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NIR-Il emissive AlEgen photosensitizers Gl

enable ultrasensitive imaging-guided surgery
and phototherapy to fully inhibit orthotopic
hepatic tumors
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Abstract

Accurate diagnosis and effective treatment of primary liver tumors are of great significance, and optical imaging has
been widely employed in clinical imaging-guided surgery for liver tumors. The second near-infrared window (NIR-Il)
emissive AlEgen photosensitizers have attracted a lot of attention with higher-resolution bioimaging and deeper
penetration. NIR-Il aggregation-induced emission-based luminogen (AlEgen) photosensitizers have better photo-
therapeutic effects and accuracy of the image-guided surgery/phototherapy. Herein, an NIR-Il AlEgen phototheranos-
tic dot was proposed for NIR-Il imaging-guided resection surgery and phototherapy for orthotopic hepatic tumors.
Compared with indocyanine green (ICG), the AlEgen dots showed bright and sharp NIR-Il emission at 1250 nm, which
extended to 1600 nm with high photostability. Moreover, the AlEgen dots efficiently generated reactive oxygen spe-
cies (ROS) for photodynamic therapy. Investigations of orthotopic liver tumors in vitro and in vivo demonstrated that
AlEgen dots could be employed both for imaging-guided tumor surgery of early-stage tumors and for downstaging’
intention to reduce the size. Moreover, the therapeutic strategy induced complete inhibition of orthotopic tumors
without recurrence and with few side effects.
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Introduction

Liver cancer is globally the seventh most frequent can-
cer and the third leading cause of cancer-related death
[1]. Hepatocellular carcinoma (HCC) is the most com-
mon type of primary liver cancer [2]. Surgical resection is
one of the highly effective approaches for liver cancer [3].
Clear visualization of the tumor margin during surgery is
of utmost importance for the real-time surgical guidance
(4, 5].

As a sensitive, noninvasive, and radiation-free technol-
ogy, the first near-infrared window (NIR-I) fluorescence
imaging has been widely employed in clinical imaging-
guided surgery for liver tumors and retinal angiography
[6, 7]. However, the following disadvantages limit further
applications of NIR dyes: (1) autofluorescence of tissues,
which decreases the sensitivity and signal-to-noise ratio;
(2) photobleaching; (3) aggregation-caused quench-
ing (ACQ) effect. Therefore, much effort has been made
to develop new luminescent agents to achieve excel-
lent imaging ability [8-13]. In 2001, Tang group found
an optical property of aggregation-induced emission
(AIE) based on the restriction of intramolecular motion
mechanism [14]. Moreover, AIE could be extended to
the second near-infrared window (NIR-II, 900—-1700 nm)

[15-20]. NIR-II allows for higher-resolution bioimaging
with deeper penetration (ca. 5-20 mm) compared with
the visible and the NIR-I bands (ca. 1-3 mm) [21-23].
These advantages make NIR-II fluorescent agents suit-
able for broad applications in whole-body angiography,
organ visualization, and tumor diagnosis and imaging-
guided therapy [24-28].

Metal-containing inorganic NIR-II dots have been
shown to have higher luminescence than the NIR-I
equivalents; however, one major concern is their poten-
tial toxicity after decomposition within the body [29-31].
As an alternative, NIR-II organic dyes have attracted
more attention because of their relatively low toxicity,
good biocompatibility and pharmacokinetics, as well
as their well-defined structure [32-35]. Although many
NIR-II fluorophores have been explored as imaging
agents, the emission is easily quenched due to the domi-
nant nonradiative decay caused by intense intermolecu-
lar m—m interactions [35—40]. Furthermore, most NIR-II
fluorescent dyes have a single imaging function and need
to be combined with NIR-II activated photosensitizers to
realize phototherapy [41-47]. Recent studies have shown
that NIR-II agents could achieve both fluorescence and
photothermal (PTT) or photodynamic (PDT) processes,
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thereby boosting NIR-II imaging-guided surgery to
achieve optimal effect [48—56]. Surgical resection is the
treatment option for a small number (<30%) of patients
with early-stage liver cancers who have normal liver func-
tion [57]. Given that patients with large or multiple HCC
cannot undergo surgery, ‘downstaging’ pretreatment may
be required to reduce the size or number of active tumors
[57-60]. Therefore, it is urgent to design and synthesize
NIR-II emissive agents with both fluorescence imaging
and phototherapeutic ability in their aggregation state.

