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Abstract

Objective: Androgen deprivation therapy (ADT), a principal therapy in patients with 
prostate cancer, is associated with the development of obesity, insulin resistance, 
and hyperinsulinemia. Recent evidence indicates that metformin may slow cancer 
progression and improves survival in prostate cancer patients, but the mechanism is not 
well understood. Circulating insulin-like growth factors (IGFs) are bound to high-affinity 
binding proteins, which not only modulate the bioavailability and signalling of IGFs but 
also have independent actions on cell growth and survival. The aim of this study was to 
investigate whether metformin modulates IGFs, IGF-binding proteins (IGFBPs), and the 
pregnancy-associated plasma protein A (PAPP-A) – stanniocalcin 2 (STC2) axis.
Design and methods: In a blinded, randomised, cross-over design, 15 patients with 
prostate cancer on stable ADT received metformin and placebo treatment for 6 weeks 
each. Glucose metabolism along with circulating IGFs and IGFBPs was assessed.
Results: Metformin significantly reduced the homeostasis model assessment as an index 
of insulin resistance (HOMA IR) and hepatic insulin resistance. Metformin also reduced 
circulating IGF-2 (P  < 0.05) and IGFBP-3 (P  < 0.01) but increased IGF bioactivity (P  < 0.05). 
At baseline, IGF-2 correlated significantly with the hepatic insulin resistance (r2 = 0.28,  
P  < 0.05). PAPP-A remained unchanged but STC2 declined significantly (P  < 0.05) 
following metformin administration. During metformin treatment, change in HOMA IR 
correlated with the change in STC2 (r2 = 0.35, P  < 0.05).
Conclusion: Metformin administration alters many components of the circulating IGF system, 
either directly or indirectly via improved insulin sensitivity. Reduction in IGF-2 and STC2 may 
provide a novel mechanism for a potential metformin-induced antineoplastic effect.
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Introduction

Prostate cancer is the most common solid organ cancer in 
men and androgen deprivation therapy (ADT) is a principal 
therapy. While ADT improves cancer symptoms and 
survival in prostate cancer patients, because of the induced 
hypogonadism, it is associated with the development 
of obesity, insulin resistance, hyperinsulinemia, and 
increased cardiovascular disease risk (1, 2). The metabolic 
syndrome is present in >50% of men receiving long-term 
ADT compared to 20% of matched controls (3). Insulin 
resistance is increased by more than 30% as early as 3 
months after the initiation of ADT (4), and the risk of new-
onset diabetes is increased four- to five-fold in the first year 
of treatment (5). These conditions are known to worsen 
cancer risk and prognosis, partly due to the carcinogenic 
effects of hyperinsulinemia (6). Thus, in prostate 
cancer patients on ADT, there are high rates of obesity, 
hyperinsulinemia, and diabetes development, which may 
be associated with a poorer cancer prognosis (1, 2).

Chronic hyperinsulinemia may stimulate 
carcinogenesis either directly through the insulin receptor 
or indirectly through insulin-like growth factor receptors 
(IGF-1Rs). Recent evidence indicates that the anti-diabetic 
drug metformin may slow cancer progression and improve 
survival in prostate cancer patients (7, 8, 9). Diabetic 
patients treated with metformin have a significantly 
reduced risk of cancer, with meta-analysis reporting 
metformin to be associated with reduction in overall 
cancer incidence by 31% and cancer mortality by 34% 
(10), including reduced prostate cancer-specific mortality 
(7, 8). There are currently several studies underway that 
evaluate the potential clinical benefit of the addition of 
metformin to standard therapy for advanced prostate 
cancer (STAMPEDE trial (NCT00268476), MAST study 
(NCT01864096), and PRIME study (NCT03031821)). 
A recent randomised, controlled trial indicated that 
metformin improves castration-resistant prostate cancer-
free survival in patients with prostate cancer (11). To 
date, however, there is a paucity of studies that explore 
the mechanisms of the potential anticancer effect of 
metformin in patients with prostate cancer.

The mechanism of action of metformin remains 
poorly understood (12). Metformin has been shown to 
inhibit mitochondrial glycerophosphate dehydrogenase, 
downregulate androgen receptors, activate AMPK, and 
suppress the PI3K/AKT pathway which results in the 
inhibition of the mTOR pathway (13, 14, 15, 16). There 
is increasing evidence that metformin, by modulating 
insulin-like growth factors (IGFs) and IGF-binding proteins 

(IGFBPs), may inhibit cancer proliferation and spread. 
Recent studies show that metformin inhibits androgen-
induced IGF-1R gene transcription in prostate cancer cells 
(17). In pancreatic cancer, metformin reduces proliferation 
through the activation of AMPK and inhibition of IGF-1R 
signalling (13).

