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A joint modelling approach for multistate
processes subject to resolution and under
intermittent observations
Sean Yiu∗† and Brian Tom

Multistate processes provide a convenient framework when interest lies in characterising the transition intensi-
ties between a set of defined states. If, however, there is an unobserved event of interest (not known if and when
the event occurs), which when it occurs stops future transitions in the multistate process from occurring, then
drawing inference from the joint multistate and event process can be problematic. In health studies, a particular
example of this could be resolution, where a resolved patient can no longer experience any further symptoms,
and this is explored here for illustration. A multistate model that includes the state space of the original mul-
tistate process but partitions the state representing absent symptoms into a latent absorbing resolved state and
a temporary transient state of absent symptoms is proposed. The expanded state space explicitly distinguishes
between resolved and temporary spells of absent symptoms through disjoint states and allows the uncertainty of
not knowing if resolution has occurred to be easily captured when constructing the likelihood; observations of
absent symptoms can be considered to be temporary or having resulted from resolution. The proposed methodol-
ogy is illustrated on a psoriatic arthritis data set where the outcome of interest is a set of intermittently observed
disability scores. Estimated probabilities of resolving are also obtained from the model. © 2016 The Authors.
Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: intermittent observations; joint modelling; multistate model; psoriatic arthritis; resolution

1. Introduction

In many pathological processes, patients may completely recover and therefore be free of any further
symptoms. This, for example, could be due to an appropriate dose or medication being found, a disease
process burning out [1, 2] or even because of a change of environments [3].

For a set of intermittently observed psoriatic arthritis (PsA) patients, the primary aims of this paper
are to characterise the rates of progression between a set of disability states and to consider the extent to
which resolution occurs. Some complications in this scenario arise from the unknown times in which the
disability status changes (transitions are interval censored) and also not knowing if and when a patient
has resolved. Note that the latter complication is in contrast to the standard time-to-event setting because
it is generally known if the event of interest has occurred, such as death, even if the occurrence time
is not known. For this situation, we propose an expanded multistate model, which can naturally handle
intermittent observations, that composes of (i) a latent absorbing state representing resolution, (ii) a par-
tially latent transient state of temporary non-disability (therefore together representing no disability as a
disjoint union of temporary and permanent non-disability/resolution) and (iii) various transient states of
disability severity. The temporary non-disability state is partially latent because observations of no dis-
ability is known to be temporary if observations of disability have been observed afterwards. Implicitly,
because non-disability is partitioned into a latent and partially latent state representing resolved and tem-
porary non-disability, respectively, inference on each event can be obtained explicitly, and the uncertainty
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of not knowing if a patient has resolved can easily be accounted for when constructing the likelihood;
observation of no disability can be considered as either temporary or permanent.

In survival analysis, mixture models have been frequently used in studies where a proportion of long-
term survivors are believed to have been cured at a single point in time, such as, straight after surgery,
for example [4–6]. These models estimate the latent probability of being cured for each patient and the
survival distribution for the uncured patients. Yamaguchi [7] examined a further interesting notion by
characterising the latent failure time at which a patient becomes cured, and this was motivated by the
possibility of patients becoming cured at different points in time. This was performed using a three-state
competing risk model where the states were alive and not cured (transient state), cured, and death (both
absorbing states), thus the alive state is dicho tomised into the disjoint union of a partially latent alive and
not cured state and a latent cured state. Observations of alive were then considered to be in either the cured
state or alive and not cured state when constructing the likelihood, therefore accounting for the uncertainty
of not knowing if a patient has been cured. Yamaguchi [8] also explored last episode data where the
last occurrence of a repeatable event is of interest. As this event time (the time of the last episode),
which is analogous to the failure time into the resolved state, is unknown, a time-varying latent indicator
variable was incorporated into the intensity, and this represented the uncertainty about the last observed
occurrence being also the last possible event. Shen and Cook [3] studied recurrent event processes that
are subject to resolution. Their approach was similarly based on time-varying latent indicator variables,
and they suggested the use of an Expectation-maximisation (EM) algorithm to facilitate the model fitting
procedure. All of these analyses were based on knowing the times (subject to right censoring in the
survival cases) when the events, apart from resolution, occurred.