Herein, we designed and successfully synthesized a
novel AIE-based NIR-II photosensitizer with donor—
acceptor—donor (D—A-D) structure (Scheme 1). We
compared the optical properties of the photosensitizer
with clinically used indocyanine green (ICG) and evalu-
ated its ability to generate reactive oxygen species (ROS).
Furthermore, we investigated the efficacy of imaging-
guided surgical resection of orthotopic early-stage liver
tumor and ‘downstaging’ intention of large HCC.

Results and discussion

Synthesis and characterization of PTZ-TQ dye

A Suzuki cross-coupling reaction between compound
3 and compound 6 formed the final dye with a D—-A-D

architecture, 7,7’-(6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g]
quinoxaline-4,9-diyl)bis(10-octyl-10H-phenothiazine)
(termed PTZ-TQ) (Fig. 1a). The total synthesis route is
shown in Additional file 1: Fig. S1. The D—A-D structure
was confirmed by nuclear magnetic resonance (NMR)
spectroscopy and ESI-MS analysis (Additional file 1:
Figs. S2-S12). The D—A-D structure exhibited excellent
NIR absorption property at 650 nm in THF and showed
enhanced absorption at 660 nm, with the absorption tail
extending to 900 nm in THF—water mixtures with water
volume fractions (f,) of 95% (Fig. 1b). The photolumines-
cence (PL) spectra of PTZ-TQ in THF-H,O were meas-
ured in 0-95% f,,. As indicated, under 808-nm excitation,
the PTZ-TQ solution emitted almost no luminescence
even after increasing the f, up to 40%. Then, the emission
of PTZ-TQ enhanced dramatically when the f,, exceeded
50% (Fig. 1c). Together with the plot of emission intensity
at 1000 nm vs. f,, the higher f, and the stronger emission
indicate typical AIE characteristics (Fig. 1d) [14].

The emission of PTZ-TQ was measured in the THF-
water mixture with an f;, of 95%. Under 808-nm excita-
tion, the PTZ-TQ solution exhibited significant NIR-II
fluorescence signals at 1050 nm and 1150 nm (Fig. le).
Then, the penetration depth of fluorescence at 1050 nm
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Fig. 1 a Synthetic route of PTZ-TQ molecule. b Absorption spectra of PTZ-TQ in tetrahydrofuran (THF) and in THF/H,O with 95% water volume
fraction (f,,). ¢ Emission of PTZ-TQ in THF/H,O (f,,, 0% to 95%) under 808-nm excitation. d Emission intensity ratio (/I calculated from (c) of PTZ-TQ
under different f,, (I is the emission intensity of PTZ-TQ in pure THF). e NIR-Il fluorescence images of PTZ-TQ in THF/H,0 (f,,, 95%) and pure THF
(50 pg/mL, 808-nm excitation, 1050, 1150, 1250 band-pass filter). f Signal intensity of PTZ-TQ and ICG through 1% intralipid solution (excitation
808 nm, 1050-nm band-pass filter). g Calculated HOMOs and LOMOs of PTZ-TQ [utilizing B3LYP functional and 6-31 g (d) basis set]

