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Integrative analysis deciphers the heterogeneity of cancer-associated
fibroblast and implications on clinical outcomes in ovarian cancers
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Accumulating evidence has recognized that cancer-associated fibroblasts (CAFs) are major players in the
desmoplastic stroma of ovarian cancer, modulating tumor progression and therapeutic response.
However, it is unclear regarding the signatures of CAFs could be utilized to predict the clinical outcomes
of ovarian cancer patients. To fill in this gap, we explored the intratumoral compartment of ovarian can-
cer by analyzing the single-cell RNA-sequencing (scRNA-seq) datasets of ovarian carcinoma samples, and
identified two distinct CAFs (tumor-promoting CAF_c1 subtype and myofibroblasts-like CAF_c2 subtype).
The clinical significance of CAF subtypes was further validated in The Cancer Genomics Atlas (TCGA) data-
base and other independent immunotherapy response datasets, and the results revealed that the patients
with a higher expression of CAF_c1 signatures had a worse prognosis and showed a tendency of resis-
tance to immunotherapy. This work uncovered the signatures of the CAF_c1 subtype that could serve
as a novel prognostic indicator and predictive marker for immunotherapy.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ovarian cancer is the third most common gynecologic malig-
nancy worldwide but accounts for the highest mortality rate
among cancers [1]. Although aggressive frontline treatments with
surgery and adjuvant chemotherapy, the 5-year survival rate is <
25 % for women diagnosed with stages III or IV disease [2,3].
Although significant advancements have been achieved in the field
of ovarian cancer research and treatment, clinical outcomes of
ovarian cancer patients remain unsatisfactory [1,3]. Previously,
diverse cell type-specific expression patterns can be seen in differ-
ent molecular subtypes of ovarian cancers, which suggested that
the various cellular compositions of the tumor microenvironment
(TME) have an important role in the heterogeneity of ovarian can-
cers [4]. Recently, accumulated pieces of evidence have revealed
that ovarian cancer is characterized by an abundant stroma, a com-
plex structure composed of different cell phenotypes including
cancer cells, epithelial cells, endothelial cells, immune cells, and
CAFs [5]. The crucial significance of TME in the initiation and pro-
gression of ovarian cancer as well as resistance to anti-tumor ther-
apy is increasingly recognized.

The CAFs interact with both malignant cells and other stromal
cells through a network of signaling pathways and mediators
[6,7]. These interactions contribute to tumor growth, invasion,
metastasis, and resistance to therapy [7–9]. Much of the evidence
came from previous studies that showed that CAFs are one of the
most critical constituents of desmoplastic stroma in ovarian can-
cer, modulating tumorigenesis development and therapeutic
response [10,11]. Many works revealed that a lot of crucial protu-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.11.025&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.11.025
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zhangpengdyx@163.com
https://doi.org/10.1016/j.csbj.2022.11.025
http://www.elsevier.com/locate/csbj


Y. Zhao, S. Mei, Y. Huang et al. Computational and Structural Biotechnology Journal 20 (2022) 6403–6411
morigenic processes such as chemoresistance, cancer stem cell
renewal, tumor cell invasion, and immune cell polarization, are
mediated by CAFs [10,12,13]. In the meanwhile, other studies sug-
gested that CAFs can exert a tumor-suppressive role in some can-
cer types [12,14]. These studies collectively raise the conclusion
that CAFs are a highly heterogeneous population of cells and that,
in order to assure accurate targeting of CAFs that promote tumors,
a deeper understanding of CAFs heterogeneity through the discov-
ery of particular markers is required [15]. The heterogeneity and
dynamics among CAFs subtypes and their plasticity remain scar-
cely explored, and it is still an open question regarding whether
the signatures of CAFs could be utilized to predict the clinical out-
comes of ovarian cancer patients.