Cook et al. [9] considered a generalised mover–stayer model for intermittently observed multistate
processes. The model (based on time-invariant latent indicator variables) consisted of a mixture of nested
continuous-time multistate processes in which sub-models were defined by constraining some transitions
to zero between two or more states of a full model. This methodology would then allow for the possibility
that some states were permanently transient (i.e. positive intensity) for some patients and the same states
were permanently absorbing (i.e. zero intensity) for others. However, all states were assumed non-latent
and therefore observable, even though it may not be known which intensities are zero. If this methodol-
ogy was applied to our illustrative example, the observable non-disability state could only either always
represent temporary non-disability (i.e. intensity out of the observable non-disability state is positive)
or resolved (i.e. intensity out of the observable non-disability state is zero) for each patient. As such,
patients who have ever been observed to transition from the non-disability state to a disability state will
always be represented as having temporary non-disability when in the non-disability state even if they
have resolved; the intensity from the non-disability state must be permanently positive to reflect the pre-
vious transition(s) out of the non-disability state. Thus, characterising the extent to which these patients
resolve (those who have previously been observed to transition out of the non-disability state), in which
there are many in the illustrative example, is not facilitated by this methodology. Instead, if the observ-
able non-disability state is partitioned into a latent absorbing resolved state and partially latent transient
temporary non-disability state, patients could be characterised as resolved (by the resolved state) at any
point in time regardless of their observed history. We also note that Shen and Cook [10] recently extended
their model in [3] for recurrent event processes to allow for an intermittent observation scheme.

The remainder of this paper is organised as follows. In the next section, disability in psoriatic arthritis
is briefly introduced. In Section 2, the notation and methodology is described. Section 3 provides a short
simulation study to facilitate discussions on the expected discrepancies (with regard to parameter esti-
mates and confidence intervals) that occur when observations of no disability are known and unknown to
correspond to resolved. Section 4 applies the methodology, and concluding remarks are made in Section 5.

1.1. Disability in psoriatic arthritis

Psoriatic arthritis patients generally experience both skin and joints manifestations of the disease. For
some patients, this can lead to severe physical functional disability. In PsA, physical disability is pre-
dominantly measured using the Health Assessment Questionnaire (HAQ), which yields a score between
0 (no disability) and 3 (completely disabled), with increments of 0.125. At the University of Toronto PsA
Clinic [11], 597 patients have completed the HAQ on at least two occasions, with the average number
of responses being 6.41 (ranging from 2 to 18). The mean and median intervisit times of these patients
were 1 year and 6 months and 1 year and 1 month, respectively, whilst their mean follow-up time was
7 years and 6 months with an interquartile range (IQR) of 9 years and 2 months. In total, there were 3829
observations with the average HAQ score being 0.61 (standard deviation (SD) of 0.68).
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A notable feature of this data set is the large number of zero observations (32%, 1252 of 3829 observa-
tions), as seen in Figure 1, which displays the frequencies of HAQ scores. On further examination, it can
be seen that 708 (57%) of these zeros lie consecutively between the last time some patients were observed
to be in a state of disability and the end of their follow-up period. This occurred for 179 patients (30%, 179
of 597 patients) where the mean time since their last observed disability state was 4 years and 7 months
with an IQR of 4 years and 9 months. For a subset of the data, this finding is illustrated in Figure 2. It is a
general belief that some patients will gradually adapt to their disability status, and as a consequence will
not report any further disability after a period of adjustment. For this reason, and others, persuasive argu-
ments can be made about the clinical plausibility that certain patients become resolved. These clinical
and empirical considerations, in part, motivated the development of the methodology to follow.

Figure 1. A histogram describing the frequencies of the Health Assessment Questionnaire (HAQ) scores in our
data.

Figure 2. A plot of the disability trajectories for 40 patients. The circles and squares represent observations of
zero and non-zero Health Assessment Questionnaire scores, respectively.
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2. Methodology

This paper focuses on the situation where there are n patients whose disability process is subject to
resolution. Denote the disability process at time t, X(t), which can take a set of states {R,D0,D1,… ,Dm}.
The multistate model with state space displayed in Figure 3 can then be used to describe the progression
of disability through these states. Here, state R represents a resolved state where upon entry, no further
disability can be gained. Hence, it is appropriately characterised as an absorbing state. Next, state D0
denotes a temporary non-disability state as further transitions into disability are possible. Finally, states
{D1,… ,Dm} represent increasing levels of disability severity where each state is only accessible via
adjacent states. This assumption in continuous time is not restrictive as transitions between non-adjacent
states over two successive visits in the data would necessarily have been via the unobserved adjacent
states in the period between these visits.