was studied using 1% intralipid as the mimic of tis-
sue. Compared with commercial ICG dye, edges were
clearly visualized up to a depth of 6 mm in PTZ-TQ
(Fig. 1f). Density functional theory (DFT) calculations
were carried out to explore the relationship between
the structure and the emission property of the PTZ-
TQ. Obviously, the highest occupied molecular orbitals
(HOMOs) were delocalized along the whole backbone,
while the lowest unoccupied molecular orbitals
(LUMOSs) were mainly distributed on electron acceptor
moieties, indicating the intramolecular charge trans-
fer of the fluorophore [61]. It is generally believed that
stronger D—A effect is associated with smaller singlet—
triplet energy gap (Fig. 1g). The smaller energy band gap
(1.73 eV) would endow PTZ-TQ with longer absorption
and would greatly promote the generation of ROS [62,
63]. These features are remarkably beneficial for PTZ-
TQ to achieve NIR-II AIE imaging and therapy.

Preparation and characterization of PTZ-TQ-AIE dots

PTZ-TQ-AIE dots were prepared by a nanoprecipita-
tion method using 1,2-distearoyl-sn-glycero-3-phos-
phoethanolamine-N-[amino(polyethylene glycol)-3400]
(DSPE-PEG3,,-NH,) as the encapsulation matrix. The
size of the PTZ-TQ-AIE dots was about 80 nm as meas-
ured by transmission electron microscopy (TEM) and
255 nm as measured by dynamic light scattering (DLS)
analysis (Fig. 2a, b). After loading into DSPE-mPEG;,,-
NH,, PTZ-TQ-AIE dots showed a positive surface charge
(about 7 mV) and had high stability in buffer and biologi-
cal fluids (PBS, DMEM, and FBS solution) (Additional
file 1: Figs. S13-S16). The UV-vis-NIR absorption and
NIR-II fluorescence emission spectra of the PTZ-TQ-AIE
dots in water showed that the absorption peak at 675 nm
was extended to 900 nm, and the fluorescence emission
peak located at 1150 nm with emission tail was extended
to close to 1600 nm (Fig. 2c). The quantum yield (QY) of
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Fig.2 a TEM image of PTZ-TQ-AIE dots. b Size distribution of the PTZ-TQ-AIE dots in water. ¢ UV-vis-NIR absorption spectrum and NIR-Il
fluorescence emission spectrum of the PTZ-TQ-AIE dots in aqueous solution (808-nm excitation). d Photostability of the PTZ-TQ-AIE dots in PBS, FBS,
and DMEM under intermittent 808-nm laser (0.25 W/cm?) irradiation for 60 min. e Absorbance and f NIR-Il fluorescence emission under continuous
808-nm laser (0.25 W/cm?) irradiation for 30 min. g NIR-Il fluorescence images of PTZ-TQ-AIE dots in water (808-nm excitation, 1050, 1150, 1250,
1350, 1450, and 1550 nm band-pass filters). h Signal intensity of PTZ-TQ-AIE dots and ICG through various thicknesses of 1% intralipid solution
(excitation: 808 nm, 1050-nm band-pass filter)

PTZ-TQ-AIE dots in aqueous solution was 0.3% under
808-nm laser excitation, using dye 4-(7-(2-phenyl4H-
1-benzothiopyran-4-ylidene)-4-chloro-3,5-trimeth-
ylenel,3,5-heptatrienyl)-2-phenyl-1-benzothiopyrylium
perchlorate (IR26) in dichloroethane (DCE) (QY=0.5%)
as the reference (Additional file 1: Fig. S17) [64]. Impor-
tantly, the PTZ-TQ-AIE dots showed superior photo-
stability in media (PBS, FBS and DMEM). No obvious
changes were observed in the absorption and emission
spectra of the PTZ-TQ-AIE dots when the mixture was
irradiated continuously with a 808-nm laser at a power
density of 0.25 W/cm? for up to 30 min (Fig. 2d, e). Fur-
thermore, the luminescence intensities of PTZ-TQ-AIE
dots in phosphate-buffered saline (PBS), Dulbecco’s
modified Eagle medium (DMEM), and fetal bovine
serum (FBS) showed no changes after continuous irra-
diation for 60 min under the same density (Fig. 2f). The

photostability was far better than that of the commercial
ICG dye, indicating that PTZ-TQ-AIE dots have an excel-
lent potential for long-term in vivo fluorescent imaging.

