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Although stop codon readthrough is used extensively by
viruses to expand their gene expression, verified instances of
mammalian readthrough have only recently been uncovered by
systems biology and comparative genomics approaches. Previ-
ously, our analysis of conserved protein coding signatures that
extend beyond annotated stop codons predicted stop codon
readthrough of several mammalian genes, all of which have been
validated experimentally. Four mRNAs display highly efficient
stop codon readthrough, and these mRNAs have a UGA stop
codon immediately followed by CUAG (UGA_CUAG) that is
conserved throughout vertebrates. Extending on the identifica-
tion of this readthrough motif, we here investigated stop codon
readthrough, using tissue culture reporter assays, for all pre-
viously untested human genes containing UGA_CUAG. The
readthrough efficiency of the annotated stop codon for the
sequence encoding vitamin D receptor (VDR) was 6.7%. It was
the highest of those tested but all showed notable levels of
readthrough. The VDR is a member of the nuclear receptor
superfamily of ligand-inducible transcription factors, and it
binds its major ligand, calcitriol, via its C-terminal ligand-
binding domain. Readthrough of the annotated VDR mRNA
results in a 67 amino acid–long C-terminal extension that
generates a VDR proteoform named VDRx. VDRx may form
homodimers and heterodimers with VDR but, compared with
VDR, VDRx displayed a reduced transcriptional response to

calcitriol even in the presence of its partner retinoid X
receptor.

Context-dependent codon meaning enriches gene expres-
sion. Depending on the nature of relevant context features, the
efficiency of specification of the alternative meaning can be set
at widely different levels or be subject to regulatory influences.
The majority of known occurrences of such dynamic redefini-
tion of codon meaning involve UGA and UAG. Because, in the
nearly universal genetic code, these codons usually specify
translation termination, specification of an alternative meaning
generally involves tRNA competition with release factor for
their reading in the ribosomal A-site. In what is commonly
termed stop codon readthrough, a near-cognate tRNA per-
forms the decoding with utility deriving from a proportion of
the product having a C-terminal extension with an additional
function. In these instances, the identity of the amino acid spec-
ified by the UGA or UAG is often, but not always, unimportant.
However, when the non-universal amino acids selenocysteine
or pyrrolysine are specified, the selected features are these par-
ticular amino acids because of their distinctive properties. (Par-
adoxically, in a species in which the meaning of UGA, UAA, and
UAG has, throughout the body of coding sequences, been reas-
signed to specify amino acids, their meaning is dynamically
redefined, in a context-dependent manner, to specify termina-
tion (1, 2).)

Stop codon readthrough is well known in viral decoding,
especially of RNA viruses (3). Just as there are select organisms
in which RNA editing and ribosomal frameshifting are com-
mon, cephalopods (4) and Euplotes ciliates (5) respectively, so
too is stop codon readthrough unusually common in Drosoph-
ila (6 –8) and related insects (9). However, few instances of stop
codon readthrough are known in vertebrate gene decoding.
Until relatively recently hardly any instances of experimentally
verified conserved mammalian readthrough were known (10,
11), although one of the reported occurrences is at least subject
to substantial doubt (12, 13). Recent advances in sequencing
technologies paved the way for the advent of ribosome profiling
which has identified several potential human readthrough can-
didates (8, 14, 15). Sequencing advances have also propelled
comparative genomics which led to the identification of seven
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mammalian mRNAs whose expression likely involves stop
codon readthrough (7, 16, 17). Subsequent experimental anal-
ysis confirmed extended in-frame decoding beyond the anno-
tated stop codon (13, 17–21). Two of these mRNAs, ACP2 and
SACM1L, have predicted RNA secondary structures immedi-
ately 3� of their stop codons, and 3� structural elements are
well-known stimulators of functionally utilized stop codon
readthrough (22–24). The four mRNAs with the highest read-
through efficiencies, in the tissue culture cells tested so far, are
OPRL1, OPRK1, AQP4, and MAPK10. Their readthrough effi-
ciencies range from 6 to 17% and all have UGA stop codons
immediately followed by CUAG. For these four genes, this
motif is conserved not only in mammals but throughout verte-
brates, and the importance of the UGA_CUAG motif was con-
firmed using a systematic mutagenesis approach (17). UGA_
CUAG was also subsequently shown to promote readthrough
in mRNAs encoding human malate and lactate dehydrogenases
(17, 18, 20). Several earlier studies indicated that a cytidine
3�-adjacent to the stop codon influences readthrough in both
prokaryotes and eukaryotes (25, 26), but subsequent studies
showed that the termination context effect is not limited to a
single 3� nucleotide. The 3� motif, CARYYA, can stimulate effi-
cient readthrough, especially in plant viruses (27–29). In yeast,
a similar sequence (CARNBA) can stimulate readthrough (30).
Very recently, using reporters expressed in mammalian cell
lines, a comprehensive systematic mutagenesis study identified
UGA_CUA among the most highly efficient autonomous read-
through signals (31). Indeed, several alphaviruses employ stop
codon readthrough on UGA_CUAG including Middelburg,
Ross River, Getah, and also Chikungunya (24). Readthrough has
also been identified on UGA_CUA in Mimivirus and Megavirus
which are the best characterized representatives of an expand-
ing new family of giant viruses infecting Acanthamoeba (32).