Suppose for patient i realisations of the disability states {sij}
mi

j=0 and a vector of covariates {zij}
mi

j=0 are
recorded at clinic visits occurring at times {tij}

mi

j=0. Covariate effects can be incorporated into the transition
intensities from state r → s (instantaneous rate of transitioning from state r to s, where r and s are adjacent
states), r ≠ s and between times tij and tij+1 by using a proportional hazards framework

𝜆rsij = 𝜆rs exp
(
𝜷′

rszij

)

where 𝜆rs is a constant baseline intensity for the r → s transitions and 𝜷rs is a vector of regression
coefficients for the associated covariates.

When all states are observable, the likelihood for time-homogeneous Markov processes is easily com-
puted [12]. In our context, this would be the case if we knew when observations of no disability correspond
to D0 or R, that is, if X(tij) = R and X(tij) = D0 are observed. For this situation, the likelihood contribution
from patient i, Li(𝚯) (𝚯 is a vector of unknown parameters), conditional on their initial state Xi(ti0) = si0
(conditioning on the initial state is usual when it is not of interest) is

Li(𝚯) = P

(
X(ti1) = si1,… ,X(timi

) = simi
|X(ti0) = si0;𝝀i1,… ,𝝀imi−1

)

=
mi−1∏
j=0

P(X(tij+1) = sij+1|X(tij) = sij;𝝀ij)

=
mi−1∏
j=0

P(X(tij+1 − tij) = sij+1|X(0) = sij;𝝀ij)

∶=
mi−1∏
j=0

psijsij+1
(tij+1 − tij;𝝀ij)

(1)

where the second and third lines follow from the Markov and time-homogeneity property, respectively.
Here, 𝝀ij = Vec({𝜆rsij}rs), where r and s are adjacent states and Vec is a function mapping a subset of
elements to a vector, and psijsij+1

(tij+1 − tij;𝝀ij) ∶= P(X(tij+1 − tij) = sij+1|X(0) = sij;𝝀ij) represents the

probability of transitioning from state sij to sij+1 in time tij+1 − tij. For continuous-time Markov processes,
it is well known that psijsij+1

(tij+1 − tij;𝝀ij) can be computed as the (sij, sij+1)th entry of

exp(Qij(tij+1 − tij))

Figure 3. Multistate diagram that describes the disability and resolution processes jointly.
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where

Qij =

⎛⎜⎜⎜⎜⎝

R D0 D1 … Dm

R 0 0 0 … 0
D0 𝜆D0Rij −𝜆D0Rij − 𝜆D0D1ij 𝜆D0D1ij … 0
D1 0 𝜆D1D0ij −𝜆D1D0ij − 𝜆D1D2ij … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
Dm 0 0 0 … −𝜆Dm−1mij

⎞⎟⎟⎟⎟⎠
and exp() represents the matrix exponential.

In practice, observations of no disability are never known to correspond to resolved (and not imme-
diately known to correspond to temporary non-disability), that is, X(tij) = R can never be observed.
Moreover, we can only observe Xo(tij) = 0 ∶= {X(tij) = R} ∪ {X(tij) = D0}, that is, overall no disability,
or Xo(tij) ∶= X(tij) = Dk when k > 0, as before. Here, Xo(t) denotes the observable disability process
at time t. In order to fit the model with state space displayed in Figure 3 under this observation scheme,
we construct the likelihood contribution from patient i, that is, Li(𝚯), conditional on their initial state
Xo(ti0) = so

i0, so
ij ∈ {0,D1,… ,Dm}, as

Li(𝚯) =P

(
Xo(ti1) = so

i1,… ,Xo(timi
) = so

imi
|Xo(ti0) = so

i0;𝝀i1,… ,𝝀imi−1

)
=

∑
ximi

∈Ωimi

…
∑

xi1∈Ωi1

P

(
X(ti1) = xi1,… ,X(timi

) = ximi
|Xo(ti0) = so

i0;𝝀i1,… ,𝝀imi−1

)