The TME has been a popular research area of cancer biology
concerning novel biomarkers for diagnosis and prognosis, and
therapeutic targets for drug discovery. And the high-throughput
sequencing methods, especially the single-cell RNA-sequencing
(scRNA-seq) technology, can be utilized to analyze the expression
patterns of malignant tissues at single-cell levels and assess the
details of cellular heterogeneity in the TME. In the present study,
we performed an integrative analysis based on the scRNA-seq
and bulk transcriptome data from ovarian carcinoma samples
and highlighted the role of CAFs subsets in the prognosis and
immunotherapy resistance for ovarian cancer patients. We investi-
gated the relationship between molecular signatures of the CAFs
subtype and the clinical outcome of ovarian cancer patients and
identified a specific CAF subtype (CAF_c1) as a possible therapeutic
target for ovarian treatment. In addition, these results promote the
understanding of CAFs heterogeneity in the TME and provide a
basis for biomarker development and precision treatment for ovar-
ian carcinoma in the future.
2. Material and methods

2.1. TCGA pan-cancer patient cohort

The transcriptome data (RNA-seq) and clinical annotation (in-
cluding overall survival time) of 4775 samples across 10 cancer
types (LUAD: Lung adenocarcinoma, N = 493; LUSC: Lung squa-
mous cell carcinoma, N = 494; SKCM-TM: Skin cutaneous mela-
noma—metastasis, N = 351; HNSC: Head and neck squamous cell
carcinoma, N = 498; BRCA: Breast invasive carcinoma, N = 928;
ESCA: Esophageal carcinoma, N = 161; COAD: Colon adenocarci-
noma, N = 439; UCEC: Uterine corpus endometrial carcinoma,
N = 537; OV: Ovarian serous cystadenocarcinoma, N = 372; THCA:
Thyroid cancer, N = 502) from the largest publicly available cancer
genomics database, namely TCGA with genomic, transcriptomic
and clinical data. We accessed the TCGA data portal (https://can-
cergenome.nih.gov/, February 2021) and downloaded expression
quantification profiles (HTSeq–FPKM). Clinical data files of cancer
samples were downloaded from cBioPortal for Cancer Genomics
[16] (https://www.cbioportal.org/, February 2021).

2.2. Immunotherapy patient cohort

The transcriptome data and clinical annotation of selected
immunotherapy-treated patient cohorts [17–20], which contained
a total of 121 tumor samples were accessed from the Tumor
Immune Dysfunction and Exclusion database [21] (https://tide.
dfci.harvard.edu/, February 2021).

2.3. Data processing of scRNA-seq

We reanalyzed three independent public scRNA-seq datasets:
the high-grade serous ovarian carcinoma data (included barcode
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files, gene annotation files, and raw count matrix files for each
sample), the high-grade serous tubo-ovarian cancer data (included
an integrated gene count matrix file of all samples and a metadata
file), and the metastatic ovarian cancer data (included raw count
matrix files for each sample). Then these raw data were imported
into the R software (https://www.r-project.org/, version 3.5) using
the Seurat (v.2.3.2) package for further data analysis. The first fil-
tering was initially set up with the minimal cells of 3 and minimal
genes of 200 per sample. Then, the cells with more than 5,000
genes or more than 25,000 unique molecular identifiers (UMIs)
were removed, and the cells with less than 5% mitochondrial gene
expression will be kept. Next, the raw counts of filtered cells were
normalized by a factor of 10,000 and log-transformed to obtain log
(T+1) values. Dimensionality reduction was performed using prin-
cipal component analysis (PCA). The first 20 principal components
were selected according to the PCA results for clustering, and the
cell clusters were visualized by using the uniform manifold
approximation and projection (UMAP) method. Differential gene
expression analysis was performed by FindMarkers and
FindAllMarkers in the Seurat package (Parameters: min.pct = 0.5,
min.diff.pct = 0.1, logfc.threshold = 0.25, test.use = ‘‘Wilcox”). For
the selection of signature genes of CAF_c1 and CAF_c2, firstly, we
identified all the differentially expressed genes (DEGs) of CAF_c1
and CAF_c2 as marker genes (Table S1-2), and then we selected
the representative genes as signatures if the following criteria were
met: (1) with function associated with TME that has been reported
according to previous studies, (2) both ranked top15 in the DEGs
when compared with other CAF subset and all the other cell types,
(3) with average expression value lower than 0.2 in tumor or
endothelial cells. The gene set enrichment analysis (GSEA) based
on the single-sample GSEA (ssGSEA) method implemented in GSVA
(version 1.44.5) package of R software was used to calculate the
GSEA score based on the curated signature genes of CAF and bio-
logical processes genesets in Gene Ontology using defaulted
parameters.
2.4. SCENIC analysis

