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ABSTRACT: Intermolecular interactions in the aqueous phase must
compete with the interactions between the two binding partners and
their solvating water molecules. In biological systems, water molecules in
protein binding sites cluster at well-defined hydration sites and can form
strong hydrogen-bonding interactions with backbone and side-chain
atoms. Displacement of such water molecules is only favorable when the
ligand can form strong compensating hydrogen bonds. Conversely, water
molecules in hydrophobic regions of protein binding sites make only
weak interactions, and the requirements for favorable displacement are
less stringent. The propensity of water molecules for displacement can be
identified using inhomogeneous fluid solvation theory (IFST), a
statistical mechanical method that decomposes the solvation free energy
of a solute into the contributions from different spatial regions and
identifies potential binding hotspots. In this study, we employed IFST to study the displacement of water molecules from the
ATP binding site of Hsp90, using a test set of 103 ligands. The predicted contribution of a hydration site to the hydration free
energy was found to correlate well with the observed displacement. Additionally, we investigated if this correlation could be
improved by using the energetic scores of favorable probe groups binding at the location of hydration sites, derived from a
multiple copy simultaneous search (MCSS) method. The probe binding scores were not highly predictive of the observed
displacement and did not improve the predictivity when used in combination with IFST-based hydration free energies. The
results show that IFST alone can be used to reliably predict the observed displacement of water molecules in Hsp90. However,
MCSS can augment IFST calculations by suggesting which functional groups should be used to replace highly displaceable water
molecules. Such an approach could be very useful in improving the hit-to-lead process for new drug targets.

■ INTRODUCTION

Water molecules are a key component of biological systems and
act as ordered structural elements at binding interfaces.1 The
mediation of ligand binding by water molecules can have
important consequences for binding affinity and specificity.
Numerous examples of water-mediated protein−ligand inter-
actions are known, including peptide binding in tyrosine kinase
(Src),2 binding of inhibitors to proteases,3 and carbohydrate-
binding proteins.4 The consideration of individual water
molecules in ligand design hinges on an accurate assessment
of opposing thermodynamic contributions. This includes the
entropic gain of displacing a highly ordered water molecule and
the enthalpic loss of breaking water−protein hydrogen bonds.5

However, assessing the role of individual water molecules at the
binding interface is a complex problem, as highlighted by the
prediction that there is no direct correlation between the free

energy of water molecules in the binding site and the affinity of
bound ligands.6

Despite the difficulty in predicting and interpreting the roles
of such water molecules, several attempts have been made at
classifying binding site water molecules with respect to the
likelihood of their “displaceability.”7−9 High displaceability in
this context corresponds to displacement of the water molecule
by a suitable chemical group on the ligand with an
accompanying favorable change in the binding affinity. There
are a variety of methods for identifying and ranking water
molecules in binding sites, including physics-based methods
and empirical methods. A physical method based on the double
decoupling method employing thermodynamic integration
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(TI) to replica exchange Monte Carlo simulations was found to
be successful in classifying water molecules as displaceable or
conserved.6 However, such an approach requires extremely
time-intensive calculations that must be performed on each
water molecule individually. This drawback also affects free-
energy perturbation (FEP) techniques, which have also been
used to successfully predict the ease of displacement of ordered
water molecules in protein binding sites.10 FEP predictions
were found to correlate with the change in affinity for structural
modifications that displaced the water molecules. However, the
study also noted that a complete thermodynamic analysis is
needed in order to accurately compute the effects of ligand
modifications. Another approach employed machine learning to
create a probabilistic water classifier.11 This was found to be
very good at predicting the location of water molecules and
shown to have reasonable predictive power in classifying water
molecules as displaceable or conserved. The structural features
of water molecules in X-ray crystallographic structures, such as
B-factors, accessibility to bulk solvent, number, and strength of
protein-water hydrogen bonds, were used to develop multi-
variate logistic regression models for predicting the displace-
ment of water molecules, yielding a prediction efficiency of
67%. An empirical method has also been developed that
employs pseudo-Bayesian statistical analysis on predictions
from the HINT scoring function12 and the Rank algorithm,13

which is based on the number and geometric quality of
hydrogen bonds for each water molecule. The method was
found to be particularly useful for identifying strongly
conserved water molecules.14

An alternative to the approaches described above is the use of
inhomogeneous fluid solvation theory (IFST).15 IFST can be
used to create a thermodynamic profile of the solvent
surrounding a protein,16,17 which can be used to identify
binding hotspots.18 The free energies calculated by IFST are
the contributions of regions of three-dimensional space to the
solvation free energy of the solute.19 When this region is a
highly occupied hydration site, ΔG can be thought of as the
contribution of a specific water molecule to the solvation free
energy of the solute. IFST has shown significant utility in drug
development via Schrodinger’s WaterMap software. WaterMap
has been used to explore the hydrophobic effect,20 understand
SAR,21 explain kinase selectivity,22 and predict binding
affinities.23 The advantage of IFST over other physics-based
methods such as TI and FEP is that one simulation yields
predictions for all the water molecules in a system. Recent work
on IFST has focused on binding site prediction,24 discretization
on a Cartesian grid,25 and investigating the effect of using
different water models.26 In this study, we employ IFST to
predict the experimentally observed displacement of water
molecules in a protein binding site.
When displacing a water molecule from a binding site in

molecular design, consideration must be given to the functional
group that replaces it. Multiple Copy Simultaneous Search
(MCSS) is one of the oldest methods to predict energetically
favorable positions of functional groups in protein binding
sites.27 The MCSS scoring function is based on the CHARMM
force field28 with interaction energies calculated from the
difference between the bound and unbound states. The solvent
effects are commonly taken into account by an approximation
of dielectric screening from a distance-dependent dielectric
model. An alternative approach to account for solvent effects is
to couple the molecular mechanical energy component with
polar and nonpolar solvation free energies derived from implicit

solvent formalism in MM-PB/SA or GB/SA methods.29,30

Implicit solvent approaches have gained widespread application
in virtual screening, rescoring of docking poses, and estimation
of ligand binding energies in ligand series.31−36 The sorting of
MCSS minima based on MM-PB/SA derived free energy
estimates has yielded encouraging results.37 MCSS analysis
using probe molecules with different chemical characters
provides what have been termed functionality maps. These
functionality maps have been used for construction of ligands
for numerous protein targets.38

Other approaches have also been developed for computa-
tional solvent mapping and probe analysis. FTMap searches for
favorable probe positions on protein surfaces using an empirical
energy function including a desolvation term.39 A clustering
procedure is used to identify consensus probe binding sites
which are identified as fragment-binding hotspots.14 The
integral equation theory of liquids, known as the three-
dimensional reference interaction site model (3D-RISM)40,41

has also been used to find most probable positions of functional
groups and small ligands on protein surfaces.42 This method
has been applied to thermolysin with solvent probes for which
experimental data were available, and reasonable agreement
with experimental results was obtained.43 More recently,
methods employing molecular dynamics (MD) simulations
using a mixture of explicit water and functional group probes
have been introduced.44 Guvench and MacKerell used a solvent
mixture consisting of propane−benzene−water to construct
probability density maps of probe binding preferences which
corresponded to known ligand functional group preferences.45

