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Background. The roundworm Ascaris lumbricoides infects 0.8 billion people worldwide, and Ascaris suum in-
fects innumerable pigs across the globe. The extent of natural cross-transmission of Ascaris between pig and human
hosts in different geographical settings is unknown, warranting investigation.

Methods. Adult Ascaris organisms were obtained from humans and pigs in Europe, Africa, Asia, and Latin
America. Barcodes were assigned to 536 parasites on the basis of sequence analysis of the mitochondrial cytochrome
c oxidase I gene. Genotyping of 410 worms was also conducted using a panel of microsatellite markers. Phylogenetic,
population genetic, and Bayesian assignment methods were used for analysis.

Results. There was marked genetic segregation between worms originating from human hosts and those orig-
inating from pig hosts. However, human Ascaris infections in Europe were of pig origin, and there was evidence of
cross-transmission between humans and pigs in Africa. Significant genetic differentiation exists between parasite
populations from different countries, villages, and hosts.

Conclusions. In conducting an analysis of variation within Ascaris populations from pig and human hosts across
the globe, we demonstrate that cross-transmission takes place in developing and developed countries, contingent
upon epidemiological potential and local phylogeography. Our results provide novel insights into the transmission
dynamics and speciation of Ascaris worms from humans and pigs that are of importance for control programs.

Keywords. Ascaris; giant roundworm; population genetics; soil-transmitted helminth; zoonosis; neglected trop-
ical disease; microsatellite; barcode.

Ascariasis is caused by infection with the giant round-
worm Ascaris lumbricoides, with around 760 million
cases worldwide [1]. Although infections are particular-
ly common in developing countries where sanitation
and hygiene is poor, ascariasis exhibits a cosmopolitan
distribution, with cases also described in developed

countries [2–4]. It was recently estimated that ascariasis
contributes 1.31 million disability-adjusted life years to
the global burden of disease [1, 5]. The closely related
parasite Ascaris suum infects innumerable pigs across
the globe and is especially common in organic and ex-
tensive farming systems [6, 7]. Infections in pigs are as-
sociated with production losses owing to reduced
growth and low feed conversion efficiency, with livers
unfit for human consumption [7].

Because adult A. lumbricoides and A. suum worms
are morphologically indistinguishable, there has been
much debate as to whether they represent the same or
different species [8, 9]. In addition, the extent of natural
cross-transmission of worms between pig and human
hosts is unclear [10]. Experimental cross-infections
have demonstrated that A. suum can infect humans
and that A. lumbricoides can infect pigs, with host pref-
erence in the efficiency of infection establishment [10, 11].
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Although no definitive molecular marker has been found that
can clearly distinguish between so-called human worms and
pig worms, a combination of markers has proven useful [11].
Molecular studies have demonstrated that human Ascaris infec-
tions in developed countries are predominantly of pig origin
[2–4, 12], whereas in developing countries human-to-human
transmission predominates [13–16]. However, in China, 14%
of human worms were derived from pigs (ie, were of zoonotic
origin), indicating that cross-transmission in areas of endemic-
ity may be more common than originally thought [17].Hybrids
between human and pig worms have been detected, indicating
that mating can take place between Ascaris from the 2 host
species [18].

Molecular markers have been used to investigate geographi-
cal differences in the population structure of Ascaris on a mac-
roscale and microscale. Overall, the data support structuring of
Ascaris populations between countries [13, 18–21].However, re-
sults were more variable at a local scale [14, 19, 20, 22], which
may reflect methodological differences and variations in trans-
mission dynamics, migration, and farming practices. To date,
sampling of Ascaris from Africa has not been extensive. Given
that humans arose on this continent [23], it is plausible that
there has been a long association between humans and the As-
caris parasite here.

In this study, we used mitochondrial and microsatellite
markers to characterize a large collection of adult Ascaris
worms acquired from human and pig hosts in areas where A.
lumbricoides is considered endemic or nonendemic. The level
of Ascaris cross-transmission between pig and human hosts
was investigated, as was the geographical structuring of parasite
populations. The results provide novel insights into the evolu-
tionary origins of Ascaris in humans and pigs.