Figure 2c shows that PTZ-TQ-AIE dots emitted lumi-
nescence in the NIR-IIb region (1400-1700 nm); so, we
investigated the fluorescence properties of PTZ-TQ-AIE
dots in NIR-IIb. The NIR-IIb fluorescence intensity was
measured by different band-pass filters. PTZ-TQ-AIE
dots exhibited better NIR-IIa (1000—1300 nm) and NIR-
IIb (1400-1700 nm) fluorescence signals than PTZ-TQ
(f,=95%) (Fig. 2g). Furthermore, the penetration depths
of fluorescence at 1050 nm indicated that PTZ-TQ-AIE
dots resolved sharper edges of the capillary at a depth
of up to 8 mm; under the same conditions, ICG showed
similar resolution only at a depth of 4 mm (Fig. 2h).

The ROS generation ability of the PTZ-TQ-AIE dots
was assessed using dichlorodi-hydrofluorescein diacetate
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(DCFH-DA) as the indicator. Fluorescence of DCFH-DA As PTZ-TQ-AIE dots have excellent NIR-II emission
increased sharply with increasing irradiation time in the = and ROS generation ability, the potential of such AIE dots
presence of PTZ-TQ-AIE dots (808 nm, 0.25 W/cm?)  in cancer diagnostics and therapeutics was investigated.
(Additional file 1: Fig. S18). For further verification, elec-  As shown in Fig. 3d, under irradiation (808 nm, 0.25 W/
tron paramagnetic resonance (EPR) was applied to ver-  cm?), bright green fluorescence of DCFH-DA was dis-
ify the generation of ROS. After incubating 5 mM of an  played in the group of PTZ-TQ-AIE dots plus laser, indi-
ROS indicator, 4-o0x0-2,2,6,6-tetramethylpiperidinooxy cating that ROS generation was efficiently induced, and
(TEMPONE), with PTZ-TQ-AIE dots in solution, fol- the intracellular ROS generation was quantified by flow
lowed by irradiation for 5 min for EPR measurements, cytometry (Additional file 1: Fig. S20). The efficient gen-
the EPR signal decreased when [(-carotene was added eration of ROS resulted in cell death (Fig. 3e). However,
(Fig. 3a), demonstrating the efficient production of 'O,.  only irradiation or PTZ-TQ-AIE dots showed negligible
To understand the generated species, singlet oxygen sen-  red fluorescence, implying the good biocompatibility of
sor green (SOSG) was firstly used to assess the 'O, gener-  the PTZ-TQ-AIE dots and limited harm of the laser irra-
ation. Under the irradiation (808 nm, 0.25 W/cm?) in the  diation alone (Fig. 3e). Using hepatic LO2 normal cells as
presence of PTZ-TQ-AIE dots, the fluorescence of SOSG  a control, in vitro cytotoxicity studies showed that PTZ-
increased sharply with the increase in irradiation time, TQ-AIE dots had almost no obvious toxic effects on both
confirming that 'O, was the predominant ROS (Fig. 3b, normal cells and cancer cells at concentrations as high
c). Subsequently, the 'O, quantum yield of the PTZ-TQ-  as 100 pg/mL (Fig. 3f). Additionally, PTZ-TQ-AIE dots
AIE dots was calculated as 10% using ICG as a reference  and irradiation resulted in a significant decrease in cell

