero 
temperature) as a function of τ for θ =  π/2 and φ =  0 with Δ  =  2 and ε =  0 (dashed, red curve), Δ  =  0 and ε =  2 
(dot-dashed, magenta curve), and Δ  =  2 and ε =  2 (solid, blue curve) for an Ohmic environment (s =  1). We 
have set G =  0.01 and ωc =  10. (b) Same as (a), except that now we have a sub-Ohmic environment with s =  0.8. 
For large τ, the dashed, red curve becomes horizontal with Γ (τ) approximately equal to 0.14. (c) Same as (a), 
except that now we have a super-Ohmic environment with s =  2. (d) Same as (a), except that now we have θ =  0 
and φ =  0.
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Before moving on, let us also investigate the Zeno and anti-Zeno effects for a different state preparation. 
Namely, we choose θ =  0 and φ =  0. Once again we find D1(ω, τ) and D2(ω, τ) and use these to find the effective 
decay rate. Exact expressions for D1(ω, τ) and D2(ω, τ) can be found in a similar way as before (refer to the 
Supplemental Material). With these expressions in hand, we can investigate the behaviour of Γ (τ). In Fig. 2(d), we 
have shown the behaviour of Γ (τ) for the population decay Hamiltonian (dashed, red curve), the pure dephasing 
case (dot-dashed, magenta curve), and the intermediate case (solid, blue curve) with an Ohmic environment. For 
pure dephasing, Γ (τ) remains zero. This makes sense since the state that we are repeatedly preparing, namely ↑ , 
does not evolve under the action of the pure dephasing Hamiltonian. On the other hand, the population decay 
Hamiltonian leads to both decay and dephasing, since, after rotation about the y-axis, the state that is repeatedly 
prepared is a superposition of the ↑  and ↓  states. Although both the population decay Hamiltonian and the 
intermediate case display multiple Zeno to anti-Zeno transitions, the actual value of the decay rate, in general, is 
considerably different for the two cases. These two cases also differ in the values of τ for which the transitions take 
place. By now, it should be clear that using the usual simple sinc-squared filter function to analyze a system under-
going both dephasing and decay would be incorrect.

Application to the large spin-boson model. Let us now consider Ns two-level systems interacting col-
lectively with a common environment. The system-environment Hamiltonian is now

∑ ∑ε ω= + ∆ + + +† ⁎ †H J J b b J g b g b2 ( ),z x
k

k k k z
k

k k k k

where ε and Δ  are the level spacing and tunneling amplitude respectively for each two-level system, and Jx and Jz 
are the standard angular momentum operators. This Hamiltonian can be considered to be a generalization of the 
usual spin-boson model to a large spin j =  Ns/239,50,51. Physical realizations include a two-component 
Bose-Einstein condensate52,53 that interacts with a thermal reservoir via collisions51. Once again, we assume that 
the system-environment coupling is weak so that our formalism applies. The initial state is chosen to be j  such 
that =J j j jz , and we repeatedly check, with time interval τ, whether the system state is still j  or not. We note 
that we can easily deal with some other choice of initial state as well. As before, our task is to calculate Q(ω, τ), the 
details of which are given in the Methods section. The important point to note here is that the decay rate is ampli-
fied depending on the number of two-level systems coupled to the environment. Namely, we find that the filter 
function is now

ω τ
τ

βω ω τ ω τ=










 +






Q j D D( , ) (2 ) 2 coth
2

( , ) ( , ) ,
(6)1 2

with ∫ ∫ω τ ω= ′ ′ − ′ + − ′
τD dt dt t a t a t t a t a t t( , ) cos( ){ ( ) ( ) ( ) ( )}t

x x y y1 0 0
, and ∫ ∫ω τ ω= ′ ′

τD dt dt t( , ) sin( )t
2 0 0

− ′ − − ′a t a t t a t a t t{ ( ) ( ) ( ) ( )}x y y x . The filter function Q(ω, τ) for this case is then Ns times the filter function for 
a single spin-half particle with θ =  0 and φ =  0. In other words, Γ (τ) for Ns particles is simply Ns times the decay 
rate for a single particle. For illustration purposes, we have plotted Γ (τ) as a function of the measurement interval 
τ in Fig. 3(a) for Ns =  20 and a sub-Ohmic environment. It should be noted that the amplification of Γ (τ) now 
makes the use of the correct filter function even more critical. For instance, for the population decay Hamiltonian 
in Fig. 3(a) with Δ  =  2 and ε =  0, the survival probability after five measurements with time interval τ =  1 is 
approximately 0.02, while the survival probability for the more general Hamiltonian with Δ  =  2 and ε =  2 after 
five measurements with the same time interval τ =  1 is ten times smaller.