Seco and co-workers used a water−isopropanol mixture and
evaluated druggability from their binding propensities on
protein surfaces.46 In other studies, more diverse sets of
probe molecules have been used to assess the druggability of
allosteric protein targets47 and binding hotspots.48 An
important feature of these developments was the combined
use of probe clustering and water displacement as indicators of
hotspots. As summarized above, MD simulation based
protocols using solvent-probe mixtures have been used
previously to identify binding hotspots and predict target
druggability. However, a direct assessment of relative
displaceability of ordered water molecules has not been
addressed in these studies. An effective method for providing
such assessments would prove valuable in the hit-to-lead and
lead optimization stages of drug development. In addition, an
accurate ranking of water molecules making bridging
interactions between the protein and the ligand can be also
be used to make judicious choices about keeping or removing
water molecules prior to molecular docking methods for virtual
screening.49−52

The estimation of thermodynamic properties of water
molecules at binding interfaces can provide very useful
information for ligand design. The main aim of this study
was to investigate the combination of hydration site free
energies calculated by IFST with the MCSS scores of probe
molecules in order to predict the observed displacement of
water molecules. To calculate an experimental measure of
displaceability, we used a large collection of ligand-bound
structures of Heat shock protein 90 (Hsp90). The observed
displacement was calculated from the frequency with which
water molecules from the apo structure were displaced by a
ligand. Hsp90 is well-known for its function as a molecular
chaperone. Due to its important role in assisting protein
folding, preventing self-aggregation, and cell cycle progression,
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it has been established as a valuable target in anticancer drug
development. The structure of Hsp90 contains a highly
conserved N-terminal domain that is linked, via a highly
flexible linker, to a middle domain and a C-terminal domain.53

The N-terminal domain contains an adenosine binding pocket,
responsible for its ATPase activity, and has an unusual motif
known as Bergerat fold, which is characterized by a rigid
adenosine binding site and a flexible loop in phosphate binding
region.54 The ATPase activity of the N-terminal domain drives
structural transitions required for chaperone functioning, and
therefore it has been targeted in several drug discovery
campaigns.55 Water molecules have been a key aspect of
structural studies on Hsp90,56 and a key consideration in ligand
design programs has been the role of four key water molecules
in the binding site that are highly conserved in several complex
structures.57,58 Their systematic displacement and the resulting
consequences on ligand optimization have also been the subject
of recent investigations.59,60 These factors make Hsp90 an ideal
test case to assess the predictions of IFST.

■ MATERIALS AND METHODS
Crystal Structure Analysis. A data set consisting of 103

ligand-bound X-ray crystallographic structures of Hsp90 (N-
terminal domain) was compiled, based on Roughley and
Hubbard’s work.58 The structures can be organized into four
groups: those based on a resorcinol substructure (41), those
based on a (benz)-amide substructure (14), those based on an
aminopyr(im)idine substructure (39), and those based on
“second-site” fragments (9). Due to modifications around
central scaffolds, this data set provides a systematic exploration
of water displacement in the binding site. The set of crystal
structures used in this work is reported in the Supporting
Information. In addition, a crystal structure of the unbound
closed-state conformation of Hsp90 (1YER) was used as the
apo form of the receptor. All the structures were moved to the
same reference frame by a rigid-body superimposition onto the
ligand-bound crystal structure from 1UY6. From the super-
imposition, any water molecule in the apo structure lying within
2.0 Å of any of the ligand atoms in any structure was selected
for subsequent analysis. For each of these reference water
molecules, the observed displacement fraction (D) was defined
from the fractional conservation (F).

=F
N

N
hydrated

total (1)

= −D F1 (2)

F is obtained by counting the number of ligand-bound
structures where a corresponding water molecule was present
within 1.0 Å (Nhydrated) and then representing it as a fraction of
total structures in the data set (Ntotal).
Structure Preparation. The protein structure of the apo

form was initially prepared as follows. Atom coordinates were
taken from the Protein Databank61 entry 1YER.62 This
structure is of Hsp90 in the closed state. All crystallographic
water molecules were deleted from the structure. The
orientations of asparagine and glutamine residues were then
checked using Schrodinger’s Preparation Wizard.63 Residues
Asn40, Asn105, Gln123, Gln133, and Gln194 were altered by
switching the nitrogen and oxygen atoms to improve the
hydrogen-bonding patterns. Histidine residues were also
checked for orientation and protonation state using Schro-
dinger’s Preparation Wizard. Residues His154, His189, and

His210 were flipped and assigned as epsilon protonated. All
remaining histidines were assigned as delta protonated, but
residue His77 was flipped. The residues lysine, arginine,
aspartate, glutamate, cysteine, and tyrosine were also analyzed
to check their protonation state. There was no evidence of any
unusual protonation states, and thus all lysine and arginine
residues were assigned as positively charged, all aspartate and
glutamate residues were assigned as negatively charged, and all
cysteine and tyrosine residues were assigned as neutral. The
hydrogen-atom positions were then built using the HBUILD
facility of CHARMM with the CHARMM27 energy
function,64,65 and the atomic charges were assigned from the
CHARMM27 force field.64,65

MCSS Calculations. The prepared protein structure was
then subjected to MCSS calculations using eight different probe
molecules. The probes were chosen to ensure that energetically
favorable positions of polar, charged, hydrophobic, and
aromatic functional groups were sampled. Two representative
probes from each group were selected: methanol and ammonia
(polar), ammonium ions and acetate ions (charged), methane
and propane (hydrophobic), plus phenol and benzene
(aromatic). All parameters for the probes were assigned using
the MMFF94 force field.66 The binding site region for MCSS
calculations was defined as a 12.0 Å sphere around the centroid
of all overlaid ligands. For each probe molecule, 500 copies
were randomly placed in this sphere where any copy within 1.2
Å of any protein atom was removed. Energy minimizations
were carried out in stages, and duplicate copies (within 0.2 Å of
another copy) were removed at the end of each stage. The first
stage was 500 steps of steepest descent; the second stage was
300 steps of steepest descent, and the final stages were 20
repetitions of 500 steps of conjugate gradient minimization. All
minimizations were performed using a distance-dependent
dielectric model with the default dielectric constant of 1.0. At
the end of the MCSS run, probe copies with CHARMM
interaction energies greater than +10.0 kcal/mol were removed.
Finally, probe copies within 1.0 Å of each other were clustered
together, and the copy with the lowest interaction energy was
selected as the cluster representative. All of the above
calculations were performed using the MCSS implementation
in Accelrys Discovery Studio 3.1.
The raw probe scores from MCSS consist of the CHARMM

interaction energy between the probe molecule and protein.
These raw scores were size-normalized by multiplying by the
ratio of water to probe molecular volume. This allowed us to
compare the scores of probes with different sizes together. In
two variations of the protocol, the normalized MCSS scores
were combined with two different desolvation penalties: the
experimental hydration enthalpy (MCSS-HE) and the exper-
imental hydration free energy (MCSS-HFE). The experimental
values of hydration enthalpy and hydration free energy for each
probe were obtained from the literature.67−70 The MCSS
derived probe positions were compared with the reference
water molecules using the following procedure. A probe
position was identified as corresponding to a reference water
molecule if any of the probe heavy atoms was less than 1.5 Å
from the oxygen atom of the water molecule. When multiple
probe positions were obtained for a given water molecule, the
best scoring pose was selected.

MM-GBSA Calculations. In a variation of the scoring
protocol for MCSS-derived probe positions, the binding energy
of each probe was calculated using an MM-GBSA approach:71
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Δ = − −G G G Gcomplex protein probe (3)

The free energy of each of the above terms is calculated from

= + + −G E G G TSMM elec np (4)

EMM is the energy calculated from the standard CHARMm
energy function, which includes bonded and nonbonded terms.
Gelec and Gnp represent the electrostatic and nonpolar
components of solvation free energy. Gelec represents the
electrostatic component of solvation energy and was calculated
using a variation of the standard GBSA model, referred to as
the Generalized Born method with Molecular Volume
integration (GBMV). The nonpolar contribution (Gnp) to
solvation free energy was calculated on the basis of the Surface
Area (SA) model, which assumes a linear relationship between
Gnp and the solvent accessible surface area.