(12%) (Additional file 1: Fig. S19). viabilities, demonstrating in vitro photodynamic therapy
a b c
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Fig. 3 a Electron paramagnetic resonance (EPR) spectra to detect 'O, generation. b Fluorescence spectra of '0, probes with various
concentrations of PTZ-TQ-AIE dots from 0 to 30 ug/mL were recorded (solid line: with laser, dotted line: without laser). ¢ Fluorescence intensities
of 1O2 probes with PTZ-TQ-AIE dots under irradiation for different time durations (808-nm NIR laser, 0.25 W/cm?). d Intracellular ROS production
by DCFH-DA in HepG2 cells (50 ug/mL; 808 nm, 0.25 W/cm?, 10 min; scale bar: 200 um). e Fluorescence images of HepG2 cells co-stained by
Calcein-AM (green fluorescence for live cells) and Pl (red fluorescence for dead cells) (50 ug/mL; 808 nm, 0.25 W/cm?, 10 min; scale bar: 200 um). f
In vitro cytotoxicity of PTZ-TQ-AIE dots against LO2 cells, HepG2 cells with and without 808-nm NIR laser (0.25 W/cm?) after 24-h incubation
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(PDT) efficacy with minor side effects of the PTZ-TQ-
AIE dots themselves.

In vivo imaging and therapy

To further investigate the capabilities of NIR-II imag-
ing and photodynamic therapy, the biocompatibility and
biodistribution of PTZ-TQ-AIE dots were first evaluated
in vivo. After intravenous injection of PTZ-TQ-AIE dots
into healthy BALB/c mice (200 pL, 500 pg/mL), blood
samples of the mice were collected, and serum chemis-
try and blood cells were analyzed. No significant changes
in the main blood cell counts (Additional file 1: Fig. S21)
were seen at day 1 and day 7 post-injection (p.i.), sug-
gesting high biocompatibility of PTZ-TQ-AIE dots. Fur-
thermore, a biodistribution study of PTZ-TQ-AIE dots
in vitro was also carried out to evaluate their distribu-
tion in major organs at 168 h after injection (Additional
file 1: Fig. S22). High accumulation was found in the
liver and spleen, indicating that the clearance pathway
of PTZ-TQ-AIE dots was through the hepatobiliary sys-
tem. Compared with the commercial ICG, PTZ-TQ-AIE
dots exhibited a relatively long blood-circulation half-life
of 61 +21 min (Additional file 1: Fig. S23) [65, 66]. After
confirming its good biocompatibility, the capability of
vasculature imaging using the PTZ-TQ-AIE dots was
then investigated. The vasculature was clearly visualized
through NIR-II imaging after 2, 5, and 15 min post-injec-
tion (Fig. 4a). Furthermore, the resolution (711.8 pm) of
the hind limb vasculature was reached via measuring the
Gaussian-fitted full width at half maximum (FWHM)
(Fig. 4b), which would be adequate for surgical operation
[6]. To evaluate the imaging and therapy for deep tissues,
an orthotopic liver tumor model was established in nude
mice in line with our previous procedure [67]. Human
hepatocellular carcinoma HepG2 cells were transfected
with firefly luciferase and then inoculated into the right
liver lobe by laparotomy. At day 10 after the operation,
bioluminescence imaging (BLI) was carried out to moni-
tor the tumor growth. After confirming the successful
establishment of the orthotopic liver tumor, the PTZ-
TQ-AIE dots (200 pL, 500 pg/mL) were intravenously
injected into tumor-bearing mice. As observed, NIR-II
fluorescence in both normal liver and the tumor sites was
continuously recorded under the excitation of an 808-nm
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laser. At 2 h post-injection, ex vivo results indicated
NIR-II fluorescence signals at the tumor site, which were
lower than those at normal liver tissues; importantly, the
lower NIR-II signals in the tumors clearly identified the
boundary between the tumor and normal liver organs
(Additional file 1: Fig. S24). Notably, the accumulation
of PTZ-TQ-AIE dots in the tumors reached the maxi-
mum at 48 h post-injection (Fig. 4c, Additional file 1: Fig.
S25), and bright and sharp NIR-II signals were clearly
visualized in the tumor regions at 48 h post-injection.
The signal to noise ratio (SNR) gradually increased with
time and reached the maxima at 48 h for NIR-II fluo-
rescence imaging (Additional file 1: Fig. S26). To further
confirm the tumor position, the whole liver tissue was
photographed at 96 h post-injection (Fig. 4d); the loca-
tion was in accordance with that observed on NIR-II
images in vivo (circles in Fig. 4c). These results demon-
strate that the boundary between the tumor and normal
liver organs can be clearly identified at 2 h post-injection
by negative enhancement or at 48 h post-injection by
positive enhancement. So, the PTZ-TQ-AIE dots can be
employed as imaging-guided surgery both at 2 h and 48 h
post-injection, which can provide personalized treatment
choice according to the size of tumors.