=
∑

ximi
∈Ωimi

…
∑

xi1∈Ωi1

∑
xi0∈Ωi0

P

(
X(ti1) = xi1,… ,X(timi

) = ximi
|X(ti0) = xi0;𝝀i1,… ,𝝀imi−1

)

× P
(
X(ti0) = xi0|Xo(ti0) = so

i0

)
=

∑
ximi

∈Ωimi

…
∑

xi1∈Ωi1

∑
xi0∈Ωi0

mi−1∏
j=0

pxijxij+1
(tij+1 − tij;𝝀ij)P

(
X(ti0) = xi0|Xo(ti0) = so

i0

)

(2)

where

Ωij =
⎧⎪⎨⎪⎩
{Dk} ∶ so

ij = Dk and k > 0

{R,D0} ∶ so
ij = 0.

The second line follows because no disability is a disjoint union of temporary and permanent no disability,
that is, P({{X(t) = R} ∪ {X(t) = D0}},C) = P(X(t) = R,C) + P(X(t) = D0,C), where C is any event in
the probability space. The third line then follows from the theorem of total probability, and the last line
follows again from the Markov and time-homogeneity property. Note that although all observations of no
disability can be either resolved or temporary non-disability, the likelihood distinguishes between these
states through the transition probabilities, which encapsulates the model structure; particularly, R is an
absorbing state and D0 is a transient state. For example, the transition probabilities will provide greater
weighting to paths that contain a transition to the resolved state after the last observation of disability
if many consecutive observations of zero are seen over a long time period up to the end of follow-up.
Conversely, paths that contain transitions from the resolved state will be dismissed because these paths
have zero probability of occurring. Also note that for k > 0,P(X(ti0) = xi0|{X(ti0) = R}∪{X(ti0) = D0}) =
0 if xi0 = Dk and P(X(ti0) = xi0|X(ti0) = Dk) = 1 when xi0 = Dk and 0 otherwise. Thus, only P(X(ti0) =
xi0|{X(ti0) = R} ∪ {X(ti0) = D0}) when xi0 = R or D0 is unknown. This probability is introduced to
avoid having to compute the transition probabilities when the initial state is only initially known to be
no disability and not R or D0. In the illustrative example, patients are referred to the clinic because of
their level of disease activity or to acquire specialised tertiary care at the clinic. It is therefore unlikely
that a patient who enters the clinic with no disability has resolved; hence, for simplicity, these patients
are regarded as having temporary non-disability at their initial visit, that is, P(X(ti0) = D0|{X(ti0) =
R}∪ {X(ti0) = D0}) = 1. Note that this assumption is not relevant for patients who acquire disability at a
later point in time because these patients (by definition) must have had temporary non-disability at their
initial clinic visit.

500

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 496–508



S. YIU AND B. TOM

The model is fitted by maximising the complete data likelihood, which is obtained by taking the prod-
uct of all likelihood contributions from each patient. Conveniently, this can be performed in the R [13]
packagemsm [14] (see the Appendix for details), and this is one of the advantages of the proposed method-
ology. Along with maximum likelihood estimates, the msm package also provides 95% Wald intervals
(which are exponentiated for baseline intensities as log baseline intensities are estimated), which will be
reported together with parameter estimates (unless stated otherwise) throughout this paper.

3. Simulation study

This section utilises a small-scale simulation study to help illustrate the expected discrepancies that result
from knowing and not knowing if resolution has occurred. If the same model structure is specified, we
would expect similar parameter estimates even if it cannot be known if resolution has occurred. Mathe-
matically, this can be seen by comparing the likelihood in both of these situations (Equations (1) and (2));
they are identical before the last observations of disability. However, because no definite information on
transitions from state D0 to state R (or remaining in state D0) is being provided after the last observations
of disability if resolution is not known, we would expect greater uncertainty about the parameters asso-
ciated with the D0 → R and D0 → D1 transition intensities. Furthermore, if resolution is not known, we
would expect the uncertainty with regard to the parameters governing the D0 → R transition intensity to
be heavily dependent on the lengths of follow-up after the last observations of disability. This is because
transitions from D0 → R, although not known if they occur, can only transpire after the last observa-
tions of disability, therefore shorter time periods after these points will result in greater uncertainty in
distinguishing between remaining in a state of temporary non-disability and transitioning to resolved. In
contrast, information on D0 → D1 transitions contribute unequivocally to the likelihood; when transitions
from no disability to disability occur. The uncertainty about the parameters governing these transitions
will therefore be less affected by the follow-up after the last observations of disability.