72 A value of 5.0 cal/
mol/Å2 was used for the surface area coefficient in the SA
model. The change in the solute entropy (TS) terms was
assumed to be zero in this case. The MM-GBSA scores were
also size-normalized using the method detailed above.
IFST Setup. For the MD simulation, the apo protein was

first solvated with water molecules. Solvation was performed
with the SOLVATE program,73 version 1.0 from the Max
Planck Institute to generate a sphere of radius 50 Å around the
protein center. The system was then cut to form a rhombic
dodecahedron (RHDO) with an edge length of 60 Å using the
CHARMM program (version 34b1).28 Water molecules were
modeled with the TIP3P-Ewald,74 TIP4P-2005,75 and TIP5P-
Ewald76 water models in three separate systems. The water
model has been shown to affect free-energy calculations in
recent studies.77−79 Six sodium ions were included in all three
systems to yield a net charge of zero. The ions were placed far
from the Hsp90 binding site.
Equilibration. During all MD simulations, the heavy atoms

were harmonically restrained using a 1.0 kcal/mol/Å2 harmonic
force, the RHDO was treated using periodic boundary
conditions, and the electrostatics were modeled using the
particle mesh Ewald method.80 The system was first subjected
to MD equilibration for 100 ps in an NPT ensemble. This stage
of preparation was undertaken to equilibrate the density of the
water molecules. The density of the water molecules plays an
important role in IFST and is thus important to equilibrate.
The system was then subjected to MD equilibration for 1 ns in
an NVT ensemble. We ensured that the system was brought to
equilibrium before continuing by verifying that the system
reached a point where the energy fluctuations were stable.
Molecular Dynamics. Production simulations were

performed for 5.0 ns at 300 K. All MD simulations were
performed using the NAMD program version 2.828 with the
CHARMM27 force field64,65 allowing an MD time step of 2.0
fs. Electrostatic interactions were modeled with a uniform
dielectric and a dielectric constant of 1.0 throughout the setup
and production runs. van der Waals interactions were truncated
at 11.0 Å with switching from 9.0 Å. All MD simulations were
performed using NAMD compiled for use with the CUDA-
accelerated GPUs. The 5.0 ns MD simulations required
approximately 15, 20, and 25 h for the TIP3P-Ewald, TIP4P-
2005, and TIP5P-Ewald water models on two four-processor
GPU cores.
Hydration Site Identification. The first stage of the IFST

analysis was to identify regions within the binding site with a
high number density of water, termed hydration sites.17 We
defined the center of the binding site as the centroid of the two

water molecules W331 and W440 and considered the region
within 12.5 Å of this centroid. We employed a radius of 1.2 Å
for these hydration sites, in line with prior work.16 Hydration
sites were identified by two methods. The first method was to
place hydration sites at crystallographically determined water
positions, and the second was to cluster water molecules from
the MD simulation. For clustering, hydration sites were selected
by sampling 5000 equally spaced snapshots from the MD
trajectory and calculating the number density at Cartesian
gridpoints within the binding site. A grid with a resolution 0.5 Å
was generated around the centroid of the binding site. The
number of water molecules within 1.2 Å from all 5000
snapshots was used to calculate the number density, and
hydration sites were selected iteratively, starting at the gridpoint
with the highest number density. No gridpoints were selected
within 2.4 Å of an existing gridpoint, and the iteration
terminated when the remaining gridpoints had a number
density lower than 50% of the bulk value. The hydration site
positions were then calculated as the mean position of all water
molecules within 1.2 Å of each selected Cartesian gridpoint.
The clustering required approximately 21, 27, and 34 h for the
TIP3P-Ewald, TIP4P-2005, and TIP5P-Ewald water models on
a single processor.

Energy Calculations. The interaction energy of each
hydration site was calculated by sampling 1000 snapshots with
one every 5.0 ps from the 5.0 ns simulation. The average
interaction energy of every water molecule within the site was
computed from the interaction with the solute (Esw) and the
other water molecules (Eww). This was then combined with the
average interaction energy of a water molecule determined
from the bulk water simulation (Ebulk) to calculate the energy
difference (ΔE) and binding energy difference (ΔEbind) as
shown in eqs 5 and 6, respectively:

Δ = + −E E E nEsw ww bulk (5)

Δ =
+

−E
E E

n
E

2
2bind

sw ww
bulk (6)

The average number of water molecules in a hydration site is
termed n. From a corresponding simulation of bulk water, Ebulk
takes values of −9.81 kcal/mol, −11.33 kcal/mol, and −9.67
kcal/mol for the TIP3P-Ewald, TIP4P-2005, and TIP5P-Ewald
water models. The binding energy can also be termed the
normalized energy or the per water energy.

Entropy Calculations. The entropy of each hydration site
was calculated by sampling 250 000 snapshots with one every
20 fs from the 5.0 ns simulation. The entropy difference was
calculated from the contributions of the solute−water term
(Ssw) and the water−water reorganization term (ΔSww). These
terms can be calculated by integrating over the solute−water
gsw(r,ω) and water−water gww(r,r′,ω,ω′) correlation functions.
The variable r represents the position of the water molecule
with respect to the center of the hydration site, and the set of
angles ω represents the orientation of the water molecule in the
fixed protein reference frame. As in previous work, only
contributions from two particle correlations were consid-
ered,16,17 and vibrational entropy changes are not considered.
Furthermore, the solute-water term was separated into
translational (Ssw,trans) and orientational (Ssw,orient) contribu-
tions, and the orientational distributions were assumed to be
independent of the position within the sites.16 These terms can
be calculated for each hydration site as shown in eqs 7 and 8,
respectively:
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∫= − ρ°S k g r g r r( ) ln ( ) dsw,trans sw sw (7)

∫ ω ω ω= − ρ°
Ω

| |S
k

g r g r( ) ln ( ) dsw,orient sw sw (8)

In these equations, k is Boltzmann’s constant, ρ° is the
number density of bulk solvent, and Ω is the integral over the
angles ω. The solute−water translational correlation functions
were calculated using a bin size of 0.03 Å for the radial
component, 10° for the φ angle and 1/18 for cos θ. The
solute−water orientational correlation functions were calcu-
lated using a bin size of 10° for the φ and ψ angles and 1/18 for
cos θ. The water−water reorganization term was also separated
into translational (Sww,trans) and orientational (Sww,orient)
contributions. The water−water translational pair probability
densities were calculated as previously between water molecules
in the hydration site and a set of subvolumes surrounding the
hydration site.26 A sphere of radius 3.6 Å around the hydration
site was split into subvolumes using a bin size of 0.1 Å for the
radial component, 12° for the φ angle and 1/15 for cos θ. The
3.6 Å cutoff is used because contributions to the translational
entropy outside the first solvation shell are expected to be
small.81 Due to the vast amount of data required for calculation
of the solute−water−water triplet correlation function, a bulk
water−water radial distribution function gww(R) was assumed as
previously.15

∫= − ρ° ′

− + ′

S k n g r g R g R

g R r

1
2

( )[ ( ) ln ( )

( ) 1] d

ww,trans sw ww ww

ww (9)

gsw(r′) is the translational probability density with respect to
bulk water within a subvolume. For each hydration site, Sww,orient
was calculated from the mutual information (Iww) between the
orientations of water molecules in the hydration site and the
orientations of water molecules in subvolumes surrounding the
hydration site. A sphere of radius 3.6 Å around the hydration
site was split into subvolumes using a bin size of 1/4 for cos θ
and a bin size of 45° for the other Euler angles. The mutual
information was then calculated between the hydration site and
each of the subvolumes:

∫= − ′ ′S n g r g R I r
1
2

( ) ( ) dww,orient sw ww ww (10)

ω ω ω= + ′ − | ′I S S S r r( ) ( ) ( , )ww sw,orient sw,orient ww rel (11)

∫ω ω

ω ω

| ′ = − ρ°
Ω

| ′

| ′

S r r
k

g r r

g r r

( , ) ( , )

ln ( , ) d

ww rel ww rel

ww rel rel (12)

Sww(ωrel) is the water−water relative orientational entropy,
where ωrel is the relative orientation of two water molecules
using a bin size of 10°. The full five-dimensional relative
orientational entropies were estimated by using the second
order entropy approximation generated by a truncation of the
mutual information expansion.82,83 These solute−water and
water−water terms were then compared with the entropy of a
water molecule determined from the bulk water simulation
(Sbulk) due to other water molecules within 3.6 Å to calculate
the entropy difference (ΔS) and entropy of binding (ΔSbind)
using eqs 13 and 14, respectively:

Table 1. Calculated Thermodynamic Properties of X-Ray Crystallographic Water Molecules and Corresponding Hydration Sites
in the Binding Site of Closed Form Hsp90a

X-ray crystallographic hydration sites
clustered hydration

Sites

water D
ΔG

kcal/mol
ΔGbind
kcal/mol

ΔE
kcal/mol

ΔEbind
kcal/mol

−TΔS
kcal/mol

−TΔSbind
kcal/mol

Esw
kcal/mol ΔG kcal/mol

W301 0.05 −11.81 −5.57 −13.46 −3.74 1.65 −1.83 −23.19 −11.78
W323 0.27 −9.07 −9.30 −8.59 −4.13 −0.48 −5.17 −14.41 −10.10
W324 0.57 −3.95 −3.10 −3.88 −0.13 −0.07 −2.97 −7.65 −3.98
W325 0.30 −6.55 −2.05 −6.70 1.08 0.15 −3.13 −14.44 −6.68
W328 0.09 −5.92 −6.17 −6.42 −2.90 0.50 −3.27 −10.36 −6.64
W336 0.99 −8.28 −6.47 −8.85 −3.16 0.57 −3.31 −14.58 −8.46
W338 0.92 −1.47 −0.95 −1.21 2.33 −0.25 −3.28 −3.32 −1.57
W346 0.18 −6.75 −3.69 −6.93 −0.43 0.18 −3.27 −13.45 −6.84
W357 1.00 −0.50 −0.71 −0.22 3.54 −0.27 −4.25 −1.14 −1.26
W379 0.95 −1.79 −2.86 −1.55 −0.52 −0.24 −2.34 −2.89 −1.68
W381 0.96 −1.81 −5.30 −1.46 −1.05 −0.34 −4.25 −2.71
W385 0.64 −2.37 −1.59 −2.37 1.03 0.00 −2.63 −5.29 −3.00
W405 0.97 −2.23 −1.88 −2.11 1.06 −0.12 −2.94 −4.82 −2.42
W412 0.70 −5.97 −5.94 −5.64 −2.70 −0.33 −3.24 −9.67 −7.03
W435 0.97 −2.43 −4.26 −1.91 0.10 −0.52 −4.36 −3.86 −3.55
W476 0.99 −1.27 −3.76 −0.91 0.04 −0.36 −3.80 −1.83 −4.84
W529 0.42 −6.62 −5.95 −6.11 −1.50 −0.51 −4.45 −11.11 −7.27
W536 0.89 −0.73 −1.54 −0.84 −0.90 0.11 −0.63 −1.41
W547 0.92 −1.40 −3.40 −1.06 −0.45 −0.34 −2.95 −1.96 −1.59
W598 0.81 −5.49 −7.92 −4.84 −3.34 −0.65 −4.58 −8.03 −5.51
R2 against D 0.57 0.13 0.58 0.19 0.27 0.00 0.62 0.50

aThe water molecules are identified by their numbering in 1YER. D is the observed displacement fraction calculated using eq 2. Seven different IFST
predictions are reported for hydration sites determined from crystallographic water molecule locations and the IFST free energy prediction is
reported for hydration sites determined by clustering of water molecules from the MD trajectory. Not all crystallographic water molecules are
identified by clustering.
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Δ = + + + −S S S S S nSsw,trans sw,orient ww,trans ww,orient bulk

(13)

Δ =
+ + +

−

S
S S S S

n
S

2 2

2

bind
sw,trans sw,orient ww,trans ww,orient

bulk (14)

TSbulk takes values of +3.54 kcal/mol, +3.94 kcal/mol, and
+3.85 kcal/mol for the TIP3P-Ewald, TIP4P-2005, and TIP5P-
Ewald water models based on the calculations described here. It
is important to note that the values of a half in eq 13 have been
removed from the definitions for Sww,trans and Sww,orient in eqs 9
and 10 (which has been the convention in previous work) such
that eqs 13 and 14 correspond to eqs 5 and 6.
Free Energy Calculations. For each hydration site, the

difference in free energy (ΔG) and the free energy of binding
(ΔGbind) is then calculated using eqs 15 and 16, respectively:

Δ = Δ − ΔG E T S (15)

Δ = Δ − ΔG E T Sbind bind bind (16)

ΔE is assumed to be a good approximation for ΔH, as the
PV term is expected to be negligible. The IFST calculations
required approximately 7 min per hydration site.
Linear Regression Analysis. We hypothesized that the

combination of best probe score and the corresponding water
score should be reliable predictors of the observed displace-
ment measure defined in this study. In order to assess this
relationship, multiple linear regression analysis was performed
in the R statistical computing package:

β β

β

= +

+ +

D

e

(probe score)

(hydration site score)

predicted 0 1

2 (17)

where βo, β1, and β2 are coefficients and e represents the error
term. Several models of this form were constructed using
different formulations of the probe and hydration site scores.
The probe scores corresponded to MCSS, MCSS-HE, MCSS-
HFE, and MM-GBSA scores. For the hydration site score,
seven IFST calculated properties were used: ΔG, ΔGbind, ΔE,
ΔEbind, ΔS, ΔSbind, and Esw. The predictive power for each
model was expressed as the adjusted coefficient of determi-
nation (R̅2), which is given by

̅ = − − −
− −

⎡
⎣⎢

⎤
⎦⎥R R

n
n p

1 (1 )
1

1
2 2

(18)

where n is the number of samples and p is the number of
variables in the model. The use of R̅2 corrects for improvement
in correlation arising just by the increase in number of variables.
In all other instances, where correlation between any two
variables is reported, we used the standard R2 values.