MATERIALS AND METHODS

Ascaris Samples, Ethics Approval, and Informed Consent
The host and sampling location of the worms are summarized
in Table 1. Many samples were collected during previous stud-
ies. Additional worms were obtained from humans in the Unit-
ed Kingdom, Kenya, and Bangladesh and from pigs in the
United Kingdom, Denmark, and Tanzania. Ethics approval
and informed consent were obtained for collection of worms
from humans [13, 14, 19, 20, 24, 26]. Sixteen worms from hu-
mans had been submitted to the Clinical Microbiology Labora-
tory, Royal Cornwall Hospital, for routine identification.

DNA Extraction
Genomic DNAwas extracted from worm gonads or muscle tis-
sue [4, 19], using the CTAB method [27], the Genomic DNA
Isolation Kit for Tissue and Cells (nexttec, Hilgertshausen, Ger-
many), or the DNeasy Blood and Tissue Kit (Qiagen, Manches-
ter, United Kingdom).

Cox1 Sequencing and Microsatellite Amplification
A 450-bp fragment of the Ascaris cox1 gene was amplified using
primers As-Co1F and As-Co1R [15], and the fragments were se-
quenced [19]. Eight microsatellite loci (ALAC07, ALAC09,
ALGA48, ALTN04, ALGA31, ALGA15, ALAC32, and
ALAC08) were individually amplified by polymerase chain re-
action from a subset of samples (Table 1), and fragment sizes
were determined, as published elsewhere [28].

Sequence Analysis
cox1 sequences were assembled and manually edited using Se-
quencher v4.8 (Gene Codes Corporation, Ann Arbor, MI). A
383-bp consensus sequence was obtained for each sample and
aligned using MacClade v4.08 (Sinauer Associates, Sunderland,
MA). Collapse v1.2 was used to identify samples with identical
haplotypes. BLAST was used to search for exact sequence
matches in GenBank and novel haplotypes were submitted to
GenBank (accession numbers KF719094–151). A minimum-
spanning parsimony network was constructed in TCS v2.1. jMo-
deltest v2.1.3 was used to determine the best-fitting nucleotide
substitution model [29], using a data set containing all unique
haplotypes and a selection of previously identified haplotypes
(CavHap1, CavHap3, CavHap5, and CavHap13–9) [12] ob-
tained from GenBank. The resulting model (Hasegawa-Kishino-
Yano, with gamma distributed rates) was used for construction
of a maximum likelihood tree in MEGA v5.05, with branch
support provided by bootstrapping (1000 replications). The
same software was used to determine p-distances between
clusters.

Microsatellite Analysis
Microsatellite allele sizes were determined using PeakScanner
v1.0 (Applied Biosystems). PowerMarker v3.25 [30] was used
to determine the number of alleles per locus (NA), observed het-
erozygosity (HO), and expected heterozygosity (HE). Numbers
of private alleles (NP) and allelic richness (RA) were calculated
using FSTAT v2.9.3.2 [31]. To take into account potential relat-
edness of parasites from the same host individual, genetic dif-
ferentiation between populations was analyzed using the
hierarchical analysis of molecular variance procedure in Arlequin
v3.5.1.2 [32]. Pairwise estimates of FST (a measure of genetic dif-
ferentiation) between populations were generated, and permuta-
tion tests of genetic differentiation (101 000 permutations) were
conducted. Genetic distances between parasite populations
(Cavalli-Sforza and Edwards’ chord distances) [33] were estimat-
ed in PowerMarker and visualized using a neighbor joining
clustering algorithm with bootstrapping (1000 replications) to
determine phenogram reliability. Consense (Phylip v3.65) was
used to compute a consensus tree, which was visualized using
DrawTree (Phylip v3.65). This was done for Ascaris populations
from different host types, countries, villages, or individuals (in
which the number of worms per village/host was ≥6).
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Population structure was also inferred from the microsatellite
data set using Bayesian analysis in STRUCTURE v2.3.4 [34, 35].
An admixture model assuming correlated allele frequencies was

used (burn-in length, 50 000; run length, 100 000). Values of K
from 1 to 14 were tested, and 20 independent runs were per-
formed for each K. To determine the most likely true value of

Table 1. Characteristics of Ascaris Samples Included in This Study

Country, Location Host Samples, No. cox1 MS Reference

United Kingdom

Cornwall Humans 15 14 11 [3], this study
Abattoir, Bedfordshire Pigs 49 38 41 This study