Suppose now that we prepare the state of each two-level system in a coherent superposition such that the total 
state is ψc  where ψ ψ=J jx c c . This time we obtain

Figure 3. Effective decay rate for the large spin-boson model. (a) Behaviour of Γ (τ) (at zero temperature) as a 
function of τ for the initial state j  with Δ  =  2 and ε =  0 (dashed, red curve), Δ  =  0 and ε =  2 (dot-dashed, 
magenta curve), and Δ  =  2 and ε =  2 (solid, blue curve) for a sub-Ohmic environment (s =  0.8). We have set 
G =  0.01 and ωc =  10, and the number of particles is taken to be 20. (b) Same as (a), except that now the state 
that we are repeatedly preparing is ψc  and the environment is super-Ohmic with s =  1.5.
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ω τ
τ

βω ω τ ω τ=










 +






Q j D D( , ) (2 ) 2 coth
2

( , ) ( , ) ,
(7)1 2

with ∫ ∫ω τ ω= ′ ′ − ′ + − ′
τD dt dt t a t a t t a t a t t( , ) cos( ){ ( ) ( ) ( ) ( )}t

z z y y1 0 0
, and ∫ ∫ω τ ω= ′ ′

τD dt dt t( , ) sin( )t
2 0 0

 
− ′ − − ′a t a t t a t a t t{ ( ) ( ) ( ) ( )}y z z y . We again find that Γ (τ) for Ns particles coupled collectively to the environ-

ment is given by Ns times the decay rate for a single particle. Quantitative results are presented in Fig. 3(b) for 
Ns =  20 with a super-Ohmic environment (s =  1.5). Again, due to the amplification of the effective decay rate, it 
becomes very important to use the correct filter function.

Discussion
We have derived an expression for the effective decay rate of a quantum state in the presence of repeated measure-
ments which is valid when the system-environment coupling is weak. This expression implies that the effective 
decay rate of the quantum state depends on the overlap of the spectral density of the environment and a gener-
alized filter function. We have shown that our formalism for calculating the effective decay rate reproduces the 
well-known results for the population decay model and the pure dephasing model. Thereafter, we demonstrated 
that our formalism allows us to study the Zeno and anti-Zeno effects for the spin-boson model in a rigorous 
fashion under the assumption that the system-environment coupling strength is weak. We have found qualitative 
and quantitative differences in the behaviour of the decay rate as a function of the measurement interval when 
both decay and dephasing are present as compared to the relatively simpler population decay and pure dephasing 
models. Finally, by considering many two-level systems coupled collectively to a common environment, we have 
observed that the decay rate is amplified depending on the number of two-level systems. Consequently, it is even 
more crucial to use the correct filter function to evaluate the effective decay rate. We should also emphasize that 
our framework can be used to study other system-environment models as well. Experimental implementations of 
the ideas presented in this paper are expected to be important for measurement-based quantum control, as well 
as stimulating further work on the Quantum Zeno and anti-Zeno effects.

Methods
Derivation of the effective decay rate. The system-environment Hamiltonian is H =  HS +  HB +  V, where 
we recall that HS is the system Hamiltonian, HB is the Hamiltonian of the environment, and V describes the sys-
tem-environment interaction. At time t =  0, we prepare the initial system state ψ . To calculate the effective decay 
rate, we find the survival probability s(τ), provided that we start from the pure system state ψ . In order to do so, 
let us first find an expression for ρS(τ), the state of the system at time t =  τ, just before the system is measured. 
Now, the total system-environment state at this time is ρtot(τ) =  U(τ)ρtot(0)U†(τ), where U(τ) represents the uni-
tary time-evolution due to the total system-environment Hamiltonian H. We can then find the state of the system 
at time τ as ρS(τ) =  TrB{U(τ)ρtot(0)U†(τ)}, where TrB denotes taking partial trace over the environment. Generally 
speaking, however, it is usually impossible to find U(τ) exactly. Instead, we resort to perturbation theory, which 
can be used if we assume that the system-environment interaction is weak. We write U(τ) as U(τ) =  U0(τ)UI(τ), 
where τ = τ− +U e( ) i H H