■ RESULTS
In the initial IFST analysis, hydration sites were placed on each
crystallographic water molecule. This facilitates a direct
comparison of observed displacement with various thermody-
namic properties. The results of this analysis using water model
TIP4P-2005 are summarized in Table 1. All of the crystallo-
graphic water positions bound favorably to the protein surface,
as indicated by the corresponding hydration sites with negative
ΔG values. Favorable ΔG values have also been noted in
previous applications of IFST to proteins16 and model

systems.77 The free energy of hydration sites exhibited a
moderately strong correlation with the observed displacement
as indicated by an R2 value of 0.57. Interestingly, some of the
hydration sites with a highly favorable free energy corresponded
to water molecules (e.g., W301 and W323) that are involved in
bridging interactions and are retained by most of the ligands
(Figure 1). Among the other thermodynamic properties of

hydration sites calculated from IFST, Esw and ΔE also
demonstrated strong correlation with the observed displace-
ment, with R2 values of 0.62 and 0.58, respectively. The
correlation was weak for other binding quantities ΔGbind,
ΔEbind, and ΔSbind. This is not unexpected, as the binding
quantities do not consider the occupancy of the hydration site,
which can be low or high. The correlation was also weak for
ΔS, and this was not expected. However, the predictions are
that enthalpic contributions tend to outweigh entropic
contributions in determining the free energy. This is an
interesting result that has also been noted in previous
applications of IFST to proteins16 and model systems.77

However, it may not be general for all systems or for all
force fields. It is interesting to note that one of the hydration
sites (W336) consistently appeared as an outlier in all
correlation plots (Figure 2). The removal of this hydration
site from the data set resulted in substantial improvement of
correlation between observed displacement and thermody-
namic properties, as indicated by R2 values of 0.78, 0.82, and
0.81 for ΔG, Esw, and ΔE, respectively. A clear explanation for
why this hydration site is an outlier can be found by comparing
W336 with W301. W301 is very close to W336 and hydrogen
bonds to the same aspartate residue (Asp93). Interactions with
Asp93 yield strongly favorable free energies for both hydration
sites in comparison with hydration sites near uncharged
residues. However, W301 makes a significantly more favorable
contribution to the solvation free energy than W336 (−11.81
kcal/mol versus −8.28 kcal/mol). This corresponds to a
significantly lower observed displacement for W301 compared
to W336 (0.05 versus 0.99). Importantly, displacement of
W336 is only achieved by a positively charged ligand moiety,

Figure 1. Water molecules in the binding site of Hsp90 N-terminal
domain in the apo form (1YER). Each water molecule is labeled with
the observed displacement fraction based on the analysis of 103
ligands considered in this study. A subset of four highly conserved
water molecules (labeled W1−W4) is involved in several hydrogen
bonds with the binding site. One of these water molecules (W2) was
not seen in 1YER, and its position was derived by superposition of a
liganded structure (1UY6).
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presumably because the strong electrostatic interactions are
necessary to overcome the strong interactions made by the
water molecule. Thus, displacement of W301 must overcome
even stronger water interactions and is rarely observed. This
explanation provides the rationale for employing MCSS
calculations, to allow the strength of interactions with water
to be compared with the strength of interactions with probe
molecules.
We also compared the effect of other water models in

obtaining these quantities for hydration sites. The detailed
results for each water model are given in the Supporting
Information (Table S2). A comparison of the linear correlation
between observed displacement and ΔG values from different
models is shown in Figure 2. All three water models produced
very similar results, with TIP3P-Ewald producing a very slightly
lower correlation and TIP4P-2005 producing a very slightly
higher correlation. From this point onward, the discussion of
IFST results is based entirely on the TIP4P-2005 model for this
reason.
In addition to placing hydration sites at crystallographic

water positions, we also assessed the performance of the
clustering protocol. The density cutoff was set to half the bulk

density in order to identify all hydration sites. It was noted that
some crystallographically observed water molecules have
approximately the same number density as bulk water and
were not predicted using a higher cutoff. Such hydration sites
exhibit clustering of water molecules, leading to translational
ordering and an unfavorable entropy contribution, but have a
weakly favorable enthalpic component and thus a free energy
that is approximately the same as bulk water. In terms of
reproducing the crystallographic water positions from the
simulation, the success rate (expressed as a percentage of
crystallographic water molecules reproduced within 1.0 Å) was
similar across different water models with TIP4P-2005 having
the highest success rate of 80% (Table 1 and Table S2).
Clustering identified 18 of the 20 displaceable water molecules
within 1.5 Å and 16 within 1.0 Å. The failures all corresponded
to crystallographic water positions with low occupancy and
small free energy contributions as computed by IFST from the
experimentally determined positions. This resulted in a slightly
lower correlation with observed displacement (R2 of 0.50) and
suggests that placing hydration sites at crystallographic water
positions may be more predictive.

Figure 2. Correlation plots between the observed displacement from eq 2 and ΔG calculated from eq 15. IFST predictions were made using the
water models TIP3P-Ewald, TIP4P-2005, and TIP5P-Ewald.

Table 2. Summary of the MCSS Probe Calculations from the 20 Hydration Sites in 1YERa

water MCSS (kcal/mol) MCSS-HE (kcal/mol) MCSS-HFE (kcal/mol) GBSA (kcal/mol)

W301 ammonia −13.84 ammonia −7.33 ammonia −10.27 ammonia −3.96
W323 ammonium −44.42 ammonia −8.59 ammonia −11.53 phenol 0.34
W324 methanol −13.06 methanol −6.28 methanol −9.80 methanol −2.60
W325 acetate −14.55 ammonia −6.74 ammonia −9.68 methanol −5.76
W328 ammonium −26.57 ammonia −3.46 ammonia −6.40 methanol −3.27
W336 ammonium −22.85 methanol −4.06 methanol −7.58 methanol −5.31
W338 acetate −8.69 propane −1.08 propane −4.64 methane −4.01
W346 acetate −14.55 ammonia −5.62 ammonia −8.56 methanol −1.44
W357 acetate −11.22 phenol −2.56 phenol −4.30 methanol −4.13
W379 methanol −7.20 phenol −1.19 methanol −3.94 benzene −1.34
W381 ammonia −20.13 ammonia −13.62 ammonia −16.57 phenol −0.49
W385 ammonia −11.54 ammonia −5.04 ammonia −7.98 methanol −3.41
W405 acetate −17.67 methanol −5.38 methanol −8.90 methane −1.80
W412 acetate −23.75 ammonia −4.50 ammonia −7.45 methanol −1.14
W435 methanol −12.19 methanol −5.41 methanol −8.93 phenol −1.16
W476 phenol −7.14 phenol −3.76 phenol −5.50 propane −1.24
W529 ammonium −31.98 ammonia −6.27 ammonia −9.21 methanol −3.24
W536 acetate −8.11 propane −0.41 propane −3.10 methanol −2.30
W547 acetate −14.55 phenol −2.94 phenol −4.68 propane −1.04
W598 phenol −4.51 phenol −1.12 phenol −2.86 phenol −0.35

aAll reported scores are volume corrected.
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The results of the MCSS calculations are summarized in
Table 2. For each water position, the best scoring probe is
reported using different formulations of MCSS. The raw MCSS
scores reflect the CHARMM interaction energy between the
probe and the protein, and desolvation penalties were applied
to these raw scores. We tested the use of the hydration enthalpy
(MCSS-HE) and the hydration free energy (MCSS-HFE) as
desolvation penalties. The resulting scores were then
normalized according to the relevant probe molecular volume.
Finally, volume scaled MM-GBSA scores are also reported. The
original MCSS output indicated a strong preference for charged
groups for the majority of the hydration sites. This is most
likely due to the crude approximation of solvent-screened
electrostatic interactions in the distance-dependent dielectric
model. The addition of desolvation penalties somewhat
corrected for this trend by replacing nonpolar or polar probes
in at least eight water positions. The MM-GBSA scores
demonstrated the most significant differences, identifying polar
molecules such as methanol and phenol as the most suitable
probes for the majority of the hydration sites.
The important point to note from the MCSS analysis was

that none of the different formulations had a significant
correlation with observed displacement (Table 3). This is not

