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As an adaptive system, the brain must retain a faithful representa-
tion of the world while continuously integrating new information.
Recent experiments have measured population activity in cortical
and hippocampal circuits over many days and found that patterns
of neural activity associated with fixed behavioral variables and
percepts change dramatically over time. Such “representational
drift” raises the question of how malleable population codes can
interact coherently with stable long-term representations that are
found in other circuits and with relatively rigid topographic map-
pings of peripheral sensory and motor signals. We explore how
known plasticity mechanisms can allow single neurons to reliably
read out an evolving population code without external error feed-
back. We find that interactions between Hebbian learning and
single-cell homeostasis can exploit redundancy in a distributed
population code to compensate for gradual changes in tuning.
Recurrent feedback of partially stabilized readouts could allow
a pool of readout cells to further correct inconsistencies intro-
duced by representational drift. This shows how relatively simple,
known mechanisms can stabilize neural tuning in the short term
and provides a plausible explanation for how plastic neural codes
remain integrated with consolidated, long-term representations.

representational drift | Hebbian plasticity | homeostasis | lifelong learning

The cellular and molecular components of the brain change
continually. In addition to synaptic turnover (1), ongoing

reconfiguration of the tuning properties of single neurons has
been seen in parietal (2), frontal (3), visual (4, 5), and olfactory
(6) cortices and the hippocampus (7, 8). Remarkably, the “rep-
resentational drift” (9) observed in these studies occurs without
any obvious change in behavior or task performance. Reconciling
dynamic reorganization of neural activity with stable circuit-level
properties remains a major open challenge (9, 10). Furthermore,
not all circuits in the brain show such prolific reconfiguration,
including populations in primary sensory and motor cortices (11–
13). How might populations with stable and drifting neural tuning
communicate reliably? Put another way, how can an internally
consistent “readout” of neural representations survive changes
in the tuning of individual cells?

These recent, widespread observations suggest that neural
circuits can preserve learned associations at the population level
while allowing the functional role of individual neurons to change
(14–16). Such preservation is made possible by redundancy in
population codes because a distributed readout allows changes in
the tuning of individual neurons to be offset by changes in others.
However, this kind of stability is not automatic: Changes in tuning
must either be constrained in specific ways (e.g., refs. 17 and 18),
or corrective plasticity needs to adapt the readout (19). Thus,
while there are proposals for what might be required to maintain
population codes dynamically, there are few suggestions as to
how this might be implemented with known cellular mechanisms
and without recourse to external reference signals that recali-
brate population activity to behavioral events and stimuli.

In this paper, we show that the readout of continuous behav-
ioral variables can be made resilient to ongoing drift as it occurs
in a volatile encoding population. Such resilience can allow highly

plastic circuits to interact reliably with more rigid representa-
tions. In principle, this permits compartmentalization of rapid
learning to specialized circuits, such as the hippocampus, without
entailing a loss of coherence with more stable representations
elsewhere in the brain.

We provide a simple hierarchy of mechanisms that can tether
stable and unstable representations using simple circuit archi-
tectures and well-known plasticity mechanisms, Hebbian learn-
ing, and homeostatic plasticity. Homeostasis is a feature of all
biological systems, and examples of homeostatic plasticity in
the nervous system are pervasive (e.g., see refs. 20 and 21 for
reviews). Broadly, homeostatic plasticity is a negative-feedback
process that maintains physiological properties such as average
firing rates (e.g., refs. 22 and 23), neuronal variability (e.g., ref.
24), distributions of synaptic strengths (e.g., refs. 25 and 26), and
population-level statistics (e.g., refs. 27 and 28).