NIR-Il optical imaging surgical guidance

Delineating the tumor margin is the key step for pre-
cise tumor resection and is essential for tumor curation
[4, 68, 69]. As indicated, the tumor margins were clearly
delineated, and surgical resection of the tumors was then
performed at 2 h or 48 h post-injection of PTZ-TQ-AIE
dots using the NIR-II imaging system (Additional file 2:
Videos S1 and S2). The resected tissues showed that most
of the tumor was removed from the liver, which was con-
firmed by the bright NIR-II fluorescence signals from
the isolated tumor and the hematoxylin and eosin (H&E)
results. The boundary between the tumor and normal
tissue was clearly visualized, confirming the successful
tumor resection under the guidance of NIR-II optical
imaging (Figs. 4e, f, Additional file 1: Fig. S27).

Surgery/PDT on the orthotopic hepatic tumor
In clinical setting, the tumor removal operation some-
times cannot be performed because of the presence of

(See figure on next page.)

dissected liver after treatments

Fig. 4 a Intravital long-term hindlimb vasculature NIR-Il imaging (1250-nm band-pass filter, 500 ms, 808-nm excitation) at 120 s, 300 s, and 15 min
after tail vein injection of the PTZ-TQ-AIE dots. b The vessel FWHM width based on the cross-sectional intensity profile measured along the yellow
line in (@) (120 s) with the peak fitted to Gaussian functions (the black curve is the Gaussian fit to the profile). ¢ Representative in vivo long-term
NIR-II fluorescence images (808-nm excitation, 1250-nm band-pass filter, 500 ms, n = 3) of the orthotopic liver cancer at different time points after
tail vein injection of the PTZ-TQ-AIE dots (0.2 mL, 0.5 mg/mL). The white circles indicate the tumor. d The pictures of liver and tumor. Scale bar:
200 pm. e lllustration of the NIR-Il optical imaging-guided tumor resection. f The NIR-Il and bioluminescence imaging in surgery. g The relative
tumor growth curve and corresponding fluorescence intensity of the tumor-bearing mice. Data are shown as means (n = 3). h Photographs of
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multiple smaller tumors or a very large tumor [70, 71].
Multiple treatments, a common methodology in the
clinical setting, is a good choice for patients with large
or multiple HCC [72]. Given that PTZ-TQ-AIE dots are
strong ROS generators, we investigated the feasibility of
PTZ-TQ-AIE dots in photodynamic therapy to reduce
the tumor size for further surgical resection and prevent
the recurrence of tumors.