Denmark

Unspecified Humans 2 2 2 This study
Unspecified Pigs 31 27 31 This study

Uganda

Mayengo, Kabale District Humans 10 10 10 [24]
Nyamirima, Kabale Humans 9 9 9 [24]

Katuna, Kabale Humans 1 1 1 [24]

Kiniogo, Kabale Humans 9 9 8 [24]
Nyakitokoli, Kabale Humans 41 41 18 [24]

Habutobere, Kabale Humans 37 37a 32a [20]

Musezero, Kisoro District Humans 62 61a 56a [20]
Hamukaaka, Kabale Humans 19 19b 9b [19]

Kapchorwa, Kapchorwa District Humans 2 2 0 Davies et al
(unpublished data)

Katuna, Kabale Pigs 23 23 21 [25]
Burambira-Katuna, Kabale Pigs 6 6 5 [25]

Kamugangguzi, Kabale Pigs 11 11 9 [25]

Rwakakobe, Kabale Pigs 12 8 9 [25]
Mugyenyi Lane, Kabale Pigs 7 7 6 [25]

Abattoir, Kampala Pigs 55 52 6 This study

Zanzibar
Kandwi Humans 5 5b 4b [19]

Kizimibani Humans 8 8b 8b [19]
Ghana Humans 18 15b 16b [19]

Tumbatu-Jongowe Humans 29 29b 25b [19]

Miscellaneous Humans 2 2b 0 [19]
Tanzania

Abattoir Pigs 38 37 36 This study

Kenya
Kwale Humans 6 6 0 This study

Zambia

Traveler (worm sampled in the United Kingdom) Humans 1 1 0 This study
Bangladesh

Unspecified Humans 41 37 37 This study

Nepal
Unspecified Humans 5 5 0 [21]

Philippines

Unspecified Pigs 6 3 0 [13]
Guatemala

Santa Cruz Naranjo and Chaimal, Santa Rosa Province Humans 6 6 0 [14, 26]

Santa Cruz Naranjo, Santa Rosa Pigs 6 5 0 [14, 26]
Total Humans and pigs 572 536 410 . . .

Abbreviation: MS, microsatellite.
a Cox1 and microsatellite data published [20].
b Cox1 and microsatellite data published but only 5 microsatellite loci were analysed in the published study [19].
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K, the mean Ln P(D) value (an estimate of posterior probability)
was determined for each K and plotted against K. If there was no
obvious peak in the plot, ΔK was calculated and plotted against
K [36]. This analysis indicated that 2 was the most likely true
value of K. To examine whether further substructuring existed,
samples were assigned to one of 2 groups on the basis of a Q
value of >0.5 in the STRUCTURE output. The simulation was
run again for each group separately, testing values of K from 1 to
10, using a burn-in of 100 000 and a run length of 1 000 000
to improve stability between runs. The presence of cross-
transmission and hybrids between pig and human worms was
investigated using STRUCTURE, NewHybrids [37], and BAPS
[38], as described elsewhere [17, 18].

RESULTS

Cox1 Haplotypes
We analyzed cox1 sequences from 319 Ascaris worms collected
from humans and 217 worms collected from pigs (Table 1). A
total of 75 different haplotypes were identified, 43 of which were

novel. Table 2 summarizes haplotype abundance by host and
location. H1 was by far the most abundant haplotype, particu-
larly in worms from humans. H3 was also common in human
Ascaris. In contrast, H7, H28, H52, and H64 were abundant in
pig worms, but of these only H64 was unique to Ascaris from
pigs.

In a minimum spanning parsimony network of all haplo-
types, 3 main groups could be observed (Figure 1). Cluster C
sequences differed by >8 base pairs from other haplotypes
and so were not connected to the main network. There was
no obvious segregation of haplotypes on the basis of geograph-
ical location. Clusters A and B contained haplotypes from both
pig and human worms, but there was a tendency for haplotypes
from human Ascaris to cluster around H1 and H3 and those
from pig Ascaris to cluster around H7, H28, and H52. Cluster
C only contained 1 sequence from a human worm (from the
United Kingdom). A maximum likelihood tree was constructed
on the basis of these haplotypes and included additional, re-
cently published Ascaris cox1 sequences [12] (Supplementary
Figure 1). The tree revealed the same 3 groupings of Ascaris

Table 2. Cox1 Haplotype Abundance, by Country and Host

Haplotype

UK DK UG ZZ TZ KE ZA BA NP PH GT

H P H P H P H P H H H H P H P

H1 . . . . . . . . . . . . 134 4 29 . . . 1 . . . 23 . . . . . . . . . . . .