Hebbian plasticity complements homeostatic plasticity by
strengthening connectivity between cells that undergo corre-
lated firing, further reinforcing correlations (29, 30). Pairwise
correlations in a population provide local bases for a so-called
task manifold, in which task-related neural activity resides
(31). Moreover, neural representations of continuous variables
typically exhibit bump-like single-cell tuning that tiles variables
redundantly across a population (2, 7). We show how these
features can be maintained to form a drifting population. We
then show how Hebbian and homeostatic mechanisms can
cooperate to allow a readout to track encoded variables despite
drift, resulting in a readout that “self-heals.” Our findings
thus emphasize a role for Hebbian plasticity in maintaining
associations, as opposed to learning new ones.
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while other circuits maintain consistent responses over time,
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Finally, we show how evolving representations can be tracked
over substantially longer periods of time if a readout population
encodes a stable predictive model of the variables being repre-
sented in a plastic, drifting population. Our assumptions thus
take into account, and may reconcile, evidence that certain cir-
cuits and subpopulations maintain stable responses, while others,
presumably those that learn continually, exhibit drift (32).

Background
We briefly review representational drift and important recent
work related to the ideas in this manuscript. Representational
drift refers to ongoing changes in neural responses during a
habitual task that are not associated with behavioral change (9).
For example, in Driscoll et al. (2), mice navigated to one of
two endpoints in a T-shaped maze (Fig. 1A), based on a visual
cue. Population activity in Posterior Parietal Cortex (PPC) was
recorded over several weeks by using fluorescence calcium imag-
ing. Neurons in PPC were tuned to the animal’s past, current,
and planned behavior. Gradually, the tuning of individual cells
changed: Neurons could change the location in the maze in
which they fired or become disengaged from the task (Fig. 1B).
The neural population code eventually reconfigured completely
(Fig. 1C). However, neural tunings continued to tile the task,

indicating stable task information at the population level. These
features of drift have been observed throughout the brain (4, 5,
8). The cause for such ongoing change remains unknown. It may
reflect continual learning and adaptation that is not directly re-
lated to the task being assayed or unavoidable biological turnover
in neural connections.

Previous work shows how downstream readouts could track
gradual drift using external error feedback to relearn how to
interpret an evolving neural code, e.g., during ongoing rehearsal
(19). Indeed, simulations confirm that learning in the presence
of noise can lead to a steady state, in which drift is balanced by
error feedback (33–36). Previous studies have shown that stable
functional connectivity could be maintained despite synaptic
turnover (33, 37, 38). More recent work has also found that
discrete representations can be stabilized using neural assemblies
that exhibit robust, all-or-nothing reactivation (39, 40).

Our work extends these results as follows. Rather than using
external learning signals (19, 33–35), we show that drift can be
tracked using internally generated signals. We allow the func-
tional role of neurons in an encoding population to reconfigure
completely, rather than just the synaptic connectivity (33, 37,
38). Previous work has explored how to stabilize point attractors
using neuronal assemblies, both with stable (39, 41) and drifting
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Fig. 1. A model for representational drift. (A) Driscoll et al. (2) imaged population activity in PPC for several weeks, after mice had learned to navigate
a virtual T maze. Neuronal responses continued to change even without overt learning. (B) Tunings were often similar between days, but could change
unexpectedly. Plots show average firing rates as a function of task pseudotime (0 = beginning, 1 = complete) for select cells from ref. 2. Tuning curves from
subsequent days are stacked vertically, from day 1 up to day 32. Missing days (light gray) are interpolated. Peaks indicate that a cell fired preferentially
at a specific location (Data and Analysis). (C) Neuronal tunings tiled the task. Within each day, the mouse’s behavior could be decoded from population
activity (2, 19). Plots show normalized tuning curves for 40 random cells, stacked vertically. Cells are sorted by their preferred location on day 1. By day
10, many cells have changed tuning. Day 39 shows little trace of the original code. (D) We model drift in a simulated rate network (Simulated Drift). An
encoding population x(θ) receives input s(θ) with low-dimensional structure, in this case, a circular track with location θ. The encoding weights U driving
the activations U�s(θ) of this population drift, leading to drifting activations. Homeostasis preserves bump-like tuning curves. (E) As in the data in A–C, this
model shows stable tuning punctuated by large changes. (F) The neural code reorganizes, while continuing to tile the task. We will examine strategies that
a downstream readout could use to update how it decodes x(θ) to keep its own representation y(θ) stable. This readout is also modeled as linear–nonlinear
rate neurons, with decoding weights W.
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(40) single-cell tunings. Key insights in this previous work include
the idea that random reactivation or systematic replay of circuit
states can reinforce existing point attractors. However, to plau-
sibly account for stable readout of drifting sensorimotor infor-
mation and other continuous variables observed experimentally
(2, 7, 42), we require a mechanism that can track a continuous
manifold, rather than point attractors.