To investigate the transcription factor activity and gene regula-
tory network among different cell types in the TME of ovarian can-
cer based on the single-cell transcriptome data, the Single-Cell
rEgulatory Network Inference and Clustering (SCENIC) [22] method
was employed in this study. We selected the pySCENIC (version
0.10.2) with default parameters, a lightning-fast python imple-
mentation of the SCENIC pipeline, to perform the SCENIC analysis,
and the gene-motif rankings (500 bp upstream or 100 bp down-
stream of the transcription start site [TSS]) were used to determine
the search space around the TSS.
2.5. Cell–cell interaction network analysis

CellPhoneDB (version 2.1.2, https://www.cellphonedb.org) is a
publicly available repository of curated receptors, ligands, and
their interactions, that can be used to search for cell–cell interac-
tion and receptor-ligand pairs among cell types [23]. Potential
interactions between the two cell types were inferred by using
the CellPhoneDB method based on expression quantification levels
of receptor and ligand gene pairs through 1000 permutation tests.
The resulting adjacency matrices for all cell–cell interactions were
then created and displayed as heatmaps. Only gene pairs for
receptor-ligand interactions in cell types of relevance were
observed, and cell–cell interactions within identical biological lin-
eages were omitted.
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2.6. Quantification and statistical analysis

The specific tests used to analyze each set of experiments are
indicated in the figure legends. The prognostic value of discrete
variables was assessed using Kaplan-Meier survival curves for a
patient’s cohort-based study on the overall survival rate (5 years),
and the log-rank test was used to determine the significance of
various survival curves. GraphPad Prism software (GraphPad
Software, San Diego, California), and R software (https://www.r-
project.org/) were employed for the statistical calculations and
figure visualization.
3. Results

3.1. Characterization of cellular heterogeneity in the TME of ovarian
cancer

To investigate the detailed cellular heterogeneity in the TME of
ovarian cancer samples, we accessed and reanalyzed a sophisti-
cated scRNA-seq dataset of high-grade serous ovarian carcinoma
(HGSOC, N = 5) with comprehensive infiltrated stromal cell profil-
ing [24] (Fig. 1). After quality control and removal of low-quality
cells, a total of 38,543 cells were retained for downstream analyses.
Batch effects among the samples were observed and corrected by
the canonical correlation analysis (CCA) method. Graph-based
clustering of cells identified 10 major clusters with uniform mani-
fold approximation and projection (UMAP) algorithm (Fig. 2A). The
marker genes of each cluster based on the differential expression
genes analysis were cross-referenced with canonical markers of
cell phenotype from the published literature, and used to annotate
the cell types (Fig. 2B). Interestingly, the CAFs in the ovarian tumor
microenvironment had two distinct subclusters: CAF_c1 and
CAF_c2 (Fig. 2A), which indicated that amongst these primary
human HGSOC samples, at least two subtypes of CAFs existed.
We also found that these two subtypes of CAFs existed in all 5 sam-
ples (Fig. S1A), although their proportion varied greatly (Fig. S1B).
As shown in Fig. 2B, although all the CAFs could express the canon-
ical markers of fibroblast (such as COL6A1 and COL6A2), two CAFs
subtypes had different marker genes to distinguish (Table S1-2).
We characterized the CAF_c1 as tumor-promoting fibroblasts by
studying the discriminating marker genes of CAF_c1 (Fig. 2C,
Fig. S2A): CCDC80 (promoting cell adhesion and matrix assembly
[25]); SFRP2 (regulating cell growth and differentiation [26]); VCAN
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(promoting tumor progression and malignant transformation [27])
and COL8A1 (necessary for migration and proliferation of vascular
smooth muscle cells [28]). Meanwhile, we defined CAF_c2 as
myofibroblasts-like CAFs, because the gene markers of myofibrob-
lasts and pericytes including RGS5, NOTCH3, and NDUFA4L2 were
specifically expressed in the cells of the CAF_c2 (Fig. 2C, Fig. S2A)
[29–31].