A search of all human genes for CUAG immediately follow-
ing a UGA stop codon indicated that there are 23 instances.
Four have positive evolutionary coding potential, as measured
by PhyloCSF (33), and these are the four candidates we previ-
ously confirmed (17). However, functional readthrough cannot
be ruled out for those genes with UGA_CUAG and negative
PhyloCSF scores. In fact, readthrough of both malate and lac-
tate dehydrogenases (both harboring UGA_CUAG and both
having negative PhyloCSF scores) allows translation of a short
peroxisome-targeting motif which has been verified experi-
mentally (18, 20). Here, we investigated stop codon read-
through in all previously untested human mRNAs with
UGA_CUAG. Consistent with our previous study showing that
UGA-CUA alone can support �1.5% readthrough (17), all can-
didates tested here displayed levels of readthrough ranging
from �1.3 to 6.7%. The mRNA encoding the vitamin D recep-
tor (VDR)6 displayed the highest level of readthrough in this
study and was selected for further investigation, however,
several other mRNAs, including ATP10D, CDH23, DDX58,
SIRPB1, and TMEM86B also display highly efficient read-
through (�5.0%).

The VDR is a member of the nuclear receptor superfamily of
ligand-inducible transcription factors. Although it is expressed
in most tissues, it is most abundant in bone, intestine, kidney,
and the parathyroid gland. Consistent with its role as a tran-
scription factor, its expression in tissues and tissue culture cells
is low (34). Calcitriol (or 1�,25-dihydroxyvitamin D3) is the
ligand for the VDR which mediates the actions of the hormone
by ligand-inducible heterodimerization with its partner, reti-
noid X receptor (RXR). Insufficient concentrations of either
calcitriol or the VDR impair calcium and phosphate absorption
and hypocalcemia develops which can progress into either rick-
ets in children or else osteomalacia in adults. Dietary vitamin D
deficiency is the most common cause of rickets and osteomala-
cia worldwide. Here we identify a C-terminally extended pro-
teoform of the VDR generated by stop codon readthrough and
investigate the effect of this extension on VDR function.

Results

Following identification of the UGA_CUAG readthrough
motif (17), searches of all human mRNAs for CUAG immedi-
ately following a UGA stop codon identified 23 instances (Table
S1). This is a significant depletion of this combination of four
nucleotides compared with expectations based on the frequen-
cies of the individual nucleotides in those positions immedi-
ately following a UGA stop codon (39 expected, one-sided
binomial p value 0.004). Six of these were previously described
and shown by us and others to promote efficient readthrough
(13, 17, 18, 20). To experimentally test the remaining 17 po-
tential readthrough candidates, surrounding sequences were
cloned in-frame between Renilla and firefly luciferase genes.
Recently, we described a modification to the classical dual lucif-
erase reporter system (35) that avoids potential distortions,
sometimes observed using fused dual reporters, by incorporat-
ing “StopGo” sequences on either side of the polylinker (13).
The advantage is that reporter activities and/or stabilities are
not influenced by the products of the test sequences. HEK293T
cells were transfected and lysates assayed by dual luciferase
assay. Readthrough efficiencies were determined by comparing
relative luciferase activities (firefly/Renilla) of test constructs
against controls for each construct in which the TGA stop
codon is changed to TGG (Trp). All 17 stop codon contexts
displayed readthrough efficiencies greater than UGA_C (0.7%
readthrough) alone and ranged from 1.3 to 6.7% (Fig. 1).