The IGFs are mitogenic peptides involved in the 
regulation of cell proliferation (18). Circulating IGFs 
originate primarily from the liver; however, they are also 
produced locally by prostatic stromal cells in response 
to androgen stimulation, thus increasing epithelial cell 
proliferation. Epidemiological studies have established 
a link between high circulating IGF-1 and a greater risk 
of advanced prostate cancer (19), in which the IGF-1R 
signalling pathway is upregulated (20). IGFs circulate 
bound to high-affinity binding proteins, which not only 
modulate the bioavailability and signalling of IGFs but also 
have IGF-independent actions on cell growth and survival 
(21). Therefore, IGF and IGFBPs signalling may drive cancer 
development and progression (22). IGFBP-2 has been 
shown to stimulate cancer growth and invasion, whereas 
IGFBP-3 may exert protective antineoplastic effects (23, 
24). Thus, IGFBPs have additional IGF-1-independent 
effects on cancer.

In determining the role of IGFBPs in cancer 
development, it is important to consider not only a change 
in their concentration but also a change in their proteolytic 
cleavage and hence IGF-binding capacity. There are several 
factors that regulate IGFBPs cleavage, with pregnancy-
associated plasma protein-A (PAPP-A) recently sparking 
great interest in cancer pathogenesis (25). PAPP-A is a 
metalloprotease that cleaves several IGFBPs, with IGFBP-4 
being the key substrate. The cleavage allows the IGFs to 
separate from the IGFBPs, which results in an increase 
in IGF bioactivity (26, 27). Stanniocalcin 2 (STC2) has 
oncogenic properties (28) and is an inhibitor of PAPP-A 
reducing its IGFBP-4 proteolytic activity (29). Therefore, 
STC2 is expected to reduce IGF bioactivity, inhibiting 
cancer growth. However, many studies show that STC2 
has oncogenic properties, many cancers overexpress STC2 
and an increased STC2 expression correlates with a poorer 
prognosis (30). These observations appear to conflict 
with the role of STC2 as an inhibitor of PAPP-A. However, 
since STC2 was not previously connected to PAPP-A or 
the IGF system, they have mostly been studied separately, 
and the link between STC2 and cancer warrants further 
investigations. This also illustrates the complexity of the 
IGF-axis; the activity of the IGFs depends on an intimate 
relationship between the various components, as further 
discussed in a recent review (25). Thus, IGFBPs and IGF 
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bioactivity may be modulated via the PAPP-A/STC2 
pathway that plays a major role in cancer biology.

There is a paucity of studies that explore the effects of 
metformin on IGFs/IGFBPs in patients with prostate cancer. 
Animal studies have shown that metformin reduces total 
IGF-1 levels and prostate cancer mortality, and a further 
study in humans reported a decrease in circulating IGF-1 
following 12 weeks of metformin treatment (31, 32). In 
addition, metformin has been reported to alter serum 
concentrations of the IGFBPs (33, 34, 35) and this makes 
it difficult to predict the overall impact of metformin 
on the circulating IGF bioactivity. To the best of our 
knowledge, there are no studies in prostate cancer that have 
comprehensively investigated metformin effects on IGFs, 
IGF bioactivity, IGFBPs, and IGFBP activity modulators. We 
hypothesise that metformin induces its antineoplastic effect 
in prostate cancer patients by modulating IGFs and IGFBPs.

Methods

This was a blinded, randomised, controlled cross-over study 
of metformin treatment in patients with prostate cancer. 
Men with prostate cancer who were on stable ADT for at 
least last 6 months were invited to participate in this study. 
Patients were recruited from the Crown Princess Mary 
Cancer Centre, Westmead Hospital, and the Blacktown 
Cancer and Haematology Centre, Blacktown Hospital, 
Australia. Inclusion criteria were men aged between 50 and 
80 years with histologically confirmed prostate cancer of 
early (localised prostate cancer disease without metastases) 
or advanced-stage prostate cancer (metastatic prostate 
cancer with bone involvement only, as patients with 
visceral metastases tend to have a more aggressive course 
with a higher chance of progression during the study 
period and these patients were excluded to ensure the 
effect of metformin could be tested), Eastern Cooperative 
Oncology Group (ECOG) 0–1 performance status, and 
on stable treatment with ADT with GnRH analogues for 
more than 6 months. In our clinics, patients with non-
metastatic disease routinely receive ADT as concurrent/
adjuvant therapy, in combination with prostate radiation 
therapy for high-risk prostate cancer.