0
( )S B  is the ‘free’ unitary time-evolution operator, and UI(τ) can be expanded as a perturba-

tion series, that is, UI(τ) =  1 +  A1 +  A2 +  … , where A1 and A2 are the first and second order corrections respec-
tively. The system density matrix at time τ is then

ρ τ τ ρ ρ ρ ρ

ρ ρ τ

≈ + + +

+ +

† †

† †

U A A A

A A A U

( ) Tr { ( )[ (0) (0) (0) (0)

(0) (0) ] ( )}, (8)

S B 0 tot tot 1 tot 2 1 tot

2 tot 1 tot 1 0

correct to second order in the system-environment coupling strength.
To proceed further, we assume that the initial system-environment state can be represented as ρtot =  ρS(0) ⊗  ρB, 

that is, the initial system-environment state is a simple product state. This is a rather standard assumption 
 in the open quantum systems literature, but it should be noted that the validity of this assumption is  
questionable when the system-environment coupling strength is strong and/or the number of particles collec-
tively coupled with the environment is large54–56. Moreover, we also assume that we can write V =  F ⊗  B, where 
F(B) is an operator belonging to the system (environment) Hilbert space. The more general case where 
 V =  ∑ μFμ ⊗  Bμ can be dealt with via a straightforward extension. The operators A1 and A2 intro- 
duced above are then found to be ∫= −

∼τA i V t dt( )1 0 1 1, and ∫ ∫= −
τ ∼ ∼A dt dt V t V t( ) ( )t

2 0 1 0 2 1 2
1 , with 

≡ = ⊗ =
∼



† † †V t U t VU t U t FU t U t BU t F t B t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )S S B B0 0 , where = −U t e( )S
iH tS  and = −U t e( )B

iH tB . We 
now simplify Eq.  (8) term by term. First,  we find that τ ρ τ ρ τ=



†U UTr { ( ) (0) ( )} ( )B S0 tot 0 ,  where 
ρ τ τ ρ τ=


†U U( ) ( ) (0) ( )S S S S  is the system density matrix if the system and environment are not coupled together. 
Next,

∫τ ρ τ τ ρ τ τ ρ τ= .
τ



† † † †U A U i dt U F t U U B t UTr { ( ) (0) ( )} ( ) (0) ( ) ( )Tr { ( ) ( ) ( )}B S S S B B B B0 tot 1 0
0

1 1 1

But τ ρ τ ρ= 

†U B t U B tTr { ( ) ( ) ( )} Tr { ( )}B B B B B B1 1 , which is zero for the system-environment models usually consid-
ered45. Similarly, τ ρ τ =†U A UTr { ( ) (0) ( )} 0B 0 1 tot 0 . The next term is

∫ ∫τ ρ τ τ ρ τ= −
τ

 

† †U A U dt dt U F t F t U C t tTr { ( ) (0) ( )} ( ) ( ) ( ) (0) ( ) ( , ),B
t

S S S0 2 tot 0
0

1
0

2 1 2 1 2
1
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with the environment correlation function C(t1, t2) defined as ρ= =   C t t B t B t B t B t( , ) ( ) ( ) Tr { ( ) ( ) }B B B1 2 1 2 1 2 . 
Similarly,

∫ ∫τ ρ τ τ ρ τ= − .
τ

 

† † †U A U dt dt U F t F t U C t tTr { ( ) (0) ( )} ( ) (0) ( ) ( ) ( ) ( , )B
t

S S S0 tot 2 0
0

1
0

2 2 1 2 1
1

Finally, ∫ ∫τ ρ τ τ ρ τ=
τ τ

 