Because the VDR sequence had the highest readthrough level
among these 17 genes, we investigated it further. Bioinformat-
ics analysis provided weak evidence that the 67 amino acid
C-terminal readthrough extension to VDR may be functional at
the amino acid level in the Old World monkey clade (including
apes and human), but probably not in other mammals (Fig. 2).
The UGA_CUAG motif is conserved in all the Old and New
World monkeys examined, suggesting that translation termi-
nation of VDR mRNA is not efficient in those species. The sec-
ond stop codon and reading frame are conserved in gorilla,
orangutan, rhesus, crab-eating macaque, baboon, and green
monkey. Because the chimp genome assembly has a gap at this
locus, we examined the sequence of the VDR mRNA and found
that the second stop codon and reading frame are conserved in
that species as well. In gibbon, there is a 1-base deletion in the

6 The abbreviations used are: VDR, vitamin D receptor; RXR, retinoid X recep-
tor; nt, nucleotide; VDRE, VDR elements; PLB, passive lysis buffer.
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45th codon that disrupts the reading frame. We used PhyloCSF
to see if the region between the two stop codons has evolution-
ary evidence of coding potential in Old World monkeys. The
PhyloCSF score of 35.6 for the VDR readthrough region align-
ment in these species is higher than those of same-sized regions
3� of the stop codon of 97.5% of other transcripts, providing
further evidence that translation of the sequence is functional
in Old World monkeys. The second stop is not conserved in
marmoset, suggesting that the sequence might not be func-
tional in New World monkeys. A 1-base deletion in the 19th
codon in the monkey lineage after it split from bushbaby sub-
stantially changed the amino acid sequence, and the alignments
offer no evidence of functional readthrough in the more dis-
tantly related mammals.

Furthermore, inspection of publically available ribosome
profiling datasets from experiments in several different human
cell lines and tissues compiled in the GWIPs-viz genome
browser (36) reveals ribosome density extending 3� of the anno-
tated VDR stop codon which falls off at the next in-frame stop
codon, thus providing strong evidence for the existence of VDR
stop codon readthrough (Fig. S1A).

The readthrough assays in Fig. 1 suggest that �7% of the
ribosomes translating the VDR mRNA decode its UGA stop
codon as a sense codon, thus extending VDR at its C terminus
by an additional 67 amino acids to generate VDRx (extended:
Fig. S1B). To test VDR readthrough in the context of the full
coding sequence we transfected HEK293T cells with constructs
encoding an N-terminal HA-tagged wildtype VDR that also
included �200 nt of 3�UTR (HA-VDR-TGA). Control con-
structs in which the TGA stop codon was changed to either a
sense codon (HA-VDR-TGG: readthrough positive control) or
to a nonreadthrough double stop codon (HA-VDR-TAATAA:
readthrough negative control), were also transfected. Anti-HA
immunoprecipitates were immunoblotted with a commercially
available anti-VDR and a custom antibody raised against the 67
amino acid VDR readthrough peptide (anti-VDRx). In cells
transfected with HA-VDR-TGA and HA-VDR-TAATAA, a

protein of �50 kDa, corresponding to HA-tagged canonical
VDR, was detected by anti-VDR but not by anti-VDRx (Fig. 3A).
Both anti-VDR and anti-VDRx also detected a less-abundant
protein of �55 kDa in cells expressing HA-VDR-TGA and this
protein co-migrates with the major protein detected in cells
expressing HA-VDR-TGG (Fig. 3A). Similar results were also
observed for VDR constructs tagged with GFP instead of HA
(Fig. S2). Together these immunoprecipitation experiments
provide further evidence for the utilization of stop codon read-
through during VDR decoding.

The extensions of N-terminal or C-terminal extended pro-
teins sometimes target proteins to subcellular compartments
(18, 20, 37, 38). Subcellular targeting prediction software did
not reveal known signals within the VDR extension. In addition,
live cell imaging of HeLa cells expressing GFP with the 67
amino acid VDR extension fused to its C terminus displayed a
subcellular distribution similar to GFP alone (Fig. S3). Nor-
mally, hormone receptors like the VDR reside in both the cyto-
plasm and the nucleus (39). To determine whether VDRx is
located in the cytoplasm and nucleus we transfected HeLa cells
with constructs expressing GFP N-terminal fusions of VDRx
(TGA to TGG) and a mutant VDR (TGA to TAATAA) where
readthrough is undetectable (Fig. S2). Live cell imaging in either
resting cells or cells stimulated with calcitriol for 10 min
revealed that the subcellular distribution of VDR and VDRx are
almost identical (Fig. S3), with both displaying cytoplasmic and
nuclear localization when resting and when stimulated. Fur-
thermore, anti-HA immunoblots of nuclear and cytoplasmic
fractions isolated from cells transfected with HA-VDR or HA-
VDRx provide further support that, like VDR, VDRx can local-
ize in both the cytoplasm and nucleus (Fig. 3B). Together, these
data suggest that the VDR extension does not dramatically alter
or target VDRx to a discernible subcellular location.