Exclusion criteria were visceral metastases, castrate-
resistant prostate cancer (PSA progression defined as at 
least 3 PSA rises, measured on three successive occasions ≥ 1 
week apart after hormonal treatment), history of confirmed 
type 1 or type 2 diabetes mellitus or a positive test during 
screening by an oral glucose tolerance test (OGTT), current 
or prior use of metformin or other anti-diabetic drugs 

within the last year, known hypersensitivity or allergy 
to metformin or any of its excipients, hypothalamic or 
pituitary disorders, other forms of malignancies excluding 
prostate cancer, renal (eGFR < 60 mL/min/1.73 m2) or 
hepatic impairment (bilirubin ≥ 1.5× upper limit normal, 
ALT and ALP ≥ 2.5× upper limit normal), history of lactic 
acidosis, cardiac or respiratory insufficiency, alcohol abuse, 
severe infections that are likely to increase the risk of lactic 
acidosis, and any medications known to cause interference 
with the endocrine system (excluding ADT). This study 
was approved by the Western Sydney Local Health District 
Human Research Ethics Committee. All participants gave 
informed written consent. The study was registered with 
the Australian and New Zealand Clinical Trials Registry 
(ACTRN12615000778583).

Experimental design

Fifteen patients were randomised to receive either 
metformin or placebo first using a computer random 
assignment programme. Each treatment was for 6 weeks. 
Study endpoints were assessed at baseline, after 6 weeks of 
treatment with metformin and after 6 weeks of placebo, 
in randomised order. The dose of metformin was 500 mg 
daily for the first week, increased to 500 mg twice daily 
for the second week, to a maximum dose of 1500 mg daily 
from the third week. Safety and drug-related toxicities were 
evaluated on scheduled visits during trial treatment and 
weekly phone calls. One patient developed gastrointestinal 
sideeffects during metformin treatment which required 
the metformin dose to be increased at a slower pace, 
achieving target dose at week 4. Another patient developed 
an ischemic stroke during the placebo treatment phase 
(after metformin treatment had been completed) and was 
subsequently withdrawn from the study.

Study endpoints

The primary objective of this study of metformin treatment 
was to assess a change in the IGF/IGFBP system: IGF-1 
and -2, IGF bioactivity, IGFBP-1 to -3, and IGFBP activity 
modulators PAPP-A and STC2.

Glucose and insulin indices
Glucose metabolism was assessed using the OGTT. Blood 
glucose and insulin concentrations were measured at 
baseline and after a 75 g glucose load at 30, 60, 90, and 120 
min. Hepatic insulin resistance (the product of total area 
under the curve for glucose and insulin during the first  
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30 min) was calculated (36). Homeostasis model 
assessment as an index of insulin resistance (HOMA IR) was 
calculated, and overall glucose metabolism was estimated 
as the incremental glucose and insulin area under the 
curve above fasting over 120 min.

Body composition and bone mineral density
Lean body mass (LBM) and total and regional fat mass 
(FM) were assessed by dual x-ray absorptiometry (DXA; GE 
Healthcare Lunar Prodigy Pro) and Bioeletrical impedance 
spectroscopy (BIS) using the ImpediMed Ltd SFB7 analyser 
(ImpediMed Ltd Qld, Pinkenba, Australia) (37). Change in 
body cell mass (BCM), a functional component of LBM, 
was estimated by subtracting extracellular water (ECW) 
from LBM. Vertebral and hip bone mineral density was also 
measured by DXA at baseline.

Physical activity
Patients were asked to complete an exercise diary for 1 week 
prior to each visit and to specify the number of hours of 
light, moderate, or intense physical activity.

Diet
At each visit, patient diet patterns were assessed by a 24-h 
recall questionnaire using FoodWorks (Xyris Software Pty 
Ltd, Brisbane, Australia).

Resting energy expenditure and substrate 
oxidation rates
Carbohydrate and lipid oxidation, as well as resting energy 
expenditure (REE), were quantified by indirect calorimetry 
using a metabolic monitor (ParvoMedics, Sandy, Utah) 
for 20-min periods. The amount of oxygen consumed 
and carbon dioxide produced is measured, from which 
substrate oxidation rates are derived. This was done at 
baseline (after an overnight fast) and 30 and 90 min after 
the 75 g glucose load.