H2 . . . . . . . . . . . . 2 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . .

H3 . . . . . . . . . . . . 23 . . . 12 . . . . . . . . . . . . . . . . . . 1 . . .
H4 . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . .

H5 . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . .

H7 . . . 5 . . . 4 1 33 2 1 . . . . . . . . . . . . . . . 2 . . .
H8 . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . 1 . . . . . . . . . . . .

H11 . . . . . . . . . . . . 2 . . . 1 . . . . . . . . . 1 . . . . . . . . . . . .

H21 . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H24 . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . .

H28 8 8 1 19 1 16 . . . 28 . . . . . . . . . . . . 2 . . . 3

H29 . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H32 . . . . . . . . . . . . . . . 3 . . . 2 . . . . . . 1 2 . . . 2 . . .

H33 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . 1 . . . . . . . . . . . .

H47 . . . . . . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H52 1 . . . . . . . . . . . . 41 . . . . . . . . . . . . . . . . . . . . . . . . . . .

H57 . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .

H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
H64 . . . 22 . . . 1 . . . 2 . . . 3 . . . . . . . . . . . . . . . . . . . . .

H66 . . . 1 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . .

H74 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H75 . . . . . . . . . . . . . . . . . . . . . . . . 4 1 . . . . . . . . . . . . . . .

H77 . . . . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .

Rarea 3 2 1 3 18 4 7 2 . . . . . . 9 3 1 1 0
Total 14 38 2 27 189 107 59 37 6 1 37 5 3 6 5

Abbreviations: BA, Bangladesh; DK, Denmark; GT, Guatemala; H, humans; KE, Kenya; NP, Nepal; P, pigs; PH, Philippines; TZ, Tanzania; UG, Uganda; UK, United
Kingdom; ZA, Zambia; ZZ, Zanzibar.
a Haplotypes that were only sampled once in this study.
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sequences with strong bootstrap support for separation between
the 3 groups. Mean p-distances were 2.8% between clusters A and
B, 5.4% between clusters A and C, and 4.2% between clusters B
and C. None of the sequences from other ascarids fell into these
groups. Whereas clusters A and B contained sequences from As-
caris collected from both host species and all 4 continents, cluster
C contained only sequences from Europe and Africa.

Microsatellite Analysis
Microsatellite data were analyzed from 246 human and 164 pig
worms (Table 1). Microsatellite allelic diversity stratified by
locus, host species, and location is summarized in Supplementary
Table 1. Mean allelic richness was somewhat higher in Ascaris
from human hosts than those from pigs (P = .062; 15 000 permu-
tations); this was more apparent when Ascaris from humans in
the United Kingdom were classified as pig Ascaris (P = .041).
There was no difference in observed or expected heterozygosity
between human and pig Ascaris (HO, P = .426; HE, P = .200).

Genetic flow between Ascaris populations from different
hosts and locations was investigated through estimation of
pairwise FST values and permutation tests of genetic differenti-
ation (Table 3). There was evidence of genetic differentiation
between nearly all Ascaris populations. However, differentiation
between worms from sympatric pig and human hosts was high-
er than between populations from the same host in different
geographical areas, except for human worms from United King-
dom. When genetic distances between Ascaris populations were
visualized using a consensus neighbor-joining tree, populations
from pig hosts clustered together and populations from humans
grouped together, apart from United Kingdom human worms,
which clustered with pig worms (Figure 2A). Populations were
then subdivided on the basis of village or individual host, and
genetic distances were determined (Figure 2B). The same major
division between worms from pig and human hosts was ob-
served, with further clustering by location. Ascaris from humans
in Uganda divided into 2 main clusters, one containing worms