Next we explored the possibility that VDRx can form
homodimers and heterodimers with VDR and RXR� by co-
immunoprecipitation experiments from cells co-transfected
with epitope-tagged variants of VDRx, VDR, and RXR�. GFP-

Figure 1. Readthrough efficiencies of human UGA_CUAG stop codons. Readthrough efficiencies were determined by dual luciferase assay after transfec-
tion of HEK293T cells with dual luciferase reporter constructs consisting of candidate sequences (6 nt 5� and 12 nt 3� of stop codon (9 nt 3� for MS4A5 because
of an in-frame stop codon)) shown in Table S1. AQP4 readthrough has been described previously (17, 21) and is included here as an internal readthrough
control. A UGA_C control indicated by a dashed line represents background readthrough levels. In each box-whisker plot center lines show the medians; box
limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles;
outliers are represented by dots. n � 12 biological replicates.
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VDRx co-immunoprecipitates with both HA-VDR and HA-
VDRx (Fig. 3C). In addition, GFP-VDR also co-immunopre-
cipitates with both HA-VDR and HA-VDRx. We could not
co-immunoprecipitate HA-RXR� with either GFP-VDR or
GFP-VDRx; presumably, the gentle lysis required for co-immu-

noprecipitation experiments limits extraction from the nucleus
where VDR-RXR� heterodimers are predominantly localized.

The ligand-binding domain of VDR is encoded by amino
acids at its extreme C terminus (40). Because VDRx extends the
VDR C terminus by an additional 67 amino acids, we set out to

Figure 2. CodAlignView image of the placental-mammal alignment of the VDR readthrough region with 10-codon context on each side. A 1-base
deletion in the human lineage in the 19th codon (indicated by highlighted Q) shifted the theoretical translation frame in Old and New World monkeys from that
of Bushbaby and more distantly related species. A substitution in the second stop codon in Marmoset suggests that readthrough might not have been
functional in Old World monkeys until after they split from New World monkeys. The open reading frame is conserved in all of the Old World monkeys except
Gibbon, in which a 1-base deletion in the 45th codon shifts the reading frame.

Novel variant of the human vitamin D receptor

J. Biol. Chem. (2018) 293(12) 4434 –4444 4437



determine whether VDRx responds to calcitriol similarly to
VDR. Firefly luciferase reporter constructs driven by a minimal
promoter with tandem VDR elements (VDRE) from the rat
osteocalcin gene were co-transfected with each of the HA-
tagged VDR constructs described above and then stimulated
with 1 nM calcitriol. Control firefly luciferase reporter con-
structs harboring mutated VDREs were also included. Cal-
citriol stimulated relative luciferase activities 5- to 7-fold in
cells co-transfected with either HA-VDR-TGA or HA-VDR-
TAATAA, whereas cells co-transfected with HA-VDR-TGG
(VDRx) did not respond to calcitriol (Fig. 4A, upper panel). This
clear inability of VDRx to transactivate in response to calcitriol
cannot be accounted for solely by its slightly lower steady state
levels (Fig. 4A, lower panel). Whether VDRx is completely unre-
sponsive to calcitriol or just less responsive was examined by
transactivation experiments using a range of calcitriol concen-
trations. Here, almost 100 times more calcitriol is required for
HA-VDR-TGG to elicit the same response as either HA-VDR-
TGA or HA-VDR-TAATAA, indicating that the ability of
VDRx to transactivate is much less responsive to calcitriol than
for VDR (solid lines in Fig. 4B). However, transactivation by
VDRx is still much higher than in mock-transfected (empty
vector) cells where only endogenous levels of VDR are

expressed, indicating that VDRx retains some capacity to bind
calcitriol and must also retain DNA-binding capability.

Although we could not detect VDR or VDRx complexed with
RXR� by co-immunoprecipitation (Fig. 3C), co-expressing
HA-RXR� together with VDR variants resulted in dramatic cal-
citriol responsive increases in VDRE-reporter transactivation
regardless of which VDR variant is overexpressed (dashed lines
in Fig. 4B). Although transactivation by VDRx plus RXR� is still
reduced compared with VDR with RXR�, it is clear that the
VDR C-terminal extension does not completely abrogate het-
erodimerization with RXR�.