Bioactive IGF
IGF bioactivity was determined by an in-house kinase 
receptor activation (KIRA) assay as originally described 
(38) with modifications (39). In brief, human embryonic 
kidney HEK 293 cells transfected with the human IGF-1R 
cDNA were stimulated with patient serum to measure the 
ability of serum IGF-1 and IGF-2 to activate the IGF-IR 
in vitro. A serial dilution of rhIGF-1 (WHO 02/254) was 
used as a calibrator. The binding of IGFs to the IGF-IR 
and subsequent receptor tyrosine auto-phosphorylation 

was detected by an anti-phosphotyrosine antibody and 
quantified by a commercial phospho-IGF-IR ELISA (R&D 
Systems; Cat# DYC 1770E). The assay signal is referred to 
as ‘IGF bioactivity’, because the IGF-IR can be activated 
by IGF-1 as well as IGF-2 to a lesser extent. In our hands, 
IGF-2 crossreacts with the IGF-1R with a potency being 
12% of that of IGF-1, whereas insulin has a negligible cross-
reactivity (<1%) (38). The limit of detection was <0.08 µg/L. 
Intra- and inter-assay CVs were 12 and 20%, respectively.

Biochemical investigations
Blood samples were taken at three time points (baseline, 
6, and 12 weeks). At each visit, fasting blood samples were 
taken and stored at −80°C for analysis. All samples for 
any individual were measured in the same assay run for 
each analyte. Serum glucose and insulin were measured 
using commercial assays. Serum total IGF-1 and IGFBP-3 
levels were measured using an IDS-iSYS Multi-Discipline 
Automated Analyser (Immunodiagnostic Systems Nordic 
SA, Denmark) as previously published (40, 41). Limit of 
detection for total IGF-1 and IGFBP-3 was 4.4 and 50 
ng/mL, respectively. IGF-2 was measured as previously 
described (42, 43). In brief, IGF-2 was measured by an 
in-house time-resolved immunofluorometric assay, 
using the international IGF-2 standard (WHO 96/538, 
NIBSC) as a calibrator. Anti-IGF-2 antibody (#05-166 
clone S1F2, Merck Millipore) was used for coating and for 
detection, and an anti-IGF-2 antibody (# I-7276, Sigma) 
was directly tagged with Europium according to the 
manufacturer’s instructions (Perkin Elmer Life Sciences) 
was applied. Intra-assay and inter-assay CVs were 5 and 
10%, respectively. IGFBP-1 and -2 were measured by 
in-house immunoassays, with intra- and inter-assay CVs, 
respectively, of 8 and 7% for IGFBP-1 and 5 and 12% 
for IGFBP-2 (39). Serum PAPP-A and STC2 levels were 
determined by commercial ELISAs (AnshLabs, Texas, 
USA) as recently described (44).

Statistical analysis

Data were logarithmically transformed for analysis if not 
normally distributed. The statistical analysis consisted 
of a paired t-test of change in endpoint and a linear 
regression analysis was used to investigate associations. To 
account for the lack of a washout between the placebo and 
metformin treatment, the effect of sequence of treatment 
was also sought by unpaired t-test. Results are expressed 
as mean ± s.e.m. and a P value <0.05 was considered 
significant. All analysis was conducted using SPSS statistics 
v22 (IBM corporation).
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Results

Baseline characteristics are shown in Table 1.
There was no significant difference in magnitude of 

any effect according to the order of treatment.
There was no significant change in plasma 

concentration of PSA during the study (Table 2). There 
was no significant change in weight compared to baseline. 
However, the difference between the treatment periods 
was statistically significant with a 0.9 ± 0.4 kg lower 
weight gained following metformin compared to placebo 
administration (P  < 0.05; Table 2). This change in weight 
was explained by a change in fat mass, with a 1.1 ± 0.4 
kg lower fat mass gain following metformin compared 
to placebo (P  < 0.05). Similarly, truncal fat mass differed 
between the treatment periods, with a 0.9 ± 0.3 kg less 
gain in truncal fat during metformin treatment (P  < 0.05). 
Carbohydrate oxidation rate measured 30 min after a 
glucose load was significantly higher during metformin 
treatment with a group difference of 31 ± 14 mg/min when 
compared to placebo treatment (P  < 0.05). However, no 
significant change in resting energy expenditure or fat 
oxidation rates was noted (Table 2).

There were no significant changes in circulating 
glucose or insulin, measured in a fasting state or after the 
glucose load. At baseline, 11 out of 15 patients had HOMA 
IR > 1.9, indicating the presence of insulin resistance. 
HOMA IR and hepatic insulin resistance fell significantly  
(P  < 0.05) during metformin treatment compared to 
baseline (Table 2). There was a significant, positive 
association between HOMA IR and hepatic insulin 
resistance at baseline (r2 = 0.57, P = 0.001).