Thus, we applied different therapy treatments: for large
tumors, we first applied PDT treatments to reduce the
tumor size, followed by surgery to minimize the injury of
the liver in the therapeutic process (named as PDT + Sur-
gery); for small tumors, we first applied surgery and then
PDT treatment for the residual tumors (named as Sur-
gery+ PDT). The therapeutic processes were monitored
by BLI (Additional file 1: Fig. S28a). The tumor growth
with various treatments was summarized using the total
BLI intensity and relative tumor growth. As indicated,
the BLI signals in control groups (PBS, PBS+ Laser, and
PTZ-TQ-AIE dots) increased rapidly (Fig. 4g), indicating
a high tumor growth rate. Importantly, single therapeutic
process (PDT or surgery) induced significant decrease of
BLI signals, demonstrating the efficacy of single imaging-
guided surgery or PDT in tumor management. However,
the tumors in both single therapeutic processes relapsed
over time (green and pink curves in Fig. 4g). The therapy
in the early stage achieved therapeutic efficacies simi-
lar to that of the single therapeutic process but without
tumor recurrence during the observation period (purple
and dark blue curves in Fig. 4g).

‘Downstaging’ intention for orthotopic hepatic tumors
Notably, we simulated a large HCC model that was not
suitable for surgery [73-75] (purple curve in Fig. 4g). In
the clinical setting, ‘downstaging’ intention involves pre-
treatment to reduce the size or number of active tumors.
In our protocol, we first employed PDT to reduce the
size. After PDT treatment, the BLI signals decreased
sharply at day 7 post-treatment, and then, surgery was
conducted to achieve almost complete tumor inhibition
(purple curve in Fig. 4g). Magnetic resonance imaging
(MRI) of the livers in vivo and photographs ex vivo con-
firmed that there were almost no tumor nodules in the
multiple treatments groups (Fig. 4h, Additional file 1:
Fig. S29). Moreover, PTZ-TQ-AIE dots showed good
biocompatibility, as indicated by the assessment of body
weight, histological analysis of organs, and blood analysis
(Additional file 1: Figs. S28b, S30).

Conclusions

In summary, biocompatible NIR-II emissive AIEgen
photosensitizers enable ultrasensitive imaging-guided
surgery and phototherapy to fully inhibit orthotopic
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hepatic tumors. Compared with ICG, the PTZ-TQ-
AIE dots showed bright and sharp NIR-II emission at
1250 nm, which extended to 1600 nm with high pho-
tostability. Moreover, the PTZ-TQ-AIE dots were able
to efficiently generate ROS for photodynamic therapy.
Investigations of orthotopic liver tumors in vitro and
in vivo demonstrated that PTZ-TQ-AIE dots could be
employed both for imaging-guided tumor surgery of
early-stage tumors and for ‘downstaging’ intention to
reduce the tumor size. Moreover, the current therapy
achieved full inhibition of orthotopic tumors without
recurrence.
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Additional file 1: Figure S1. Synthetic route of the PTZ-TQ molecule.
Figure S2. "H NMR spectrum of 3 in CDCl,. Figure $3. '*C NMR spectrum
of 3in CDCl,. Figure S4. "H NMR spectrum of 4 in DMSO-d;. Figure S5.
13C NMR spectrum of 4 in DMSO-d,. Figure S6. "H NMR spectrum of 5

in DMSO-d,,. Figure S7. *C NMR spectrum of 5 in DMSO-d,. Figure S8.
'H NMR spectrum of 6 in DMSO-d,,. Figure S9. '*C NMR spectrum of 6 in
DMSO-d,. Figure $10. 'H NMR spectrum of PTZ-TQ in pyridine-ds. Figure
S11. *C NMR spectrum of PTZ-TQ in pyridine-d;. Figure $12. The mass
spectrum of PTZ-TQ. m/z: calcd. 958.39, found: 959.39 for [M]*. Figure