Discussion

In eukaryotes several factors are known to dramatically affect
translation termination efficiency and therefore stop codon
readthrough. These include the nucleotide sequences sur-
rounding the stop codon (25, 41– 46), transacting factors
(47–49), abundance of near-cognate tRNAs (50 –52), abun-
dance and/or modifications of release factors (53–57),
and the presence of mRNA secondary structures (22–24,
58 – 60). In addition, a role for eIF5A in eukaryotic transla-
tion termination has been recently reported (61, 62). Inter-
estingly, the amino acid specified is influenced not only by

Figure 3. DRx can translocate to the nucleus and interact with itself and VDR. A, Western blots of protein lysates and anti-HA immunoprecipitates prepared
from HEK293T cells either mock-transfected (M) or transfected with HA-VDR-TGA (TGA), HA-VDR-TGG (TGG), or HA-VDR-TAATAA (TAA) as indicated. Anti-VDRx
is a custom polyclonal antibody raised in rabbit against the full 67 amino acid VDR readthrough peptide. The asterisk indicates immunodetection of the IgG
heavy chain. B, Western blots of cytoplasmic and nuclear fractions from HEK293T cells either mock-transfected (M) or transfected with HA-VDR-TAATAA (TAA)
or HA-VDR-TGG (TGG) as indicated. EEF2 is eukaryotic elongation factor 2 located predominantly in the cytoplasm and DNMT3B is DNA methyltransferase 3 beta
located predominantly in the nucleus. C, Western blots of protein lysates and anti-GFP immunoprecipitates prepared from HEK293T cells co-transfected with
the indicated expression constructs. HA-eRF1 is an HA-tagged eukaryotic release factor 1 used here as a negative control.
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the identity of the stop codon but also local context and
tRNA availability, which are likely important considerations
for potential treatments of disease-causing premature termi-
nation codons (51, 52).

Following on from our previous studies which identified a
novel stop codon readthrough context in higher eukaryotes (13,
17), we show here that all human genes with this stop codon
motif display readthrough. However, although the UGA_
CUAG motif alone seems to be sufficient for �1.3% read-
through, additional local sequences must also be important
because the readthrough efficiencies of mRNAs containing this
motif range from �1.3% (GOTIL1 this study) up to �17%
OPRL1 (13). Given that we tested only 21 nt surrounding the
stop codon, the �10-fold difference between the lowest and
highest readthrough contexts must reside in this small
region. We are currently attempting to identify this addi-
tional readthrough stimulator.

How stop codon context and/or nearby RNA secondary
structures influence the competition between productive near-
cognate tRNA and eukaryotic factor 1 (eRF1) recognition of
stop codons is still unknown. Recent cryo-EM structures of
eukaryotic ribosomes complexed with eRF1 docked on a stop
codon revealed that nucleotide A1825 of 18S rRNA is flipped so
that it stacks on the second and third stop codon bases. This
formation pulls the 3� base adjacent to the stop codon into the
A-site forming a 4-base U-turn where it is stabilized by stacking
against G626 of 18S rRNA (63, 64). Stacking with G626 would
be more stable for purines, which may explain their statistical
bias at the �4 position (25), but still does not explain why cyti-
dine at this position appears to reduce termination efficiency
more than uracil. One possible explanation for how stop codon
contexts influence termination could be that mRNA sequences

surrounding the stop codon and/or an RNA secondary struc-
ture may restrict the formation of the U-turn within the A-site
that appears to be necessary for stop codon recognition by
eRF1. Perhaps mRNA bases 3� of the stop codon pair with
rRNA bases within the mRNA entrance tunnel, as has been
considered for some cases of alphavirus-programmed ribo-
somal frameshifting (65).

Of the 17 readthrough candidates tested in this study we
observed highest readthrough efficiencies for VDR (�7%) using
a novel dual luciferase reporter system (Fig. 1). We also confirm
VDR readthrough by Western blotting with commercially
available VDR antibodies as well as a custom antibody raised
against the 67 amino acid VDR extension (Fig. 3). Evidence for
endogenous VDR readthrough is provided by the analysis of
ribosome profiles, indicating that ribosome protected frag-
ments map to the VDR transcript immediately 3� of the anno-
tated stop codon but not beyond the next in-frame stop codon
(Fig. S1). Overall we provide strong evidence that some ribo-
somes read through the stop codon of the VDR coding
sequence to generate a C-terminally extended proteoform,
VDRx.