There was no significant change in circulating IGF-1,  
whereas IGF bioactivity increased significantly during 
metformin treatment (P  < 0.05). Circulating IGF-2 fell 
during metformin treatment, but the change did not reach 
statistical significance (P = 0.07). However, upon exclusion 
of one outlier with double levels of IGF-2 compared to rest 
of the patients, there was a significant reduction in IGF-2 
by 29 ± 12 ng/mL during metformin treatment compared 
to baseline (P = 0.03; Fig. 1A). The individual data of a 
change in IGF-2 are shown in Supplementary Fig. 1 (see 
section on supplementary materials given at the end of 
this article). At baseline, IGF-2 correlated significantly 
with the hepatic insulin resistance (r2 = 0.28, p = 0.04;  
Fig. 2A). Serum IGFBP-3 fell significantly during metformin 
treatment, with an average difference of 290 ng/mL  
(P  < 0.01). The change in IGFBP-3 during metformin 
treatment explained only 16% of the change in IGF 
bioactivity, which was not statistically significant (P = 0.13). 
No changes in circulating IGFBP-1 and IGFBP-2 were noted.

There was a significant reduction in circulating 
STC2 during metformin treatment (P  < 0.05, Fig. 1B), 
whereas PAPP-A remained unchanged. During metformin 
treatment, change in HOMA IR correlated with the change 
in STC2 (r2 = 0.35, P = 0.02; Fig. 2B). The individual data of a 
change in STC2 are shown in Supplementary Fig. 2.

Discussion

This study showed that metformin treatment in 
prostate cancer patients significantly improves insulin 
resistance, particularly hepatic insulin resistance. There 
was a reduction in IGF-2 and IGFBP-3, whereas IGF-1 
concentration remained unchanged, while IGF bioactivity 
increased during metformin treatment. Circulating 
STC2 fell significantly during metformin treatment and 
correlated significantly with HOMA IR. Thus, we were able 
to demonstrate that metformin modifies the IGF/IGFBP 
system and affects circulating STC2 thereby providing 
insight into the possible mechanisms of metformin action 
in prostate cancer patients.

Table 1 Baseline characteristics.

Variable

Age (years) 70.3 ± 1.6
Weight (kg) 90.3 ± 3.4
BMI kg/m2 31.1 ± 1.1
SBP (mmHg) 139 ± 5.1
DBP (mmHg) 68 ± 2.6
Gleason score
 7 (n) 3
 8 (n) 4
 9 (n) 8
Cancer staging
 Localised (n) 3
 Biochemical recurrence (n) 9
 Metastatic (n) 3
PSA (ng/mL) 0.4 ± 0.3
Lean body mass (kg) 51.3 ± 1.5
LBM (% body weight) 57.6 ± 1.4
Fat mass (kg) 35.2 ± 2.2
Extracellular water (L) 19.4 ± 0.7
BCM (kg) 42.1 ± 3.3
Glucose (mmol/L), fasting 5.1 ± 0.1
Insulin (µU/mL), fasting 13.9 ± 1.4
Energy consumption/day (kJ) 8752 ± 978
Light physical activity (h/day) 4.9 ± 1.0
Moderate physical activity (h/day) 3.2 ± 1.4
High physical activity (h/day) 0.2 ± 0.1

Data are presented as mean ± s.e.m.
BCM, body cell mass; DBP, diastolic blood pressure; LBM, lean body mass; 
LH, luteinising hormone; n, number of patients; PSA, prostate-specific 
antigen; SBP, systolic blood pressure.
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An important observation of this study is the reduction 
in IGF-2 during metformin treatment. IGF signalling drives 
cancer development and progression (22). IGF-2 shares 
structural similarity to insulin and in fact is a more potent 
mitogen than insulin when signalling through IR-A (45). 
IGF-2 activates the PI3K/Akt and MAPK/ERK signalling 
pathways (46). IGF-2 loss of imprinting, an epigenetic 
modification associated with aging, promotes prostate 
neoplastic development by increasing p-ERK signalling in a 
mouse model (47). In muscle cells, mTOR stimulates IGF-2 
transcription and secretion (46). This is an interesting 
concept since metformin is a potent inhibitor of mTOR, 
which may therefore reduce tissue IGF-2 production. In 
bone marrow-derived multipotent mesenchymal stromal 
cells, metformin reduces IGF-2 secretion (48). Thus, 
metformin may inhibit IGF-2 tissue production, in line 
with our study showing reduction in circulating IGF-2 
during metformin administration.