We also found that CAF_c1 is next to cancer cells in UMAP,
which indicates that they have similar gene expression patterns.
To further explore that, we derived CAF_c1 and all cancer cells
and re-clustered them. The results showed that cancer cells could
be divided into 2 subtypes: CancerCell_c1 and CancerCell_c2, in
which CancerCell_c1 is close to CAF_c1 (Fig. S3A). CancerCell_c1
expressed some universe marker genes of cancer cells, like EPCAM,
CD24, and KRT19, while CancerCell_c2 expressed some additional
genes associated with cell cycle and cell proliferation, such as
TOP2A and UBE2C (Fig. S3B). We then use the ssGSEA method to
analyze the enriched GO BP of each cell type. The top 10 enriched
processes showed CancerCell_c1 highly expressed genes related to
immune cell activation and immune response, while CancerCell_c2
highly expressed cell cycle-associated genes (Fig. S3C).

Next, to determine the general significance of CAFs subtype
identification in the TME of ovarian cancer, additional independent
scRNA-seq datasets based on the high-grade serous tubo-ovarian
cancer (HGSTOC) samples (N = 7) [32] and metastatic ovarian can-
cer samples (N = 6) [33] were collected and analyzed in the present
study. As shown in Fig. 3, two identified CAFs subtypes including
tumor-promoting CAFs (CAF_c1) and myofibroblasts-like CAFs
(CAF_c2) were observed in the TME of 7 treatment-naive HGSTOC
tumors (Fig. 3A) and 6 ovarian tumors resected from omental
metastases (Fig. 3B). To further evaluate the consistency of CAF_c1
and CAF_c2 between these datasets, we calculated the correlation
coefficients between each cell type in the two datasets. It showed a
high correlation among these cell types in independent datasets
(Fig. S4).
3.2. Identification of CAF subtype-specific gene regulatory
transcription factors and cellular interaction networks

We next sought to identify transcription factors (TFs) to better
understand how CAF subtypes are established and maintained.
For this, we applied the algorithm SCENIC [22] to identify cell
cluster-specific top10 TFs that are highly active in the CAF sub-
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Fig. 2. Identification of CAFs subtypes in the TME of ovarian cancer. (A) Single-cell RNA-sequencing analysis of stromal cells in ovarian cancer (HGSOC). Uniformmanifold
approximation and projection (UMAP) analysis showed 10 distinct clusters of cell phenotypes in the TME. (B) Dot plot of mean expression of canonical marker genes for each
cell type. (C) Distribution plot of expression value of top marker genes for each CAFs subtype.
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types versus other cell populations of TME in ovarian cancer. We
observed that CAF_c1 and CAF_c2 showed distinct patterns of
highly expressed TFs (Fig. 4A). The homeobox genes including
(HOXA10 and HOXD11) encode a highly conserved family of TFs
that play an important role in morphogenesis [34] and were upreg-
ulated in the CAF_c2 subset. Furthermore, the PPARG, RARA, and
TBX15, which have been implicated in the regulation of cell devel-
opment and differentiation [35,36], were also active in CAF_c2
(Fig. 4B). Remarkably, immunological TFs (STAT1, IRF1, and XBP1)
[37] and NF-jB pathway-related TFs (JUN and RELB) [38] were
enriched for the CAF_c1. In addition, ATF3 [39], KLF5 [40], and RELB,
were induced by a variety of signals including many of those
encountered by cancer cells, and are involved in the complex pro-
cess of the cellular stress response, were all upregulated in CAF_c1
6406
(Fig. 4B). These findings provide further insights into the gene reg-
ulatory networks underpinning CAF variability by identifying crit-
ical TFs responsible for regulating or sustaining the gene
expression programs in the identified CAF subtypes.