Several studies have shown that readthrough can generate
dual-targeted proteoforms (18, 20, 37) but here, TargetP anal-
ysis of VDR did not reveal subcellular targeting motifs within
the readthrough extension. Consistent with this prediction, live
cell imaging of fluorescently labeled VDRx indicates that its
subcellular localization is identical to VDR (Fig. S3), thus sug-
gesting that there are no cryptic targeting motifs within the new
VDRx C terminus. We also used the Predictor of Natural Dis-
ordered Regions (66) algorithm to infer ordered and disordered
segments in the VDRx extension which were inferred to be
largely disordered. No significant homology was found between

Figure 4. VDRx is less responsive than VDR to calcitriol. A, relative luciferase activities determined by dual luciferase assay after co-transfection of HEK293T
cells with plasmids expressing HA-tagged VDR proteins (or mock transfected) as indicated, together with firefly luciferase reporter constructs driven by a
minimal promoter with either tandem VDR elements (VDRE) from the rat osteocalcin gene (WT) or control firefly luciferase reporters harboring mutated VDREs
(Mu). A Renilla luciferase plasmid was also co-transfected to allow firefly luciferase activity normalization. Transfectants that were treated with vehicle (ethanol)
control are indicated by the minus, and the plus indicates activities from calcitriol-stimulated (1 nM) cells. Representative anti-HA Western blot of the same
lysates are shown under the histogram. In each box-whisker plot center lines show the medians; box limits indicate the 25th and 75th percentiles as determined
by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; and outliers are represented by dots. n � 4 biological
replicates. B, relative luciferase activities determined by dual luciferase assay of HEK293T cells transfected as in (A) then treated with varying concentrations of
calcitriol as indicated for 24 h. Dashed lines indicate relative luciferase activities when HA-RXR� was co-transfected along with VDR variants. Error bars, mean �
S.D. are shown from n � 8 biological replicates.
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the VDRx readthrough peptide sequences and structural
domains within the InterProScan (67) or NCBI conserved
domains databases (68).

Other protein isoforms of the human VDR have been iden-
tified previously by others. A common polymorphism that
changes the annotated start codon produces a VDR isoform
initiated from a 3� AUG codon with a 3–amino acid N-terminal
truncation (69) which has been associated with elevated trans-
activation activity (70, 71). Another VDR isoform with a
50 –amino acid N-terminal extension termed VDRB1 is gener-
ated by alternative splicing (72, 73). Because the predicted
molecular weight of VDRB1 is almost identical to that pre-
dicted for VDRx, caution should be exercised when interpret-
ing immunoblots that use antibodies directed against the VDR
coding sequence. VDRB1 only differs from VDR by its extended
N terminus, which suggests the likely existence of a C-terminal
extended proteoform of VDRB1 (VDRB1x) generated by stop
codon readthrough.

The function of VDRx is still unclear and requires further
investigation. Phylogenetic approaches allow identification of
evolutionarily conserved functional readthrough but cannot
reveal instances that either emerged recently or are not under
strong evolutionary selection. Although bioinformatic analysis
argues against strong evolutionary selection of the VDR exten-
sion beyond Old World monkeys, our studies also indicate that
the VDR extension does appear to have an overall negative
effect on VDR function because VDRx is less able to elicit a
transcriptional response to calcitriol. There are several pos-
sibilities for why VDRx elicits a reduced response to cal-
citriol. Given the proximity of the VDR extension to the
ligand-binding domain it would not be surprising if this jux-
taposition results in impaired binding to calcitriol. However,
other possibilities include either reduced ability to het-
erodimerize with RXR� or insufficient recognition of VDREs
within the promoters of its transcriptional targets. It should
be noted that our findings (Fig. 3C) suggest that VDRx
can form heterodimers with VDR, which could potentially
antagonize VDR action.

It seems likely that the VDR readthrough extension has
recently emerged and can improve organism fitness under
some, as yet unidentified, physiological condition that appears
to be specific for humans and Old World monkeys. Perhaps
another ligand for VDR exists in higher primates that has
higher affinity to VDRx than VDR. Interestingly, there is some
precedent for other recently emerged VDR variations that
include three primate-specific exons (5� leader) (74).