Previous studies have found that circulating IGF-2 is 
higher by about 15% in people with obesity compared to 
lean individuals and IGF-2 decreases following weight loss 

due to caloric restriction or gastric bypass surgery (49, 50, 
51, 52, 53). Adipose tissue produces more IGF-2 than IGF-1, 
with IGF-2 being the highest in the visceral adipose tissue 
compared to the s.c. adipose tissue (54). This tissue-specific 
IGF-2 secretion may explain why weight loss may associate 
with reduction in IGF-2. A recent study revealed that for 
every mmol/L reduction in fasting plasma glucose, there 
was a 40 ng/mL reduction in IGF-2 following an 8-week 
low energy diet (52). Interestingly, there is a diet-induced 
reduction in IGF-2 and IGFBP-3 but not in IGF-1 (51). The 
expression of IGF-2 gene in blood cells is significantly 
higher in obese insulin-resistant compared to obese 
insulin-sensitive adolescents (55). Insulin has been shown 
to increase internalisation of IGF-2 receptors, mediating 
an increase in IGF-2 cellular uptake and consequent 
degradation (56). Thus, an improvement in insulin action/
sensitivity may be linked to a reduction in IGF-2. This is in 
line with our study where IGF-2 had a positive association 
with hepatic insulin resistance at baseline and metformin 
treatment reduced insulin resistance with a parallel 
reduction in circulating IGF-2. Since IGF-2 not only exerts 

Table 2 The effect of metformin on study variables.

Variable Baseline
Change vs baseline metformin  

(n  = 15)
Change vs baseline placebo 

(n  = 14) P value 

Weight (kg) 90.3 ± 3.4 −0.44 ± 0.3 0.54 ± 0.4 0.02
Fat mass (kg) 35.2 ± 2.2 −0.3 ± 0.5 0.8 ± 0.3 0.03
Fat mass trunk (kg) 20.2 ± 1.1 −0.08 ± 0.5 0.8 ± 0.5 0.02
LBM (kg) 63.1 ± 1.5 −0.3 ± 0.5 −0.4 ± 0.4 0.7
REE (kcal/day) 1595 ± 61 −88 ± 57 −80 ± 52 0.71
Cox (mg/day) 55.1 ± 18.4 12.3 ± 25.5 −1.2 ± 18 0.72
Change in Cox 30 min after glucose load 61 ± 6.5 20.3 ± 11.8 −11.3 ± 5.8 0.047
Glucose fasting (mmol/L) 5.2 ± 0.1 −0.02 ± 0.07 − 0.03 ± 0.09 0.75
Glucose AUC (nmol × 120 min/L) 863 ± 47 54 ± 29 24 ± 30 0.61
Insulin fasting (pmol/L) 13.9 ± 1.4 −2.1 ± 1.2 −1.1 ± 1.5 0.32
Insulin AUC (pmol × 120min/L) 7313 ± 815 − 464 ± 686 70 ± 723 0.24
HOMA IR 3.2 ± 0.4 −0.7 ± 0.3a −0.3 ± 0.4 0.16
Hepatic IR 80.8 ± 12.6 −16.9 ± 7.9a −9.9 ± 8.4 0.34
Energy consumption (kJ) 8752 ± 978 245 ± 885 1227 ± 745 0.32
Protein consumption (g) 103 ± 13.8 2.3 ± 13.1 13.7 ± 13.4 0.41
Fat consumption (g) 78 ± 11.1 0.17 ± 9.8 8.3 ± 8 0.52
Carbohydrate consumption (g) 208 ± 21.2 −0.3 ± 22.7 32.4 ± 25.5 0.27
PSA (ng/mL) 0.4 ± 0.3 0.2 ± 0.2 0.6 ± 0.3 0.33
IGF-1 (ng/mL) 132 ± 7.2 −0.6 ± 6.4 1.9 ± 6.1 0.62
IGF bioactivity (ng/mL) 0.83 ± 0.07 0.13 ± 0.07a 0.06 ± 0.05 0.04
IGF-2 (ng/mL) 584 ± 32.1 −23.2 ± 12.5b 1.3 ± 14.2 0.12
IGFBP-1 (ng/mL) 23.4 ± 3.4 1.5 ± 2.2 2.2 ± 2.5 0.64
IGFBP-2 (ng/mL) 210 ± 16 −8.3 ± 10.5 −15.4 ± 8.3 0.96
IGFBP-3 (ng/mL) 3722 ± 216 −199 ± 95b 92 ± 55 0.002
PAPP-A (ng/mL) 1.05 ± 0.1 −0.05 ± 0.04 −0.02 ± 0.02 0.13
STC2 (ng/mL) 41 ± 2.3 −2.1 ± 1.0a −0.5 ± 1.0 0.1