Consider the multistate process in Figure 4, where D0 and R represent states of temporary and per-
manent non-disability, respectively, and as an example, D1 and D2 represent states of mild/moderate and
severe disability, respectively. From this process, longitudinal data from 480 patients were generated with
each of the transient states containing an equal number of patients (i.e. 160) at the initial clinic visit. The
simulations were based on annual clinic visits for each patient with an 8-year follow-up period. Further-
more, with the exception of the transition intensity from D0 → R, the transition intensities were assumed
to be modulated by a binary variable z = {0, 1}, which has regression coefficient of 𝛽 = 1 for each
transition intensity. No covariates were assumed to act on the D0 → R transition intensity so that its iden-
tifiability could be more simply investigated. The distribution of this binary variable was supposed to be
equal between the populations at each initial state. Finally, two baseline transition intensity matrices (the
(r, s)th entry corresponds to 𝜆rs) were considered:

Q1 =
⎛⎜⎜⎜⎝

R D0 D1 D2

R 0 0 0 0
D0 0.4 −0.8 0.4 0
D1 0 0.6 −1.2 0.6
D2 0 0 0.4 −0.4

⎞⎟⎟⎟⎠
and

Q2 =
⎛⎜⎜⎜⎝

R D0 D1 D2

R 0 0 0 0
D0 0.06 −0.12 0.06 0
D1 0 0.08 −0.16 0.08
D2 0 0 0.06 −0.06

⎞⎟⎟⎟⎠
.

These correspond to two different scenarios. In the first scenario, the baseline intensities were all rel-
atively large in magnitude. We would therefore expect a reasonable proportion of patients to resolve
towards the start of their follow-up. In the second scenario, the baseline intensities, particularly
those from the temporary non-disability state, were much smaller in magnitude. We would therefore
expect most patients to either remain in the transient states or resolve towards the end of their follow-up.
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Figure 4. multistate diagram with transient states of disability and an absorbing resolved state.

Table I. Mean parameter and 95%Wald interval estimates under
Scenario 1.

Parameters True Complete observation Partial observation

𝜆D0R 0.4 0.4 (0.36, 0.45) 0.4 (0.34, 0.48)
𝜆D0D1

0.4 0.4 (0.31, 0.51) 0.4 (0.29, 0.54)
𝜆D1D0

0.6 0.6 (0.5, 0.72) 0.6 (0.5, 0.72)
𝜆D1D2

0.6 0.61 (0.5, 0.74) 0.61 (0.5, 0.74)
𝜆D2D1

0.4 0.41 (0.34, 0.48) 0.41 (0.34, 0.48)
𝛽D0D1

1 1.01 (0.65, 1.37) 1.02 (0.59, 1.45)
𝛽D1D0

1 1.01 (0.72, 1.3) 1.02 (0.71, 1.33)
𝛽D1D2

1 1 (0.67, 1.34) 1 (0.67, 1.34)
𝛽D2D1

1 1 (0.71, 1.3) 1 (0.71, 1.3)

In the Appendix, we show that the expected proportion of patients who have resolved by the end of the
8-year follow-up period is 0.71 and 0.22 in Scenarios 1 and 2, respectively.

In both scenarios (represented by Q1 and Q2), 500 data sets were generated under the multistate process
of Figure 4. For each generated data set, the multistate process of Figure 4 was fitted under the assumption
that (i) the type of non-disability, that is, temporary non-disability or resolved, was known; simulated
values of R and D0 were left unaltered, and the model was fitted using Equation (1); and (ii) unknown;
simulated values of R and D0 were replaced by a 0 score and fitted using Equation (2). These situations
will be denoted as complete observation and partial observation, respectively. The mean of the parameter
estimates and the estimated 95% Wald intervals are reported.