Next, we used CellPhoneDB [23] to identify the expression of
potential crosstalk signaling molecules between CAFs and other
cell clusters based on ligand-receptor interactions. As shown in
Fig. 4C, the endothelium cell populations, as well as the myeloid
cell clusters showed the highest interaction numbers with CAFs,
which suggests sufficient interactions between CAFs and immune
and other stromal cells involving certain receptor-ligand gene
pairs. For example, CAF cells express high levels of COL6A1, COL3A1,
and FN1 as ligands, and the receptor aVb1 and a1b1 complex was
expressed by endothelium cells as receptors (Fig. 4D). Interest-



Fig. 3. Validation of CAFs heterogeneity in the TME of ovarian cancer based on the additional scRNA-seq datasets. (A) UMAP plot (left) of profiled cell clusters signature
distribution plot (right) of CAFs subtype signature genes based on the scRNA-seq dataset of 7 high-grade serous tubo ovarian cancer samples. (B) UMAP plot (left) of profiled
cell clusters signature distribution plot (right) of CAFs subtype signature genes based on the scRNA-seq dataset of 6 metastatic ovarian cancer samples.
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ingly, we found some specific gene pairs associated between the
CAF_c1 subtype and other strongly interacting cell types. CAF_c1
cells can express high levels of CD55 to interact with many
immune cell types (including lymphocytes and myeloid cells) by
using the receptor of ADGRE5 (Fig. 4D). We also performed an
extensive analysis of the ligand-receptor interactions on the
CAF_c1 and more refined tumor cell sub-clusters (including Can-
cerCell_c1 and CancerCell_c2). As shown in Fig. S3D-E, there was
no significant difference between CancerCell_c1 and CancerCell_c2
in terms of their interaction with CAF_c1, and, interestingly, the
expression of ligands FN1 in CAF_c1 had strong interaction poten-
tial with receptors integrin complex (a3b1, aVb1, and aVb5)
expressed in both CancerCell_c1 and CancerCell_c2 sub-clusters.

Overall, our data revealed that the identified subtypes of CAFs
were two distinct cell populations with different TF expression
patterns and cellular interaction networks, reflecting the hetero-
geneity of molecular characteristics of CAFs in the TME of ovarian
cancer.
3.3. Pan-cancer assessment of the biomarker utility of CAF signatures
for clinical outcome

To determine if the abundance of CAF_c1 in the ovarian TME
could serve as a predictive marker for clinical outcomes, we
employed the Kaplan–Meier survival analysis by using the marker
genes of CAF_c1, and the cox (proportional hazards) regression
model by using the integrative CAF_c1 signature genes to explore
their prognosis significance based on the TCGA patient cohort.
The ovarian cancer patients with the higher expression of CAF_c1
marker genes all had a dramatically unfavorable 5-year overall sur-
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vival, while no significant difference in survival curves was
observed for CAF_c2 marker genes (Fig. 5A). Then, we used the
integrative signature values of marker genes for each CAFs subtype
to examine the prognosis value at the Pan-cancer level, and as
shown in Fig. 5B, we found that the integrative CAF_c1 signatures
were specifically significantly correlated with worse overall sur-
vival in ovarian cancer (P-value = 0.003), while no association
was observed in any cancer types for CAF_c2 signatures.

Agents that alter the immunologic environment to incite an
immune response against tumors have shown astonishing success
in a number of solid malignancies, nevertheless, the responsive-
ness is not universal and overall response rates might be as low
as 20 % [41]. While T cell-dependent mechanisms are crucial, other
cellular subpopulations including some stromal cells in the TME
could also play an important role in moderating the response to
immunotherapy. Previous studies have suggested that CAFs are
associated with this resistance [42–45], therefore, to check if the
signatures of CAF_c1 correlated with the immunotherapy
response, we investigated the distribution of CAF_c1 signatures
across four different published RNA-seq cohorts collected from
multiple cancer patients prior to immunotherapy treatment [17–
20] to test whether it has a distinguishing power from clinical-
benefit patients versus non-benefit patients of immunotherapy.
Surprisingly, the expression of CAF_c1 signatures was enriched in
the cancer patients that were resistant to immunotherapy, and that
trend was observed in all the immune checkpoint inhibitor therapy
cohorts of various cancer types (including anti-PD-(L)1 and anti-
CTLA-4 immunotherapy, Fig. 5C). The expression value of CAF_c1
signatures showed the potential as a novel marker for both prog-
nosis and immunotherapy responsiveness for clinical use.