Data are expressed as mean ± s.e.m; P values represent difference between metformin and placebo effect; bold indicates statistical significance, P < 0.05; 
aP = 0.05 compared to baseline; b P  < 0.07 compared to baseline.
Cox, carbohydrate oxidation rate; IGF, insulin-like growth factor; IGFBP, insulin-like growth factor-binding protein; LBM, lean body mass; PAPP-A, 
pregnancy-associated plasma protein A; PSA, prostate-specific antigen; REE, resting energy expenditure; STC2, stanniocalcin 2.
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pro-tumorigenic effects but also increases de novo androgen 
synthesis in prostate cancer cells (57), metformin-induced 
inhibition of IGF-2 provides a promising target for the 
anti-tumour effect of metformin.

This study also shows that during metformin 
treatment, there is a significant reduction in STC2, which 
plays a major role in cancer biology. Overexpression of 
STC2 is associated with cancer progression and can be 
used as a marker of poor prognosis (58, 59). A recent 
meta-analysis reports that high STC2 expression in solid 
cancers can serve as a tumour marker to monitor cancer 
development and progression (60). STC2 has oncogenic 
properties in prostate cancer, as overexpression promotes 
prostate cancer cell growth (28). Thus, STC2 could play a 
role in aggressive and castration-resistant prostate cancers. 
The mechanisms by which STC2 controls cancer growth 
and metastasis could be via the PI3K/AKT/Snail and AKT/
ERK signalling pathways (61, 62). STC2 is also an inhibitor 
of PAPP-A (29), which enhances proteolytic activity of 
IGFBP-4 (26), upon which IGF-1 gets liberated, leading 
to increased IGF bioavailability (27). Thus, an increase 
in IGF bioactivity shown in this study may be partially 
explained by the reduction in STC2, potentially leaving 
more PAPP-A in its proteolytically active state. We also 
show here a significant association between the change in 
HOMA IR and STC2 during metformin treatment, which 

indicates that the greater the improvement in insulin 
sensitivity, the greater the reduction in STC2. This is 
supported by a recent study showing that following gastric 
bypass surgery, STC2 decreased and the reduction in STC2 
correlated with improvements in fasting glucose, insulin, 
and HbA1C (53). Because STC2 can directly modify cancer 
growth and metastasis, the reduction in STC2 associated 
with metformin treatment may be another plausible 
mechanism for the antineoplastic effect of metformin.

IGFs circulate bound to high-affinity binding 
proteins, which modulate the bioavailability of IGFs. 
Importantly, IGFBPs have independent actions from those 
of IGFs on cell growth and survival (21). In vitro studies 
have demonstrated that IGFBP-3 inhibits proliferation, 
adhesion, invasion, and metastasis of prostate cancer, 
independent of IGF-1 (63, 64). IGFBP-3 is an inhibitor of 
MAPK signalling, which is implicated in the development 
of castrate-resistant prostate cancer (65). It has been also 

Figure 1
Serum IGF-2 (A) and STC2 (B) at baseline and during the treatment with 
metformin and placebo in patients with prostate cancer on stable 
androgen deprivation therapy. Data are expressed as means with s.e.m. * 
P  < 0.05 compared to baseline. IGF-2, insulin-like growth factor 2; STC2, 
stanniocalcin 2.

Figure 2
Associations between serum IGF-2 with hepatic insulin resistance at 
baseline (A) and between the change in serum STC2 and change in HOMA 
IR during metformin treatment (B) in patients with prostate cancer. IGF-2, 
insulin-like growth factor 2; STC2, stanniocalcin 2; IR, insulin resistance.
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shown that higher serum IGFBP-3 is associated with a 
lower risk of developing advanced-stage prostate cancer 
(66). Thus, higher circulating IGFBP-3 would theoretically 
be an advantage in prostate cancer patients, exerting direct 
effects on cancer cells as well as reducing IGF bioactivity. 
However, in this study, we show that metformin therapy 
reduced circulating IGFBP-3 and increased IGF bioactivity. 
This is an unexpected finding. However, in vitro studies 
in other cancer types have demonstrated high levels of 
IGFBP-3 in cancer cells, with IGFBP-3 stimulating breast 
cancer growth and being a poor prognostic marker for 
breast cancer patients (67, 68, 69, 70). Thus, it is difficult 
to predict how the change in circulating IGFBP-3 due to 
metformin treatment affects prostate cancer cells.