From Table I, it can be seen that under Scenario 1, the mean parameter estimates of the two models are
very similar to one another. The mean estimated confidence intervals of the parameters are also compara-
ble except in the cases of the D0 → R and D0 → D1 transitions where the estimated confidence intervals
are wider in the partial observation case. Nevertheless the estimate �̂�D0R is identifiable. In general, where
there is sufficient amounts of follow-up after the last observations of disability, it would be expected for
reasons previously discussed that similar characteristics to that of Scenario 1 would result. In Scenario
2, it can also be seen from Table II that similar parameter estimates result. However, because of the short
relative follow-up after the last observations of disability, the estimate �̂�D0R in the partial observation case
has a considerable amount of uncertainty associated with it; the mean estimated confidence interval of
(0.026, 25) associated with this intensity is extremely wide. This has essentially resulted from the infor-
mation content of the likelihood being insufficiently informative to distinguish between remaining in
state D0 and transitioning to state R with little uncertainty. Generally, for similar situations (short follow-
up after the last disability observations), such results would also be expected. It is therefore imperative to
verify empirically that a data set contains the sufficient follow-up information if the transition intensity
to the resolved state is to be identified.

4. Application

4.1. Estimating transition intensities

In an earlier study that describes the longitudinal course of disability, Husted et al. [15] considered a three-
state model to represent transitions between the categories [0, 0.5), [0.5, 1.5] and (1.5, 3] of HAQ scores.
These states corresponded to mild, moderate and severe disability, and this analysis was performed on
341 PsA patients. Since this research was conducted, the number of patients, and crucially, the follow-
up of the earlier patients have greatly increased. Therefore, an analysis that includes the possibility of
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Table II. Mean parameter and 95% Wald interval estimates under
Scenario 2.

Parameters True Complete observation Partial observation

𝜆D0R 0.06 0.06 (0.047, 0.076) 0.062 (0.026, 25)
𝜆D0D1

0.06 0.061 (0.043, 0.087) 0.062 (0.04, 0.094)
𝜆D1D0

0.08 0.081 (0.06, 0.11) 0.081 (0.06, 0.11)
𝜆D1D2

0.08 0.08 (0.059, 0.11) 0.08 (0.059, 0.11)
𝜆D2D1

0.06 0.059 (0.043, 0.082) 0.059 (0.043, 0.082)
𝛽D0D1

1 1 (0.58, 1.43) 1.01 (0.57, 1.45)
𝛽D1D0

1 1 (0.63, 1.36) 1 (0.63, 1.36)
𝛽D1D2

1 1.02 (0.65, 1.39) 1.02 (0.647, 1.39)
𝛽D2D1

1 1.03 (0.64, 1.42) 1.03 (0.638, 1.42)

a resolved state is now more meaningful. In accordance with the previous study, a multistate model
with categorisations R (resolved state, HAQ = 0), D0 (temporary non-disability, HAQ = 0), D1 = (0, 0.5),
D2 = [0.5, 1.5] and D3 = (1.5, 3] is now considered, and the developed methodology from the previous
sections is adopted.

At each clinic visit, as well as the HAQ score, various other information was collected and so can be
included in the analysis as covariates. The mean arthritis duration and age at arthritis onset during the
first HAQ assessment of the 597 PsA patients were 9 years and 2 months (SD of 8 years and 8 months)
and 36 years and 7 months (SD of 12 years and 11 months). The mean and median number of clinically
damaged joints were 5 and 0, respectively, with an IQR from 0 to 5. Furthermore, 41% of the patients
were women.

At baseline, 132 (22.1%), 243 (40.7%) and 90 (15.1%) patients were observed to be in the states D1, D2

and D3, respectively. The remaining 132 (22.1%) patients were observed to have no disability at baseline,
of which 44 patients were never observed with disability throughout their follow-up. Our assumption
that patients can only resolve whilst in the clinic will therefore only be relevant for these 44 patients.
Table III presents the results of fitting the five-state model to these data. From the table, it can be seen
that there is some evidence of strong influential covariate effects on the various transition intensities.
Particularly, males in the mild disability state seem to have a faster transition intensity to temporary non-
disability than females. A greater number of damaged joints decreases the transition intensity from severe
to moderate disability. Being diagnosed with arthritis at an older age decreases the transition intensity
from mild disability to temporary non-disability. Finally, longer duration of arthritis decreases the tran-
sition intensities between moderate and severe disability and from mild to temporary non-disability but
increases the transition intensity from moderate to severe disability. The transition intensity from state
D0 → R is estimated as 0.039 with a confidence interval of (0.024, 0.065), which suggest that the model
was able to identify this parameter. The likelihood ratio test statistic for the hypothesis 𝜆D0R = 0 was
then calculated. This was compared with a 50:50 mixture of a 𝜒2