Figure 1. Minimum spanning TCS network of all cox1 haplotypes identified. A line indicates 1 base change. A black dot indicates a nonsampled or
extinct haplotype. The size of the ovals is representative of the number of samples with a particular haplotype. Blue ovals represent haplotypes only found in
worms from humans, pink ovals indicate haplotypes only found in worms from pigs, and purple ovals indicate haplotypes identified in worms from both
hosts. The haplotype number is displayed in bold. The host type and geographical location are also indicated. Numbers indicate number of samples from
each host type and location with the specific haplotype. The 3 clusters are labeled cluster A, cluster B, and cluster C. Abbreviations: BA, Bangladesh; DK,
Denmark; GT, Guatemala; H, humans; KE, Kenya; NP, Nepal; P, pigs; PH, Philippines; TZ, Tanzania; UG, Uganda; UK, United Kingdom; ZA, Zambia; ZZ,
Zanzibar.
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Figure 2. A–B, Cavalli-Sforza and Edwards’ chord distances between Ascaris populations from different host types and locations represented in con-
sensus neighbor joining trees based on 8 microsatellite markers. A, Populations stratified by host type and country. B, Populations stratified by host type and
by country, by village, or by individual host, depending on the number of worms sampled for each location and host and whether information on individual
hosts was available. Names of villages are provided in panel B, and if a population corresponds to worms from only 1 host, this is indicated in brackets.
Bootstrap values are displayed and are based on 1001 replications. C, Assignment of Ascaris samples to clusters on the basis of STRUCTURE analysis.
Output from a representative STRUCTURE run is presented. One cluster is indicated in red (mostly worms from pigs) and green (mostly worms from humans).
Each narrow column corresponds to 1 sample. Examples of cross-transmission between human and pig hosts are indicated with black arrows. In addition,
most worms from humans in the United Kingdom and Denmark appear to have originated from pigs. Abbreviations: BA, Bangladesh; DK, Denmark; GT,
Guatemala; H, humans; KE, Kenya; NP, Nepal; P, pigs; PH, Philippines; TZ, Tanzania; UG, Uganda; UK, United Kingdom; ZA, Zambia; ZZ, Zanzibar.

Table 3. Pairwise Differentiation Between Ascaris Populations From Different Hosts and Countries, Based on Microsatellite Data

Host, Country

Host, Country

P, UK H, UK P, DK H, UG P, UG H, ZZ P, TZ H, BA

P, UK . . . .153 .030 .001 .005 .025 .059 .004
H, UK .037 . . . .001 <.0001 .0002 .122 .009 <.0001

P, DK .057 .029 . . . <.0001 .0002 .012 <.0001 <.0001

H, UG .065 .092 .101 . . . <.0001 .013 <.0001 <.0001
P, UG .056 .041 .050 .100 . . . .004 <.0001 <.0001

H, ZZ .056 .050 .070 .033 .068 . . . .069 <.177

P, TZ .064 .040 .071 .116 .051 .071 . . . <.0001
H, BA .065 .081 .100 .051 .092 .012 .106 . . .

Data below the diagonal denote pairwise FST (a measure of genetic differentiation) values based on hierarchical analysis, and data above the diagonal denote P values
from the permutation test of genetic differentiation (10 100 permutations).

Abbreviations: BA, Bangladesh; DK, Denmark; H, humans; P, pigs; TZ, Tanzania; UG, Uganda; UK, United Kingdom; ZZ, Zanzibar.
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from Habutobere and Musezero and the other containing
worms from other villages. The worms from Bangladesh
grouped with those from Zanzibar. Ascaris worms from hu-
mans in the United Kingdom appeared most similar to
worms from pigs in Tanzania and Denmark. Ascaris popula-
tions from different pig hosts in the United Kingdom were ge-
netically differentiated.

Bayesian Analysis
Bayesian analysis of the microsatellite data, using
STRUCTURE, was used to assign worms to clusters without
prior knowledge of host type or sampling location. On the
basis of posterior probabilities, the true value of K (ie, the num-
ber of clusters) was most likely 2. A bar plot from a representa-
tive STRUCTURE run is shown in Figure 2C. It was apparent
that the 2 clusters corresponded to host type, apart from worms
from humans in Europe, which mainly clustered with worms
from pigs. To investigate further substructuring in the data
set, worms were designated to one of 2 groups on the basis of
the STRUCTURE output, and the simulation was run again for
each group separately. Additional structure was evident, with a
likely K of 4 for each group. The 4 clusters for human worms
loosely corresponded to location (Table 4): Uganda (Musezero
and Habutobere), Uganda (other villages), Zanzibar, and Ban-
gladesh. However, clusters 3 and 4 both contained worms from