Research indicates that in the liver, metformin reduces 
GH-mediated PDK4 expression via SHP repressing hepatic 
gluconeogenesis (71). It is plausible that metformin may 
also reduce GH-mediated hepatic IGFBP-3 production. As 
IGFBP-3 is a principal binding protein not just for the IGF-1 
but for the IGF-2 as well (72), reduction in IGF-2 seen in 
this study may be directly related to a reduction in IGFBP-3. 
Supportive of this, we neither detect a difference between 
the groups for the IGF-1 to IGFBP-3 ratio nor there was any 
significant association between the change in IGFBP-3 and 
the change in IGF bioactivity during metformin treatment.

An increase in IGF bioactivity may contribute to the 
whole-body metabolic effects of metformin. An increase 
in IGF bioactivity is likely to play a role in substrate 
metabolism and is expected to induce a muscle anabolic 
effect. Indeed, metformin stimulates protein synthesis in 
muscle (73). In adipocytes, IGF-1R activation stimulates 
glucose uptake. This is likely to occur also in brown fat 
cells, where IGF-1R activation has been shown to be 
essential for full thermogenic capacity (74). The increase in 
IGF bioactivity during metformin treatment may therefore 
result in a stimulation of lipid use in brown adipose tissue 
as well, thereby inducing increased lipid utilisation and 
reduction in fat mass. In line with this, we were able 
to demonstrate a reduction in fat mass associated with 
metformin treatment. An increase in IGF bioactivity is 
expected to improve glucose metabolism as well. Evidence 
comes from studies where IGF-1R deletion in skeletal 
muscle results in glucose intolerance and impaired insulin 
action and human studies reveal that IGF-1 administration 
enhances insulin sensitivity in patients with type 2 diabetes 
(75, 76, 77). Thus, the increase in IGF bioactivity during 
metformin administration may facilitate the beneficial 
effects of metformin on metabolism.

IGF-1R levels have been shown to be decreased by 
metformin in cell culture studies (17, 78). However, this 

scenario is very different from the human in vivo situation. 
Furthermore, we do not expect parallel changes in the 
ligand (IGF-1) and its receptor. For example, unchanged 
levels of ligand do not necessarily imply that the receptor 
IGF-1R remains unchanged or even becomes reduced (as 
part of a regulated response). The IGF bioactivity estimate 
represents the final outcome of changes in IGFBPs, PAPP-A, 
and STC2, as well as other proteases. Given the vast number 
of factors that regulate IGF bioactivity, we are limited 
to speculation regarding those factors that are included 
in this paper. Insulin is able to activate the IGF-1R, but 
receptor-binding experiments have shown that IGF-1R-
binding affinity for IGF-2 and insulin are more than 10 and 
200 times, respectively, lower than that for IGF-1. As stated, 
in our IGF bioactivity assay, cross-reactivity average was 
0.8% for human insulin and 12% for IGF-2. Thus, insulin 
plays minimal role and IGF-2 a much lesser role than IGF-1 
in determining IGF-1R activity. If anything, the increase 
in insulin sensitivity during metformin treatment would 
correspond to an increase in IGF-1R activity. However, it is 
difficult to predict what net effect would be seen in prostate 
cancer cells in response to an increase in circulating IGF 
bioactivity.

There are limitations to our study. This is a relatively 
small study, thus meriting confirmation of results in a larger 
cohort. There was no washout period between the metformin 
and placebo treatments. However, placebo administration 
was for 6 weeks before measurement of outcomes, which 
should have been sufficient to eliminate metformin 
metabolic effects. Furthermore, we undertook statistical 
evaluation for the order of treatment and found no effect on 
the results, providing evidence that there was no sequence 
effect in this randomised, controlled study. Nevertheless, the 
lack of the washout period may have reduced the apparent 
effect size of metformin treatment compared to placebo, 
if there was some carry-over of metformin action into a 
subsequent placebo treatment phase. We did not detect any 
change in PAPP-A concentrations but have to acknowledge 
that we did not measure its proteolytic activity, which may 
have increased during metformin treatment. As an increase 
in PAPP-A results in greater IGFBP-4 cleavage, leading to 
increased IGF bioactivity (26, 27), it would be of interest to 
measure enzymatically active PAPP-A and IGFBP-4 in this 
cohort of prostate cancer patients.

In summary, metformin significantly reduces 
circulating STC2, IGF-2, IGFBP-3 and increases IGF 
bioactivity. We conclude that metformin administration 
alters many components of the circulating IGF system, 
either directly or indirectly via an improved insulin 
sensitivity. Reduction in IGF-2 and STC2 is expected to 
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result in reduction in cancer growth and metastasis. This 
provides a possible mechanism for the proposed anticancer 
effect of metformin.
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