1 distribution and a point mass at zero
as this is a test of a parameter being on the boundary of its parameter space. The resulting p-value was
<0.001, hence inferring that a subpopulation of patients from this data have likely transitioned into a
resolved state.

4.2. Estimating probabilities of being resolved

Another quantity of clinical interest is the estimated probability that a given patient with a given initial
state, s0, has resolved before t years, that is, p̂s0R(t). From the fitted model in Section 4.1, it is diffi-
cult to obtain valid estimates of ps0R(t), particularly if in the interval [0, t], it is challenging to represent
reasonably the evolution of the time-varying covariate number of damaged joints and to a lesser extent
arthritis duration. Arthritis duration is less problematic because it can be updated with time because
of its deterministic nature; however, the number of damaged joints is a random stochastic process and
therefore would require joint modelling with the disability process [16] if ps0R(t) is to be reasonably
estimated. For illustrative purposes, we fit another joint model with outcomes as before (described by
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Table IV. Estimated probabilities and corresponding 95% confidence intervals of resolving before t = 5,
10 and 15 years for a male patient who was diagnosed with arthritis at 36 years and 7 months and with
arthritis duration of 9 years and 2 months.

Initial state (years) D0 D1 D2 D3

5 0.11 (0.067, 0.17) 0.07 (0.042, 0.12) 0.029 (0.017, 0.049) 0.013 (0.007, 0.022)
10 0.18 (0.11, 0.26) 0.14 (0.085, 0.21) 0.086 (0.054, 0.13) 0.058 (0.035, 0.091)
15 0.23 (0.14, 0.35) 0 .19 (0.12, 0.3) 0.14 (0.086, 0.22) 0.11 (0.067, 0.18)

states {R,D0,D1,D2,D3}) but with covariates sex, age at onset of arthritis (years) and arthritis duration
categorised as follows: less than 2 years, between 2 and 5 years inclusive and greater than 5 years, thus
allowing arthritis duration to be more easily updated (see the Appendix Table A.1 for the results). This
model is then less problematic for estimating ps0R(t).

Consider at clinic entry a male patient who was diagnosed with arthritis at 36 years and 7 months and
has arthritis duration of 9 years and 2 months (covariates set to be their means). Table IV displays the
results of the estimated probabilities of resolution and their respective 95% confidence intervals (calcu-
lated using the technique described in [17]), conditional on various initial states, before t = 5, 10 and
15 years. Table IV demonstrates that this illustrative patient, if he had entered the clinic with temporary
non-disability, has an estimated probability of 0.11 (0.067, 0.17), 0.18 (0.11, 0.26) and 0.23 (0.14, 0.35)
of being resolved before 5, 10 and 15 years, respectively. However, these probabilities decrease to 0.013
(0.007, 0.022), 0.058 (0.035, 0.091) and 0.11 (0.067, 0.18) if he had been diagnosed with severe disability
upon clinic entry.

5. Discussion

Intermittently observed multistate processes that are subject to resolution commonly occur in many areas
of health research. In these setting, we propose a joint modelling approach whereby both the multistate
and resolution processes are combined via an expanded multistate model. In this framework, the inter-
mittent observations are naturally handled, and by considering observations of no disability to be in
either the resolved state or temporary non-disability state, the uncertainty arising from not knowing if and
when the process of interest has resolved is captured. Conceptually, this involves considering all possi-
ble paths, which may or may not enter the resolved state at any instance that give rise to the intermittent
observations. Such an analysis is often difficult to undertake; however, because of the readily available
multistate modelling software, this approach is particularly appealing. One use of this joint model would
be to provide a means for considering the extent to which a subpopulation of patients have resolved. If
such a population is seen as likely, it is straightforward to further incorporate covariates in the transition
intensity to the resolved state.