Zanzibar and Bangladesh. For the group mainly consisting of
pig worms (Table 4), the clusters also corresponded to geo-
graphical area: United Kingdom (cluster 1), Denmark (cluster
2), Uganda (cluster 3), and Tanzania (cluster 4). The human
worms from Denmark and the United Kingdom shared ge-
nomes mainly with pig worms from Denmark (cluster 2), and
the human worm from Uganda mainly with pig worms from
Uganda (cluster 3).

To investigate whether there were any cases of cross-
transmission and hybridization between worms from human
hosts and worms of pig origin, simulations using BAPS, New-
Hybrids, and STRUCTURE were conducted (Table 5). Hybrids

Table 4. Proportions of Each Ascaris Population Originating
Predominantly From Humans and Pigs That Were Assigned to
Each of the 4 Clusters Identified in STRUCTURE

Population,
Host and
Country

Worms,
No.

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Human Ascaris
P, UK 3 0.406 0.013 0.027 0.553

H, UK 1 0.178 0.005 0.006 0.811

H, DK 1 0.179 0.005 0.006 0.809
H, UG 142 0.568 0.326 0.047 0.059

P, UG 1 0.978 0.006 0.009 0.067

H, ZZ 53 0.017 0.113 0.741 0.129
P, TZ 2 0.110 0.035 0.065 0.790

H, BA 37 0.044 0.051 0.267 0.638

Pig Ascaris
H, UG 1 0.021 0.073 0.559 0.347

P, UG 55 0.034 0.145 0.751 0.071

P, TZ 34 0.012 0.361 0.016 0.611
P, UK 38 0.708 0.160 0.035 0.096

H, UK 10 0.045 0.707 0.060 0.188

P, DK 31 0.038 0.843 0.083 0.037
H, DK 1 0.008 0.844 0.094 0.055

Data are proportion of worm genomes, unless otherwise indicated.

Abbreviations: BA, Bangladesh; DK, Denmark; H, humans; P, pigs; TZ,
Tanzania; UG, Uganda; UK, United Kingdom; ZZ, Zanzibar.

Table 5. Summary of STRUCTURE, BAPS, and NewHybrids
Analyses

Host, Country,
Program

Population
1

Population
2 Hybrid NC Total

Human Ascaris
United Kingdom and Denmark

STRUCTURE 0 11 2 0 13
BAPS 0 13 0 0 13

NewHybrids 2 11 0 0 13

Uganda
STRUCTURE 140 1 2 0 143

BAPS 142 1 0 0 143

NewHybrids 140 3 0 0 143
Zanzibar

STRUCTURE 54 0 0 0 53

BAPS 54 0 0 0 53
NewHybrids 53 1 0 0 53

Bangladesh

STRUCTURE 37 0 0 0 37
BAPS 37 0 0 0 37

NewHybrids 36 0 0 1 37

Pig Ascaris
United Kingdom

STRUCTURE 2 34 5 0 41

BAPS 4 37 0 0 41
NewHybrids 5 35 0 1 41

Denmark

STRUCTURE 0 31 0 0 31
BAPS 0 31 0 0 31

NewHybrids 0 31 0 0 31

Uganda
STRUCTURE 1 52 3 0 56

BAPS 1 55 0 0 56

NewHybrids 1 54 0 1 56
Tanzania

STRUCTURE 0 33 3 0 36

BAPS 2 34 0 0 36
NewHybrids 2 34 0 0 36

Data are no. of worms.

Abbreviation: NC, not classified.
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were identified by STRUCTURE but not by BAPS or New-
Hybrids, suggesting that these represented false positives. All
programs identified 12 worms from humans in the United
Kingdom and Denmark and 1 worm from humans in Uganda
as belonging to the pig cluster. In addition, 2 Ascaris from pigs
in the United Kingdom and 1 worm from Uganda were as-
signed to the human cluster. These worms likely represent ex-
amples of cross-transmission between humans and pigs
(Supplementary Table 2).