unexpected, since capturing displaceability of water molecules
solely from probe binding is unlikely, especially when probe
scores contain crude approximations for solvation and entropic
effects. The correlation between the different formulations of
probe score and the predicted thermodynamic properties of
water molecules was also mostly weak or insignificant. Volume-
corrected MCSS scores showed R2 values of 0.29 and 0.39 with
ΔG and ΔGbind of the corresponding hydration site. When best
scoring MCSS probes are divided into polar and nonpolar
categories, the correlation of scores with most of the IFST
based properties is in opposite directions. For instance, polar
probes have a correlation of 0.21 and 0.24 with ΔG and ΔH,
respectively. On the other hand nonpolar probes have a
correlation of −0.60 and −0.59 with ΔG and ΔH, respectively.
This partially explains the nearly insignificant correlation when
probes are considered together. In general, it was noticed that
hydration sites with a large enthalpic component were
associated with charged or polar probes whereas hydration
sites with a small enthalpic component were associated with
nonpolar probes.
In order to qualitatively assess the MCSS results, we

compared the distribution of probes in the binding site with
that of the ligands. For each hydration site, ligand atoms within
1.0 Å of the crystallographic water molecule were obtained,
which provided the distribution of atoms that most likely

displaced it. These atoms were then divided into polar (N, O, S,
P) and nonpolar (C) groups. The same procedure was then
repeated for probes which provided the predicted distribution
of functional groups around each hydration site. In Figure 3,
these distributions are represented as an occupancy map on a 1
Å grid, where each grid point contains the amount of time it
was occupied by an atom, represented as a fraction of the total
number of atoms within 1 Å of the hydration site. First, we
selected a set of hydration sites with highly favorable free
energy (Figure 3A and B) and relatively high observed
displacement. For at least three of these hydration sites
(W325, W346, and W412), polar atoms comprised more than a
1/3 fraction of the displacing groups. W324 and W529 were
displaced less frequently by polar groups. When compared with
probe occupancies, this trend was somewhat reproduced. An
important difference was that probe polar atoms more
frequently occupied W324 and W529. On the other hand,
probe polar atoms were less frequently observed for W346,
which is frequently displaced by a polar ligand atom. The
overlap between the ligand and probe occupancy maps was
more pronounced for a set of less favorable hydration sites
(Figure 3C and D), which were most frequently displaced by
nonpolar functional groups (both in crystallographic ligands
and probes). This can be rationalized on the basis that the
optimal van der Waals interactions between (ligand/probe
atoms and protein atoms) are more accurately reproduced by
MCSS than the electrostatic interactions. Taken together, these
results showed that hydration sites with highly favorable free
energy (owing mostly to a strong enthalpic component) were
displaced frequently by polar ligand atoms, and MCSS-based
predictions for probes showed a similar trend. Conversely,
hydration sites with less favorable free energy (with a decreased
enthalpic but comparable or even large entropic component)
were mostly displaced by nonpolar ligand and probe atoms.
The number of distinct probes occupying the same energeti-
cally favorable site has been used before as an indicator of
binding hot spots.47,48 Prior to selection of the best scoring
probe, we obtained the number of distinct probes identified at
each hydration site and compared it with the observed
displacement. The resulting correlation plot gives a weak R2

value of 0.11. Hence, a clear relationship between diversity of
probe binding and the likelihood of water displacement was not
established from these data.
The results obtained from IFST calculations showed that the

predicted free energy of hydration sites was a fairly reliable
predictor of observed displacement. In order to assess whether
the combination of IFST and MCSS probe analysis could
improve the predictions, we used multiple linear regression
models based on different combinations of hydration site
thermodynamic properties and probe scores. The resulting data
are summarized in Table 4, where the adjusted coefficient of
determination is reported for each model. In most cases, the
combination did not yield any improvement. The use of
desolvation penalties derived from experimental data also did
not lead to any improvement in predictions. However, as noted
above, when the outlier W336 is removed from the data set, the
adjusted R2 values increased in some cases. For example, the
highest value of adjusted R2 (0.80) was obtained from a model
combining Esw values from IFST and probe GBSA scores. This
also indicated that the use of GBSA to estimate probe
desolvation penalties provided better results than constant
desolvation penalties based on experimental hydration enthalpy
or free energy values.

Table 3. R2 Coefficients of Determination for the Best MCSS
Probe Scores with the Observed Displacement Fraction (D)
and the IFST-Based Properties of Hydration Sites

MCSS MCSS-HE MCSS-HFE GBSA

D 0.20 0.10 0.11 0.03
ΔG 0.29 0.12 0.13 0.04
ΔGbind 0.39 0.11 0.09 0.15
ΔE 0.23 0.11 0.12 0.07
ΔEbind 0.25 0.04 0.04 0.09
ΔS 0.00 0.01 0.02 0.30
ΔSbind 0.19 0.12 0.09 0.10
Esw 0.20 0.12 0.14 0.10
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An important consideration in ligand design is the
prioritization of ordered water molecules in the binding site
for displacement and concomitant affinity gains. We selected a
set of four water positions to assess the applicability of solvation
thermodynamics and probe analysis in order to address such
questions (Figure 1). Three of these water positions are already
included in the set of reference water molecules derived from
the apo structure (1YER). However, one additional water

molecule is visible only in ligand bound Hsp90 (e.g., 1UY6).
For consistency with previous studies, we refer to these water
positions as W1, W2, W3, and W4.60 The free energy of
hydration sites corresponding to these water molecules, the
best scoring probes (based on GBSA scores), and associated
data are summarized in Table 5. These water molecules form a
buried and tightly coordinated network of hydrogen bonds with
the protein and/or ligand (Figure 1). The combined regression
model based on IFST and MCSS predicts W2 to be the most
displaceable in this group, whereas W2 and W3 are predicted to
be moderately displaceable, and W1 is predicted to be very
difficult to displace. The probe analysis predicts that W2 and
W4 could be replaced by methane, whereas the W1 and W3
sites were most favorably filled by ammonia and methanol,
respectively (Figure 4B and D). A collective picture emerges
from the probe analysis that the binding site region containing
W2 and W4 accommodates functional groups of nonpolar
character, but W3 needs to retain hydrogen bonding
interactions made by the displaced water molecules. This is
also suggested by the good interaction energy (Esw) for the W3
site.
The IFST predictions agree well with experimental data on

binding affinities for a pyrrolopyrimidine scaffold. Commensu-

Figure 3. A comparison of polar and nonpolar atom densities derived from crystallographic ligands (A and B) and MCSS-derived probe positions (C
and D) in the Hsp90 binding site. Atoms around a given hydration site are represented as an occupancy map on a 1 Å grid, with grid points
contoured at points where 30% of the total number of atoms within a 1 Å region around the hydration site are of the given type). (A and C) A set of
highly favorable hydration sites with corresponding polar-atom occupancy maps compared across crystallographic ligands and probes. (B and D) A
set of relatively less favorable hydration sites with corresponding nonpolar atom occupancy maps compared across crystallographic ligands and
probes.

Table 4. The Adjusted Coefficients of Determination (R̅2)
from Multiple Regression Analysis for Prediction of the
Observed Displacement Fraction (D)a

ΔG ΔGbind ΔE ΔEbind ΔS ΔSbind Esw

w/o MCSS 0.59 0.15 0.60 0.18 0.26 0.00 0.64
MCSS 0.52 0.12 0.54 0.17 0.42 0.18 0.59
MCSS-HE 0.52 0.08 0.54 0.15 0.26 0.02 0.58
MCSS-HFE 0.52 0.08 0.54 0.16 0.25 0.02 0.58
GBSA 0.52 0.16 0.54 0.21 0.20 0.08 0.59

aEach model is derived from two predictors, indicated by row and
column titles, and the value reflects strength of correlation with
observed displacement. For comparison, R2’s for IFST values (without
MCSS) are also given.