The results of Section 3 indicate clearly that care must be exercised in the use of this model. In particu-
lar, the data on which the model is based must suggest that it is empirically plausible for a subpopulation
to have resolved. Failure of this possibility will result in identification problems even if a subpopulation
of patients have resolved. Another concern is the clinical plausibility of a resolved population. The use
of this model for disease processes where resolution is unrealistic would be very difficult to defend.

Although understanding the disability process was the primary aim of Section 4.1, thus important
time-varying (uncategorised) covariates were incorporated into the analysis, Section 4.2 highlights the
difficulty of such an analysis if estimating the probability of resolving before a specified time, t, is of
interest. In particular, in the interval [0, t], it can be challenging to accurately represent the evolution of
time-varying covariates. Section 4.2 therefore utilised another joint model without the covariate number
of damaged joints and with arthritis duration categorised to illustrate how the relevant probabilities can be
estimated reasonably. An interesting area of future research would be to consider the possibility of directly
modelling the transition probabilities [18], specifically the probability of resolving before a specified time
point, instead of the transition intensities. In addition to estimating transition probabilities for specific
patients, this would also provide more interpretable covariate effects on these probabilities.
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Finally, the estimated transition intensity to a resolved state will depend on the model specifi-
cation for the disability process. In the illustrative example, strong modelling assumptions (Markov
time-homogeneous) were made. Future work that relaxes these assumptions would be useful.

Appendix A

##In this section, we describe how to fit the multistate model in Figure 3
##with states {R,D0,D1,D2,...,Dn} where n=3. Extensions to other values of n
##are straightforward.

library(msm)
Qmat<-rbind(c(0,0,0,0,0),c(1,-2,1,0,0,0),c(0,1,-2,1,0),c(0,0,1,-2,1), c(0,0,0,1,-1))
##Qmat describes the state space and the possible transitions that may occur
##(through the non-zero entries in the matrix).

##Let DF be a data frame containing the patients (possibly with covariate
##information), their observed states and the corresponding observation times.
##As an example DF<-data.frame(cbind(Patient,State,Time,Age,Sex))

##Let the State vector contain values from 2,...,5 corresponding to
##HAQ=0,D1,..,D_3 respectively. For convenience HAQ=0 is initially
##recorded as D0, although this will be altered in the analysis.

index1<-seq_along(Patient)[!duplicated(Patient)]
##index1 contains the indices of the Patient vector where each unique patient
##was first observed.

index2<-which(State==2)
##index 2 contains the indices where HAQ=0 was observed.

index3<-index2[! index2 %in% index1]
##index3 contains the indices where HAQ=0, but not including those
##observations which occurred at the first clinic visit.

State<-State[index3]<-99
##State now contains 99 every time HAQ=0 was observed not at the first
##clinic visit.

DF1<-data.frame(cbind(Patient,State,Time,Age,Sex))

msm(State Time,subject=Patient,data=DF1,qmatrix=Qmat,gen.inits=TRUE,
covariates= Age+Sex, covinits=list(Sex=c(0,1,1,1,1,1,1),AGE=c(0,1,1,1,1,1,1)),
fixedpars=c(8,15),censor=99,censor.states=c(1,2),method=‘‘BFGS’’)
##This command fits the model of interest. The censor and censor.states
##command informs msm that observations of 99 could correspond to
##states 1 or 2. These states, from the definition of the state space,
##correspond to resolved and temporary non-disability respectively.
##The fixedpars and covinits command specify no covariates acting on the D0 to R
##transition. These commands can be removed if covariate effects on the
##D0 to R transition intensity are of interest.

Appendix B

In this section, we compute the expected proportion of patients who are expected to have resolved by the
end of the 8-year follow-up period. As there are 160 patients in each initial state (except from state R),
with 80 patients such that z = 1 and 80 patients such that z = 0, the expected proportion of patients in
state R at the end of the 8-year follow-up period is

∑
k∈{D0,D1,D2}

pkR(8|z = 1)∕6 +
∑

k∈{D0,D1,D2}
pkR(8|z = 0)∕6.

In Scenarios 1 and 2, this quantity is calculated as 0.71 and 0.22, respectively.
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