DISCUSSION

Here, we describe the first large-scale molecular analysis of
human and pig Ascaris from different locations across the
globe using mitochondrial and microsatellite markers including
better sampling of African isolates. We found strong genetic dif-
ferentiation between Ascaris originating from human and pig
hosts. However, there was also evidence of cross-transmission
of Ascaris between pigs and humans, with practically all Euro-
pean human Ascaris infections originating from pigs and spora-
dic zoonotic and anthroponotic transmission in areas of
endemicity.

The cox1 haplotypes identified add to the growing database
of Ascaris cox1 sequences from human and pig hosts [12, 15, 19,
20, 39, 40]. They fell into 3 groups, which correspond to clusters
A–C, identified previously [12, 40]. The p-distances between
cluster C and clusters B and A were surprisingly high but still
lower than the 10% that is normally seen for cox1 sequences be-
tween different helminth species [41]. In addition, it should be
noted that the existence of 3 taxonomic clusters was not sup-
ported by the microsatellite data, highlighting the complex na-
ture of mitochondrial inheritance and the pitfalls associated
with using a single marker for molecular epidemiological stud-
ies [42]. The extremely frequent sampling of H1 and its central
position in cluster A suggest that this may be an ancestral hap-
lotype, originating in Africa, that has subsequently diverged and
spread. Moreover, we did not find a strict segregation between
cox1 haplotypes from worms of human or pig origin. Neverthe-
less, there were constellations of Ascaris haplotypes originating
predominantly from 1 host species, suggesting that there are
local barriers to the exchange of genetic material between pig
and human Ascaris and adaptations to particular host species.
Interestingly, haplotypes from human Ascaris in the United
Kingdom and Denmark cluster practically exclusively with pig
worms, indicating a zoonotic origin for these infections.

Using different approaches for analysis of microsatellite data,
we observed genetic differentiation between human and pig As-
caris in developing countries. These results are in accordance
with findings from a number of published studies [4, 13, 16–
18, 43]. In contrast, Ascaris from humans in Europe clustered
with pig worms rather than human worms from other areas,
providing further evidence that Ascaris infection is a zoonosis

in developed countries [2–4, 12]. Using Bayesian analysis,
there were no worms of pig origin found in humans from Zan-
zibar or Bangladesh, which is unsurprising given that both are
Muslim countries where pig farming is uncommon. In Uganda,
where around 18% of households keep pigs [44], 1 of 143
human worms (0.7%) was of pig origin and 1 of 56 pig
worms (1.8%) was of human origin. In China, 13.9% of
worms (n = 137) in humans were zoonotic and 0.8% of
worms in pigs (n = 121) were anthroponotic [17].The differenc-
es in level of zoonotic transmission between the 2 countries like-
ly represent variations in farming practices, feces disposal, and
human-pig contact. Intriguingly, there were 2 worms in pigs
from the United Kingdom that clustered with human worms,
although one had a pig-like cox1 haplotype (H64). These Asca-
ris parasites came from an organic abattoir in Bedfordshire, but
the location of the farm(s) where the pigs were reared is not
known. It is possible that a human Ascaris transmission cycle
exists in pigs, an extremely surprising result which warrants fur-
ther investigation. No examples of hybridization between pig
and human worms were found in any location. In contrast,
7.8% of worms in China (n = 258) and 4% in Guatemala
(n = 24) were identified as hybrids using 23 microsatellite mark-
ers, indicating the potential for exchange of genetic material be-
tween pig and human Ascaris populations [17, 18]. The fact that
we did not find evidence of hybridization might reflect varia-
tions in transmission dynamics of Ascaris worms in different
locations. Alternatively, the 8 markers we used may not provide
sufficient resolution to identify hybrids.

As anticipated [4, 13, 18, 20], we found significant genetic dif-
ferentiation between Ascaris populations from different coun-
tries. Additional structuring of parasite populations at the
village or individual host level was also apparent, particularly
in Uganda where the largest sample of worms originated.
This may be related to the well-documented overdispersed dis-
tribution and clustering of Ascaris infections at household level
[22, 45]. Genetic substructuring at the individual host level has
also been observed in Guatemala and Denmark [4, 14]. The 4
clusters predicted by Bayesian analysis for human worms main-
ly corresponded to country, although the Ugandan worms also
clustered by village. Interestingly, whereas cluster 4 contained
mainly worms from Bangladesh, worms from Zanzibar were
also found here. Similarly, Zanzibari and some Bangladeshi
worms were assigned to cluster 3. This may reflect the long his-
tory of and ongoing traffic between Zanzibar and the Indian
subcontinent.