Experimental procedures

Plasmids

For the generation of dual luciferase expression constructs,
overlapping oligonucleotide pairs (Integrated DNA Technolo-
gies (IDT)) containing sequence flanking the stop codons (6 nt
5� and 12 nt 3�) (see Table S2) of the predicted readthrough
candidates were annealed and ligated with PspXI/BglII-di-
gested pSGDluc (13).

The HA-VDR-TGA expression clone was made by PCR
amplifying the VDR coding sequence plus 200 nucleotides of

3�UTR from HEK293T cDNA and then cloned BamHI/XbaI
in-frame with the influenza HA tag in pcDNA3-HA (Invitro-
gen). HA-VDR-TGG and HA-VDR-TAATAA were generated
by two-step PCR mutagenesis using HA-VDR-TGA as tem-
plate (see Table S2 for PCR primers). RXR� was synthesized by
IDT as a G Block and digested with incorporated 5� BglII and 3�
XbaI restriction sites then ligated with BamHI/XbaI-digested
pcDNA3-HA to generate HA-RXR�. GFP-VDR fusion con-
structs were made by subcloning the VDR-TGA, VDR-TGG,
and VDR-TAATAA cassettes from the pcDNA3-HA con-
structs just described into pEGFP-C3 (Clontech).

Wildtype (WT) and mutant VDRE–firefly luciferase fusions
were generated by restricting WT and mutant G Blocks (IDT)
(see Table S2 for sequences) with SacI/BglII then ligating with
SacI/BglII-restricted pDLuc (75). SacI/BglII digestion of pDLuc
removes the SV40 promoter and Renilla luciferase. All con-
structs were verified by DNA sequencing.

Cell culture and transfections

HEK293T cells (ATCC) and HeLa cells (ATCC) were main-
tained in DMEM supplemented with 10% FBS, 1 mM L-gluta-
mine, and antibiotics. HEK293T cells were transfected with
Lipofectamine 2000 reagent (Invitrogen), using the 1-day pro-
tocol in which suspended cells are added directly to the DNA
complexes in half-area 96-well plates. For transfections shown
in Fig. 1 the following were added to each well: 25 ng of each
plasmid plus 0.2 �l Lipofectamine 2000 in 25 �l Opti-Mem
(Gibco Laboratories). The transfecting DNA complexes in each
well were incubated with 4 � 104 cells suspended in 50 �l
DMEM plus 10% FBS at 37 °C in 5% CO2 for 24 h.

For transactivation experiments shown in Fig. 4A the follow-
ing amounts of DNA were added to each well: 20 ng of VDRE-
firefly, 5 ng Renilla expressing plasmid, and 20 ng of either
HA-tagged VDR expressing plasmid or empty vector (MOCK).
For transactivation experiments shown in Fig. 4B the following
amounts of DNA were added to each well: 20 ng of VDRE-
firefly, 5 ng Renilla expressing plasmid, and 10 ng of each HA-
tagged VDR plus 10 ng of either HA-RXR� or empty vector.
The transfecting DNA complexes in each well were incubated
with 4 � 104 cells suspended in 25 �l DMEM plus 10% FBS at
37 °C in 5% CO2 for 1 h before the addition of DMEM plus
calcitriol (Enzo Life Sciences) or ethanol control at the indi-
cated final concentrations for a further 24 h.

Dual luciferase assay

Firefly and Renilla luciferase activities were determined
using the Dual Luciferase Stop & Glo� Reporter Assay System
(Promega). Relative light units were measured on a Veritas
Microplate Luminometer with two injectors (Turner Biosys-
tems). Transfected cells were lysed in 12.6 �l of 1� passive lysis
buffer (PLB) and light emission was measured following injec-
tion of 25 �l of either Renilla or firefly luciferase substrate.
Readthrough efficiencies (% readthrough) were determined by
calculating relative luciferase activities (firefly/Renilla) of TGA
constructs and dividing by relative luciferase activities from
replicate wells of control TGG constructs. The number of bio-
logical replicates for each experiment is indicated in each figure
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legend. Where possible all data points are presented, otherwise
mean � S.D. is presented.