† † †U A A U dt dt U F t F t U C t tTr { ( ) (0) ( )} ( ) ( ) (0) ( ) ( ) ( , )B S S S0 1 tot 1 0 0 1 0 2 1 2 2 1 . Using the fact that 

∫ ∫ ∫ ∫ ∫ ∫= +
τ τ τ τdt dt dt dt dt dtt t

0 1 0 2 0 1 0 2 0 2 0 1
1 2 , we can manipulate further to obtain

∫ ∫

τ ρ τ

τ ρ τ= + . .
τ

  

† †

†

U A A U

dt dt U F t F t U B t B t

Tr { ( ) (0) ( )}

( ) ( ) (0) ( ) ( ) ( ) ( ) h c ,

B
t

S S S B

0 1 tot 1 0

0
1

0
2 1 2 2 1

1

where h.c. denotes hermitian conjugate. Putting all the terms back together, the system density matrix can be 
written as

∫ ∫ρ τ τ ρ ρ τ=


 + + . .



 .

τ
   

†U dt dt B t B t F t F t U( ) ( ) (0) { ( ) ( ) [ ( ) (0), ( )] h c } ( )S S S

t

B S S
0

1
0

2 1 2 2 1
1

We can simplify this further by noting that the environment correlation function =  C t t B t B t( , ) ( ) ( ) B1 2 1 2  gen-
erally depends on the time difference t1 −  t2 only. This motivates us to introduce t′  =  t1 −  t2. The system density 
matrix at time τ then becomes

∫ ∫ρ τ τ ρ ρ τ=


 + ′ ′ − ′ + . .



 .

τ
 

†U dt dt C t F t t F t U( ) ( ) (0) { ( )[ ( ) (0), ( )] h c } ( )
(9)S S S

t

S S
0

1
0

1 1
1

with the simplified notation ′ = ′ C t B t B( ) ( ) (0) B
 for the environment correlation function.

Once we have the expression for the density matrix at time τ, we can compute the survival probability. This 
survival probability can be simply calculated as one minus the probability of getting some result other than the 
state ψ  that we have started off with. Consequently, it is useful to define the projection operator ψ⊥P  that projects 
onto the subspace orthogonal to the state ψ . Moreover, we must also keep in mind that, just before performing 
the measurement, we perform a unitary operator (which is implemented on a very short time-scale) in order to 
remove the evolution due to the system Hamiltonian itself. This unitary operator then removes the US(τ) and 
τ†U ( )S  that can be found to the left and right of the right hand side of Eq. (9). Thus, we can write the survival prob-

ability as

∫ ∫τ ρ= − ′ − ′ ′ + . .
τ

ψ⊥
 s dt dt P F t t F t C t( ) 1 (Tr{ [ ( ) (0), ( )] ( ) h c }),

t

S0
1

0
1 1

1

where Tr denotes simply taking the trace over the system only, and we have used the fact that ρ =ψ⊥PTr{ (0) } 0S . 
Using the fact that for any operator X, Tr(X +  X†) =  2Re[Tr(X)], where Re denotes taking the real part, we further 
simplify to

∫ ∫τ ρ= −






′ ′ − ′






τ

ψ⊥
 s dt dt C t P F t t F t( ) 1 2 Re ( ( )Tr{ [ ( ) (0), ( )]}) ,

t

S0 0

and we have replaced t1 with t for notational simplicity. Since ρ− ′ =ψ⊥
 P F t F t tTr{ ( ) ( ) (0)} 0S , we get

∫ ∫τ ρ= −






′ ′ − ′





.

τ

ψ⊥
 s dt dt C t P F t t F t( ) 1 2 Re ( ( )Tr{ ( ) (0) ( )})

t

S0 0

Now, the environment correlation function will typically be of the form ω′ = ∑ ′C t g f t( ) ( , )k k k
2 , where gk is the 

coupling strength of the system with mode k of the environment, and f(ωk, t′ ) is simply a function containing the 
remaining information about C(t′ ). This sum is usually replaced by an integral over the frequencies of the envi-
ronment via the substitution ∫ ω ω∑ … → …

∞g d J( ) ( )( )k k
2

0
, thereby introducing the spectral density J(ω) of the 

environment. Also, what we are really interested in is the effective decay rate τ τΓ = −
τ

s( ) ln ( )1 . For weak cou-
pling strength, the deviation of s(τ) from unity is small. Therefore, the effective decay rate can be approximated as 
τ ω τΓ = ∑ g Q( ) ( , )k k k

2 , where

∫ ∫ω τ
τ

ω ρ=






′ ′ − ′





.