Fig. 4. Characterization of subtype-specific TFs and cellular interaction networks of CAFs. (A) Distribution plot of TFs using the SCENIC algorithm for the CAFs of ovarian
cancer. (B) Heatmap of top10 activated subtype-specific TFs, the color indicates the relative expression level (Z-score) of TFs. (C) Heat map depicting the significant
interactions among the identified major cell types, the color indicates the number of interactions between two specified TFs. (D) Overview of the selected ligand-receptor
interactions. P-values (two-tailed permutation test) are indicated by circle size. The means of the average expression level of interacting molecule 1 in cluster 1 and
interacting molecule 2 in cluster 2 are indicated by color.
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Fig. 5. The signature of the CAF_c1 subtype in ovarian cancer correlated with worse prognostic and immunotherapy responsiveness. (A) Kaplan–Meier survival curves
comparing the 5-year overall survival for different marker genes of each CAFs subtype. (B) Hazard ratio estimates for overall survival in TCGA pan-cancer cohorts based on the
integrative marker gene signatures of each CAFs subtype by using Cox regression. Plotting symbols give point estimates of HR and horizontal bars give 95% CIs. (C) The dot
plot displays the distribution of CAF_c1 signature expression mean value among different immunotherapy response patient cohorts. The median values of each sample are
indicated in horizontal bars.
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4. Discussion

The plasticity of CAFs subtypes in the TME has been well
demonstrated for various types of cancer including pancreatic
[46] and breast cancer [47], and our investigation provides a new
framework to develop omics data integration strategies to analyze
the CAFs phenotype in the TME of ovarian cancer, to be combined
with clinical outcome information. Our results painted the cellular
heterogeneity of the CAFs population, and identified the signature
genes and master regulatory network of each CAFs subcluster in
the TME of ovarian cancer, which demonstrated the critical need
to functionally characterize the pleiotropic effects of CAFs in terms
of cancer progression, prognostic outcome, and response to
immunotherapy.

In this study, by leveraging scRNA-seq data, TCGA database, and
multiple immunotherapy patient cohorts, we mapped CAFs cell
states that were associated with clinical outcomes, revealing a
novel marker based on the identified CAFs subtype that has a prog-
nostic value for clinical outcome and predictive value for
immunotherapy response of melanoma. The expression value of
signature derived from the CAF_c1 subtype that could predict
6409
immunotherapy responses was confirmed in several independent
cohorts. Previous studies have found that CAFs could also be
divided into 2 subsets, which were named inflammatory CAF
(iCAF) and myo-CAF (mCAF), in some other cancer types, such as
bladder urothelial carcinoma and pancreatic ductal adenocarci-
noma [48,49]. These results may suggest the consistent function
of the CAFs in various cancer types. We believe that the specific
type of CAFs have a selective function of anti-inflammatory and
expected disadvantage during immune checkpoint inhibitor ther-
apy. Additional prospective data with a sizable patient cohort will
be required to confirm our findings and unambiguously link the
CAFs signatures with the immunotherapy response of ovarian
cancers.

There are a few limitations to our study that should be noted.
First, because our study is in silicon analysis based on integrative
omics data, it will be important and more convincing if we or
others could characterize and validate the CAFs markers from our
findings based on the newly collected cancer tissues of ovarian
cancer by using experimental methods. Second, despite our best
efforts to achieve the robustness of our CAFs clustering analysis,
we suppose the heterogeneity results of CAFs in this paper could
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be further improved and refined with larger scRNA-seq and cancer
genomics cohorts (more cells and more samples profiled). Third,
since the new high-throughput technology such as spatial tran-
scriptomics has been advancing rapidly in recent years, our find-
ings could be effectively extended with other new-developed
approaches.

To sum up, we have systematically characterized two distinct
CAFs subtypes in the TME of ovarian cancer, and more importantly,
we identify the abundance of the CAF_c1 subtype is related to
unfavorable prognosis and immunotherapy resistance. We believe
that when single-cell technologies become more widely used,
more datasets containing CAFs from a variety of other cancer types
will become accessible. Future studies might use the paradigm
provided by our current study to characterize, compare, and inves-
tigate the functional and clinical aspects of CAFs heterogeneity
across various cancer types.
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