Western blot analysis

Cells were transfected in 6-well plates using Lipofectamine
2000 reagent, again using the 1-day protocol described above,
with 1 �g of each indicated plasmid. The transfecting DNA
complexes in each well were incubated with 106 HEK293T cells
suspended in 3 ml DMEM plus 10% FBS and incubated over-
night at 37 °C in 5% CO2. Transfected cells were lysed in 100 �l
1� PLB. Cytoplasmic and nuclear fractions were isolated using
the REAP protocol (76). Proteins were resolved by SDS-PAGE
and transferred to nitrocellulose membranes (Protran), which
were incubated at 4 °C overnight with primary antibodies. Immu-
noreactive bands were detected on membranes after incubation
with appropriate fluorescently labeled secondary antibodies using
a LI-COR Odyssey� Infrared Imaging Scanner.

Immunoprecipitation

Cells were lysed in 700 �l PLB and then incubated with 20 �l
of protein G agarose beads plus anti-HA (3 �g) overnight at 4 °C
with gentle rocking. The beads were washed with ice-cold 1�
PLB and then removed from the beads by boiling for 5 min in
2� SDS-PAGE sample buffer for SDS-PAGE and Western blot-
ting. For GFP immunoprecipitation, GFP-Trap (Chromtek)
was used following the manufacturer’s instructions. Briefly,
cells were lysed in 100 �l of Nonidet P-40 lysis buffer (10 mM

Tris-Cl, pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 0.5% Nonidet
P-40) then 95 �l of lysate was diluted to 700 �l in dilution buffer
(10 mM Tris-Cl, pH 7.5, 150 mM NaCl, 0.5 mM EDTA) before
incubation with 20 �l of GFP-Trap beads for 1 h at 4 °C with
gentle rocking. The beads were washed with ice-cold dilution
buffer and then removed from the beads by boiling for 5 min in
2� SDS-PAGE sample buffer for SDS-PAGE and Western
blotting.

Fluorescence microscopy

Live cell imaging was performed as described before (77)
using an inverted Axiovert 200 fluorescence microscope
(Zeiss), equipped with 100�/1.4 Plan-Apochromat oil-immer-
sion objective (Zeiss), pulsed excitation module (470 nm, 390
nm LEDs), bandpass filters 510 –560 nm (EGFP) and 417– 477
nm (Hoechst 33342) and gated CCD camera (LaVision BioTec).
Briefly, HeLa cells were seeded onto 8-well chambers precoated
with a mixture of collagen IV and poly-D-lysine (Ibidi), allowed
to attach (24 h) and forward transfected for 24 h with plasmids
encoding GFP-VDR fusions as indicated. Prior to live imaging,
cells were counterstained with Hoecsht 33342 (1 �M, 30 min).
Fluorescence images were collected before (resting) and after
stimulation with calcitriol (10	7 M, 10 min, 37 °C). Images were
exported using ImSpector software (LaVision BioTec) and
combined in Adobe Illustrator CS2.

Antibodies

An affinity-purified rabbit polyclonal antibody to the 67
amino acid VDR readthrough peptide was prepared by Protein-
tech to generate anti-VDRx. The following commercially avail-
able antibodies were also used. Rabbit anti-VDR (Abcam,

ab109234), mouse anti-HA (Covance, clone 16B12), mouse
anti-�-actin (Sigma, A3853), rabbit anti-DNMT3B (Abcam,
ab79822), and rabbit anti-EEF2 (Cell Signaling Technology,
2332).

PhyloCSF and bioinformatics analysis

Human transcript models were obtained from GENCODE
version 16 (78). All protein-coding transcripts were searched
for the UGA_CUAG readthrough motif at the end of the
annotated coding sequence. PhyloCSF was run using the
29mammals parameters on the region between the annotated
stop codon and the next in-frame stop codon, not including
either stop codon, using the 29 placental mammals subset of the
46-vertebrate hg19 whole-genome MULTIZ alignments (79),
which were obtained from the UCSC genome browser (80). To
compute the evolutionary coding potential of the VDR read-
through region in Old World monkeys, we computed PhyloCSF
using the 58 mammals parameters on the subset of the 100-
vertebrates hg19 alignments consisting of the species human,
gorilla, orangutan, gibbon, rhesus, crab-eating macaque,
baboon, and green monkey. To estimate the significance of this
score, we similarly computed PhyloCSF scores of the 66 codons
3� of each unique annotated stop codon. For the sequence of
the Chimp VDR mRNA we used NCBI Reference Sequence
XM_016923548.1 obtained from https://www.ncbi.nlm.nih.
gov/nucleotide/1034096372. Alignments were examined using
CodAlignView (I. Jungreis, M. Lin, C. Chan, and M. Kellis, Cod-
AlignView: The Codon Alignment Viewer, available from
http://data.broadinstitute.org/compbio1/cav.php).7
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