τ

ψ⊥
 Q dt dt f t P F t t F t( , ) 2 Re ( ( , )Tr{ ( ) (0) ( )})k

t
k S0 0

By introducing the spectral density, we can write instead ∫τ ω ω ω τΓ =
∞ d J Q( ) ( ) ( , )

0
, where the generalized 

‘filter function’ Q(ω, τ) is

∫ ∫ω τ
τ

ω ρ=






′ ′ − ′






τ

ψ⊥
 Q dt dt f t P F t t F t( , ) 2 Re ( ( , )Tr{ ( ) (0) ( )}) ,

t

S0 0
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thereby ending up with Eq. (1). The approach given above can easily be generalized to a coupling of the form 
= ∑ ⊗µ µ µV F B , leading to Eq. (3).

Finding the effective decay rate for the large spin-boson model. We first consider the case where 
we repeatedly prepare the state j  given by =J j j jz . We begin by calculating = −

F t e J e( ) (2 )iH t
z

iH tS S . Using the 
standard commutation relations, [Jk, Jl] =  iεklmJm, and the Baker-Hausdorff lemma, we find that

= + + 


F t a t J a t J a t J( ) 2[ ( ) ( ) ( ) ,x x y y z z

with ax(t), ay(t) and az(t) as defined in Eq. (4). Now, = ∑ψ =−
−⊥P m mm j

j 1 , leading to

∑ρ− ′ = − ′ .ψ
=−

−
⊥   P F t t F t m F t t j j F mTr{ ( ) (0) ( )} ( )S

m j

j 1

By observing that δ= −−
j F t m j a t ia t( ) 2 [ ( ) ( )]m j x y, 1  and simplifying, we find the filter function given in 

Eq. (6).
Let us now calculate the filter function for the case when we repeatedly prepare the state ψc  given by 
ψ ψ=J jx c c . To investigate the Zeno and anti-Zeno effects now, it is best to transform to a rotated frame, that 

is, we rotate both the system-environment Hamiltonian and the state that we are repeatedly preparing. In other 
words, we use the fact that

τ ψ ψ τ ψ ψ τ= = τ τ−†s U U j j e j j e( ) Tr [( ) ( )( ) ( )] Tr [( ) ( ) ],S B c c c c S B
iH iH

, ,
R R

where the transformed Hamiltonian is

∑ ∑ε ω= + ∆ + − +† ⁎ †H J J b b J g b g b2 ( ),R r z r x
k

k k k x
k

k k k k

with εr =  Δ  and Δ r =  − ε. We then find that = − + +F t b t J b t J b t J( ) 2[ ( ) ( ) ( ) ]x x y y z z , with = −b t( ) 1x  
ε

Ω

Ω( )sin t2 2
2

r

r

r
2

2
, = − Ωε

Ω
b t t( ) sin( )y r

r

r
, and = ε ∆

Ω

Ω( )b t( ) sinz
t2 2

2
r r

r

r
2

, where εΩ = + ∆r r r
2 2 . The rest of the calcu-

lation proceeds in a very similar way to what we did with the state j  and leads to

ω τ
τ

βω ω τ ω τ=










 +






Q j D D( , ) (2 ) 2 coth
2

( , ) ( , ) ,R R
1 2

w i t h  ∫ ∫ω τ ω= ′ ′ − ′ + − ′
τD dt dt t b t b t t b t b t t( , ) cos( ){ ( ) ( ) ( ) ( )}R t

x x y y1 0 0
,  an d  ∫ ∫ω τ = ′

τD dt dt( , )R t
2 0 0

 
ω ′ − ′ − − ′t b t b t t b t b t tsin( ){ ( ) ( ) ( ) ( )}x y y x . Now, it is easy to show that bx(t) =  az(t) and by(t) =  − ay(t). Thus, we 

obtain the filter function given in Eq. (7).
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