Table 5. Summary of Hydration Site and Probe Analysis Data for Four Highly Conserved Water Molecules in Hsp90 Binding
Sitea

water 1YER water GBSA (kcal/mol) IFST ΔG (kcal/mol) IFST Esw (kcal/mol) observed displacement fraction (D) predicted displacement fraction

W1 301 ammonia −3.96 −11.78 −23.21 0.03 0.07
W2 NA methane −4.55 −2.44 −8.43 0.45 0.81
W3 328 methanol −3.27 −6.64 −11.57 0.04 0.49
W4 303 methane −2.68 −6.90 −16.11 0.03 0.47

aW1, W3, and W4 correspond to 301, 328, and 303 from 1YER, whereas W2 is missing from 1YER. Thus, all IFST results are from corresponding
hydration sites using the clustering protocol.
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rate with this is a high predicted displacement, and indeed
displacement of W2 by a nitrile group was shown to increase
binding affinity approximately 250-fold (Figure 4C).59 MCSS
suggests a methyl probe is the most favorable replacement for
W2 (with an MMGBSA score of −4.55 kcal/mol), but the
methanol probe also scores highly (with an MMGBSA score of
−4.13 kcal/mol), and this is consistent with displacement by a
nitrile group that makes a hydrogen bond with Asn51. Thus,
the experimental observations can be explained by IFST and
MCSS due to the low ΔG for W2 in concert with a good probe
score (Table 5). For the nitrile derivative, further displacement
of W3 by a methyl group did not increase binding affinity. This
was attributed to the attenuation of affinity gain by the loss of
hydrogen bonding interactions for W3 and the clash of the new
side chain. The rationalization based on IFST predictions is
that the lack of significant gain in affinity is because W3 is not
as easy to displace as W2 and that a nonpolar group is not the
optimal replacement. Displacement of W3 alone by a polar
substituent is predicted to be more fruitful. Further displace-
ment of W4 by extending the methyl group to an ethyl group
was shown to increase binding affinity 3-fold (Figure 4C). IFST
and MCSS again rationalize this, with W4 predicted to be
moderately displaceable by a nonpolar group such as methane.
In addition, there is a small nonpolar cavity behind W3 that
does not contain a water molecule. Such evacuated regions can
provide unexpected boons in binding affinity,84 and extension
of the ethyl group to an isopropyl group may prove beneficial.
It is interesting to note that the model predicts that W2, W3,
and W4 are significantly more displaceable than has been
observed experimentally. The recent experimental data59

suggest that IFST is able to identify untapped potential at
these sites. This would be very useful information in other
established drug development projects.
In order to further investigate the relationship between X-ray

crystallographic ligands and thermodynamic properties of
hydration sites along with associated functional groups, we
selected a subset of unfavorable hydration sites including W338,
W357, W379, W381, W385, W405, W435, W476, W536, and
W547. The choice of these hydration sites was based on the
fact that most of these are almost always displaced by the
ligands (Table 1), and their calculated free energies lie in the
range −0.5 kcal/mol to −2.5 kcal/mol. The remaining
hydration sites had free energies less than −4.0 kcal/mol.

The positions of the corresponding X-ray crystallographic water
molecules and the most favored MCSS probes, based on MM-
GBSA scores, are shown in Figure 5. The majority of sites are

occupied by nonpolar groups, though some lower energy
hydration sites are occupied by polar groups. This suggests an
overall trend of prioritizing lower energy hydration sites for
displacement with polar groups and high energy hydration sites
with nonpolar groups. We performed a retrospective analysis of
the different ligand series used in this study to see if a similar
trend could be observed. Figures 6−8 summarize our analyses
by showing representative ligands from different series. Binding
affinities in these figures were obtained from BindingDB85 or
BindingMOAD.86 First, we observe that W338 and W547 are
commonly displaced by nonpolar groups in known inhibitors,
which is consistent with the nonpolar MCSS probe positions.
W338 is displaced by a nonpolar group in Figures 6A−C and
7A,B, whereas W547 is displaced by a nonpolar group in
Figures 6C, 7A, and 8A−C. Similarly, for W357 the methanol
probe position is consistent with the polar functionalities of
known inhibitors in Figures 6A−C, 7A,B, and 8A,B.

Figure 4. (A) A network of water molecules in the Hsp90 binding site. (B) W2 and W3 were predicted to be replaced by methane and methanol as
most favorable probes. (C) In X-ray crystallographic ligands, W2 and W3 have been displaced by nitrile and methyl groups, respectively. (D) The
best scoring probes corresponding to W1 and W4 were ammonia and methane, respectively. (E) In X-ray crystallographic ligands, W4 has been
replaced by an ethyl group, but no reported examples were found for the displacement of W1 (it is not present in some structures but never overlaps
with the ligand).

Figure 5. A subset of crystallographic water molecules in the Hsp90
binding site, labeled with the IFST-based solvation free energies in
kcal/mol and colored from yellow to red representing low to high
solvation free energy. The corresponding MCSS-derived probe
positions overlaid for each site. The most favorable probe molecules
based on MM-GBSA scores are shown.
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In addition, we noticed that W405 and W435, which are
relatively favorable hydration sites in this subgroup, are located
in a hydrophobic cavity lined by Ala55, Ile96, Gly97, and
Ile107. In the X-ray structure, the only hydrogen bond
observed for this pair of water molecules is between W435
and the backbone carbonyl of Leu107. The MCSS predicted
probes reproduce this pattern by favoring a methane in place of
W405 and a phenol group in place of W435, retaining the
hydrogen bond of W435 with the backbone carbonyl of
Leu107. Such binding motifs where hydrogen bonding

functionalities are enclosed in a hydrophobic environment
can provide binding hotspots.17 The combination of IFST and
MCSS can provide valuable information in this regard. Many of
the potent Hsp90 inhibitors displace this pair of water
molecules with a combination of polar and nonpolar groups,
as predicted by probe analysis (Figure 6B, 7C,D).
Figures 6−8 provide different scenarios in ligand design

where predicted displacement of water alongside probe analysis
could prove useful. We emphasize that binding site hydration
was not explicitly addressed during ligand design in these

Figure 6. Representative ligands from aminopyri(mi)dine series overlaid on the crystallographic water molecules labeled with IFST-based solvation
free energies in kcal/mol and colored from yellow to red representing low to high solvation free energy. These compounds represent hits from
fragment and virtual screening (A and B) and an optimized clinical candidate (C).