S13. The zeta potentials of PTZ-TQ and PTZ-TQ-AIE dots. Figure S14.The
stability evaluation of PTZ-TQ-AIE dots in PBS based on hydrodynamic size.
PTZ-TQ-AIE dots were incubated in PBS at different time points. The hydro-
dynamicsizeatO0h,2h,4h,8h,12h,24h,48hand 72 h, had no obvious
changes compared with 0 h. Figure S15. The stability evaluation of PTZ-
TQ-AIE dots in DMEM based on hydrodynamic size (a-d). PTZ-TQ-AIE dots
were incubated in DMEM at different time points. The hydrodynamic size
at0h (a), 12 h (b), 24 h (), 48 h (d) had no obvious changes compared
with O h. Figure $16. The stability evaluation of PTZ-TQ-AIE dots in 5%
FBS based on hydrodynamic size (a-d). PTZ-TQ-AIE dots were incubated

in 5% FBS at different time points. The hydrodynamic size at 0 h (a), 12 h
(b), 24 h (), 48 h (d) had no obvious changes compared with 0 h. Figure
S17. Fluorescence quantum yield measurements of PTZ-TQ-AIE dots in
water. Absorbance and fluorescence spectra of IR26 in DEM (a-c), and
PTZ-TQ-AIE dots in water (d-f). The integrated fluorescence was plotted
against absorbance for both IR26 and fluorophores and fitted into a linear
function, linear fit of IR26 (c) and PTZ-TQ-AIE dots (f). Figure $18. (a) ROS
generation of PTZ-TQ-AIE dots with different concentrations. (b) ROS gen-
eration of PTZ-TQ-AIE dots with different times. The light source: 808 nm
NIR laser (0.25 W/cm?2) (unreal thread have no laser and real thread have
laser). Figure S19. Decrease in absorbance of DPBF at 417 nm in the pres-
ence of PTZ-TQ-AIE dots (a) and ICG (b) as a function of irradiation time.
Figure S20. ROS levels in HepG2 cells analyzed by flow cytometry. Figure
S21. In vivo blood test including red blood cells, platelet, and white blood
cell count of healthy mice injected with saline, PTZ-TQ-AIE dots for 1d and
7d. Figure S22. (a) The ex vivo biodistribution analysis of PTZ-TQ-AIE dots
in BABL/c normal mice at 168 h under an 808 nm laser excitation (1250
nm bandpass filter, 300 ms). (b) The ex vivo fluorescent signal of different
organs. Figure S23. Blood circulation half-life curve of PTZ-TQ-AIE dots in
mice. The circulation half-life was determined to be 61 minutes by fitting
the data (5 min, 10 min, 20 min, 0.5, 1 h,3h,6 h,9h,12h,24h,30h)toa
first-order exponential decay (n=3). Figure S24. Ex vivo NIR-Il fluorescent
images of main organs collected after 2 h post injection. Figure S25.

The quantitative analysis of fluorescence intensity of orthotropic liver
tumor at different time points after tail vein injection of PTZ-TQ-AIE dots
(0.2 mL, 0.5 mg/mL). Figure S26. (a) Signal-to-noise ratio (SNR) and (b)
tumor-normal liver ratio of Figure 4c (n=3). Figure S27. (a) Pictures of
tumor resection process. (b) H&E staining of excised tumor and normal
liver tissue (scale bar: 200 pm). Figure S28. (a) Bioluminescence imaging
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of orthotopic liver cancer mice treated with PBS, PBS+Laser, PTZ-TQ-AIE
dots, PDT, Surgery, Surgery+PDT, PDT+Surgery (BT: Before PDT; AT: after
PDT; BS: Before surgery; AS: after surgery). (b) body weight curves after
different treatments (n=3). Figure $29. MR imaging of orthotopic liver
cancer mice treated with PBS, PBS+Laser, PTZ-TQ-AIE dots, PDT, Surgery,
Surgery+PDT, PDT+Surgery after therapy. Figure $30. H&E staining of
heart, liver, spleen, lung, and kidney tissue slices for different groups after
treatments: (a) PBS, (b) PBS+Laser, (c) PTZ-TQ-AIE dots, (d) PDT, (e) Surgery,
(f) Surgery+PDT, (g) PDT+Surgery.

Additional file 2. Video of the NIR-Il imaging guided surgery in ortho-
topic liver cancer model after tail vein injection of the PTZ-TQ-AIE dots 2 h
and 48 h.
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