Because of greater sampling, our study provides a better pic-
ture of the genetic diversity of Ascaris in Africa. Since the evo-
lution of early hominids is thought to have taken place here
[23], it is possible that there has been a long-standing associa-
tion between humans and ascarids on this continent and that
humans migrating from Africa facilitated the spread of a
proto-Ascaris. The oldest ascarid eggs discovered so far were
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found in France [46]. However, Africa is poorly represented in
the archeological record and further historical phylogeograph-
ical studies are required to determine where Ascaris originated.
It is clear that, ascariasis has been intimately intertwined with
humans for thousands of years, as recently demonstrated by in-
fections discovered within the body of King Richard III [47].

The older evolutionary origin of Ascaris in human and pig
hosts is contested. It is unclear whether A. lumbricoides and
A. suum are separate species derived from a common ancestor,
multiple host colonization events took place after geographical
subdivision of host populations [18], or A. lumbricoides and A.
suum are really a single species with regional variants [8]. This
discussion depends on a consistent definition of “species.” De-
fining species as “groups of actually or potentially interbreeding
natural populations which are reproductively isolated from
other such groups” [48], we suggest that A. lumbricoides and
A. suum are 2 separate species, since there are high levels of ge-
netic differentiation between pigs and human worms in sympa-
tric areas. Although hybrids between pig-derived and human-
derived worms have been identified, these are rare and likely
to have reduced fitness, otherwise population structuring be-
tween the hosts would not be observed [11]. Regarding host
switching, our results are less conclusive. Like Anderson et al
but in contrast to Criscione et al, we find that, in broad
terms, differentiation between worms was based primarily on
host affiliation, with further differentiation based on geograph-
ical location [13]. This could indicate a single historical host
switch of Ascaris populations infecting pigs or humans. Howev-
er, the mitochondrial data and the fact that no single diagnostic
marker has been identified to distinguish between A. lumbri-
coides and A. suum favor an alternative model of multiple
host switches over time, with subsequent merging of worm pop-
ulations in the 2 hosts [18]. This explanation may be more con-
sistent with the history of pig domestication across Eurasia [49].

The current mainstay of control programs against ascariasis in
humans is preventive chemotherapy, involving periodic treatment
of preschool and school-aged children in Ascaris-endemic com-
munities with anthelmintic drugs, and there are real prospects
for local elimination of disease by treatment scale-up [50]. In
areas where it is common for households to keep pigs and/or
where pig manure is used as a fertilizer, however, the progress
toward elimination may be hampered if there is significant
cross-over of transmission. Thus, with forthcoming scale up of pre-
ventive chemotherapy, it may be that sources of zoonotic transmis-
sion will become ever more important, and, if so, they should be
taken into account by mathematical models currently being devel-
oped to explore the stability and dynamics of end points of control.

In conclusion, our results provide novel insights into the
transmission dynamics and speciation of Ascaris from humans
and pigs. Although A. lumbricoides and A. suum appear to be 2
separate species over most of their range, the process of speci-
ation is not so far advanced that they are entirely host specific or

unable to exchange genetic information, and cross-transmission
between pig and human hosts takes place across the globe. The
level of cross-transmission is likely to depend on local farming
and hygiene practices. However, it is possible that we underesti-
mated the zoonotic potential of A. suum, as we only analyzed
adult worms (ie, Ascaris that completed hepato-tracheal migra-
tion and established in the intestine). It is probable that
A. suum commonly undergoes visceral larvae migration in hu-
mans, but because of host preferences most larvae are expelled
on return to the intestine. Zoonotic and anthroponotic transmis-
sion could lead to greater morbidity because hosts are less well-
adapted to the parasite. In addition, potential exchange of ge-
netic information between A. lumbricoides and A. suum could
allow the spread of drug-resistance and virulence genes between
parasite populations in different hosts, although it is also possi-
ble that if humans are treated but pigs are not, the untreated
parasite population will act as refugia, diluting the alleles linked
to resistance.
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