Figure 7. Representative ligands from resorcinol (A, B) and benzamide (C, D) series overlaid on the crystallographic water molecules labeled with
IFST-based solvation free energies in kcal/mol and colored from yellow to red representing low to high solvation free energy.
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examples from the literature. However, the results are useful in
understanding the utility of IFST and MCSS. In Figure 6,
representative ligands from various stages of design (fragment/
virtual screening hits 6A and B plus the clinical candidate 6C)
are shown, which highlight the observation that stepwise
disruption of binding site hydration (although not attempted in
this particular ligand series) is a suitable route toward
optimization. It is notable that all of the ligands in this study
displace W357, which IFST predicts to make the least favorable
contribution the solvation free energy among the 20 waters
studied. W536 is predicted to make the second least favorable
contribution to the solvation free energy and also appears to be
a clear binding hotspot. The weaker inhibitors in Figure 6A and
B do not displace it, whereas the high affinity clinical candidate
in Figure 6C does displace it. This suggests that further affinity
can be gained by molecules that do not displace W536, such as
the inhibitor in Figure 8B. A systematic approach to ligand
optimization should involve an assessment of binding site water
molecules and the chemical functionalities suitable for
displacing them. Figure 7 provides an example where core
scaffolds from two distinct chemotypes (resorcinol in Figure 7A
and B plus benzamide in Figure 7C and D) bind at similar
locations, displacing the same hydration sites, W357 and W405,
representing potent hydration sites for displacement. Apart
from these two sites, different functional groups in each of these
optimized candidates displace different water molecules.
Consequently, the similarities between these functional groups
and MCSS-predicted probes are interesting, e.g., methanol
probes at W385 and W536 compared against the ligand in
Figure 7A and phenol at W381 compared against the ligand in
Figure 7C. Finally, in fragment linking approaches (shown in
Figure 8A and B), the choice of linker can benefit from
consideration of probes favorably displacing a water molecule.
For example, the methylsulfonamide linker between the two
fragments shown in Figure 8A displaces W381 in Figure 8B.
MCSS favors a polar phenol probe at this site (Figure 6B), and
the overlap of polar atoms between ligand and probe is
noteworthy
To summarize, the results suggest that IFST and MCSS can

be favorably combined to provide a useful binding site profile.
The clustering of probes at a given location on the protein
surface has been used as an indicator of binding hotspots, which
can give rise to substantial gains in affinity for protein−ligand
interactions. However, the use of probe calculations alone can

result in false positives as they do not accurately consider the
effects of solvation. IFST provides explicit accounting for water
molecules, and hence a combination of both approaches can
lead to better identification of hotspots in concert with
advantageous functional groups for binding. Conversely, high
scoring probe positions from MCSS that correspond to
energetically favorable hydration sites can indicate strategically
important sites where designing bridging interactions will be
more appropriate.

■ DISCUSSION

In this study, we have combined IFST calculations of solvent
thermodynamics with MCSS probe analysis to predict the
observed displacement of water molecules from protein
hydration sites on Hsp90 and the best type of functional
moiety to replace them, in the context of small molecule ligand
design. IFST calculations of the hydration site free energies
yielded a moderate correlation with the observed displacement,
an encouraging result given the number and variety of ligands
considered. Interestingly, the correlation with the total
interaction energy (ΔE) is slightly better than the correlation
with the free energy (ΔG), and the correlation with the protein
interaction energy (Esw) is even better. This can be rationalized
on the basis that the enthalpic contributions to the solvation
free energies are calculated to be significantly higher than the
entropic contributions and that the loss of water−water
interactions is less significant in the context of a ligand in the
binding site that has already displaced the neighboring water
molecules. This result suggests that approaches such as MCSS,
which can calculate the interaction energy of water molecules
with the protein, should work well in predicting observed
displacement. However, there are two issues with this. The first
issue is that the protein interaction energy from IFST is
calculated from an explicit water simulation, and calculations
based on a single water molecule that is not part of an ensemble
will be different. The second issue is that the protein interaction
energy from IFST is scaled by the occupancy of the site, and a
calculation of the highest scoring single water molecule is not.
Such a calculation is more analogous to the IFST binding
quantities, which we have shown to have a weaker correlation
with observed displacement.
To explore the application of IFST, we also calculated

predictions based on three different water models, and in this
case the results are very similar. All three water models predict

Figure 8. Representative ligands from “second-site” ligand series overlaid on crystallographic water molecules labeled with IFST-based solvation free
energies in kcal/mol and colored from yellow to red representing low to high solvation free energy. (A) Two cocrystallized fragments in the Hsp90
binding site. (B) Ligand based on a methylsulfonamide linker.
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hydration sites at very similar locations, and the R2 between free
energy predictions for the different water models is greater than
0.9 in all cases. In addition to predicting the observed
displacement of water molecules, we considered whether MD
simulations can reproduce crystallographic water positions. For
TIP4P-2005, 18 out of the 20 crystallographic water positions
were reproduced within 1.5 Å (Table 1). The other two water
models had similar performance. It is important to note that a
complete reproduction of crystallographic water positions is not
always to be expected, as crystallographic water positions rely
on an assignment of density from sometimes ambiguous data.
We also compared two methods for placing hydration sites.
The first was to place hydration sites at the positions of
crystallographic water molecules, and the second was to place
hydration sites by clustering the positions of water molecules
from the MD simulations. The two approaches yield hydration
sites at very similar positions with almost identical thermody-
namic properties. This is shown by the high correlation
between the free energies of the set of 18 equivalent hydration
sites that are common between the two approaches (R2 = 0.99).
However, placing hydration sites at crystallographic water
positions is slightly more predictive of the displacement,
because the clustering procedure failures to identify all the
crystallographic hydration sites. The IFST calculations show
another interesting result, which is that the enthalpic
contributions to the total free energy are commonly of greater
magnitude than the entropic contributions. This has been
noted previously16,18 and may be a general result of IFST
calculations. In contrast to the results of IFST, MCSS proved
unsuccessful at predicting displacement and was unable to
improve the predictions of IFST when the two were used in
concert. However, MCSS does demonstrate a synergy with
IFST when applied to ligand design. When IFST identifies a
hydration site as highly displaceable, MCSS can predict the
ligand functionality that should be used to displace it. Such
information is harder to glean from IFST calculations alone,
although two points should be noted. The first is that the
positions of hydration sites predicted to have a highly favorable
free energy are commonly found to overlap with polar ligand
atoms. This is easily rationalized, as strong hydrogen bonding is
the cause of both effects. In addition, the predicted orientation
of the hydrogen bonding interactions for a water molecule is
often recapitulated by the geometry of ligands, and this
observation could be used in design. Conversely, hydration sites
predicted to have a small free energy are commonly found to
overlap with nonpolar ligand atoms.
Water displaceability is a difficult metric to capture from

experimental data because displacement is Boolean for any
given complex. In fact, almost every water molecule should be
displaceable by some ligand, but this may be deleterious to the
binding affinity. For example, displaceability data may be
confounded if medicinal chemists have deliberately attempted
to displace particular water molecules in cases where this is
deleterious to the binding affinity. This will increase the
frequency of displacement for a given water molecule in a case
where displacement is not advantageous. For this reason,
thermodynamic data may prove more useful in quantifying
displaceability, but one still cannot quantify the specific
contribution of a single water molecule to the binding affinity.
Thus, we consider that the frequency of displacement from a
large and varied data set of complexes is the best experimental
data available. However, such data are still imperfect due to the
bias of design by medicinal chemists. In addition, there are

many cases where water molecules are subtly shifted rather than
displaced, and this blurs such data. Despite these issues, IFST
has proven to be a useful method for studying solvation
thermodynamics, providing a perspective that is not available
using other computational methods by decomposing solvation
free energies into contributions from specific spatial regions. A
similar perspective can be gained from FEP, by decomposing
solvation free energies into contributions from specific species,
including the water molecules.87,88 FEP can also be used to
selectively excite the individual degrees of freedom of water
molecules and assess their contribution to the physicochemical
characteristics of water.89

In this work, we have shown that IFST can be used to
identify binding hotspots and predict which water molecules
should be advantageously displaced from a protein binding site.
While a larger study would be needed to show that this is a
general result, early results are promising and suggest that such
an analysis performed on a new drug target would provide very
useful information for ligand design. It may also show utility in
identifying untapped potential for well-known drug targets. As
noted previously, accurately predicting the effect of a ligand
modification upon binding affinity cannot be achieved by
considering any one factor and requires a comprehensive
thermodynamic analysis of the ligand binding.10 However,
given the vast number of potential ligands to be considered,
there is a significant advantage in deriving useful information
from IFST, which can be calculated from a single MD
simulation.
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