Our other main contribution is to relate these somewhat ab-
stract and general ideas to concrete observations and relevant
assumptions about the nature of drift. Representational drift is
far from random (19), and this fact can be exploited to derive
stable readouts. Specifically, the topology and coarse geometry
of drifting sensorimotor representations appear to be consistent
over time, while their embedding in population activity continu-
ally changes (2, 7, 43, 44). Thus, the statistical structure of exter-
nal variables is preserved, but not their neuron-wise encoding.
Notably, brain–machine interface decoders routinely confront
this and apply online recalibration and transfer learning to track
drift in (e.g., see refs. 45 and 46 for review). We argue that neu-
ral circuits may do something similar to maintain “calibration”
between relatively stable circuits and highly plastic circuits. Early
sensory or late motor populations that communicate directly with
sensory receptors or muscle fibers necessarily have a consistent
mapping between neural activity and signals in the external
world. Such brain areas need to communicate with many other
brain areas, including circuits that continually learn and adapt
and thus possess more malleable representations of behavioral
variables.

Results
We first construct a model of representational drift, in which
homeostatic plasticity stabilizes the capacity of a “drifting” popu-
lation to encode a continuous behavioral variable, despite insta-
bility in single-neuron tunings. We then derive plasticity rules that
allow single downstream neurons to stabilize their own readout
of this behavioral variable, despite drifting activity. Finally, we
extend these ideas to show how comparatively stable neural
populations that encode independent, predictive models of be-
havioral variables can actively track and stabilize a readout of
drifting neural code.

A Model for Representational Drift. We have previously used the
data from Driscoll et al. (47) to assess how much plasticity would
be required to track drift in a linear readout (19). However,
these data contain gaps of several days, and the number of
high signal-to-noise units tracked for over a month is limited.
To explore continual, long-term drift, we therefore construct a
model inspired by the features of representational drift seen in
spatial navigation tasks (2, 7).

We focus on key properties of drift seen in experiments. In
both refs. 2 and 7, neural populations encode continuous, low-
dimensional behavioral variables (e.g., location), and exhibit lo-
calized “bump-like” tuning to these variables. Tuning curves
overlap, forming a redundant code. Over time, neurons change
their preferred tunings. Nevertheless, on each day, there is always
a complete “tiling” of a behavioral variable; thus, the ability of the
population to encode task information is conserved.

To model this kind of drifting code, we consider a population
of N neurons that encode a behavioral variable, θ. We assume
θ lies on a low-dimensional manifold and is encoded in the
vector of firing rates in a neural population with tuning curves
xd(θ)={xd,1(θ), .., xd,N (θ)}�. These tunings change over time
(day d).

We abstract away some details seen in the experimental data
in Fig. 1C. We focus on the slow component of drift and model
excess day-to-day tuning variability via a configurable parameter.
We assume uniform coverage of the encoded space, which can
be ensured by an appropriate choice of coordinates. We consider

populations of 100 units that encode θ and whose tunings evolve
independently. Biologically, noise correlations and fluctuating
task engagement would limit redundancy, but this would be offset
by the larger number of units available.

To model drift, we first have to model an encoding “feature”
population, whose responses depend on θ and from which it is
possible to construct bump-like tuning with a weighted readout
(Fig. 1D). To keep our assumptions general, we do not assume
that the encoding population has sparse, bump-like activity and
simply define a set of K random features (tuning curves), sampled
independently from a random Gaussian process on θ. These
features have an arbitrary, but stable, relationship to the external
world, from which it is possible to reconstruct θ by choosing
sufficiently large K:

s(θ) = {s1(θ), .., sK (θ)}�

si(θ)∼ GP[0, Σ(θ, θ′)].
[1]

In the above equations, Σ(θ, θ′) denotes the covariance between
the values of s(θ) at two states θ and θ′.

We next define an encoding of θ driven by these features
with a drifting weight matrix Ud={ud,1, ..,ud,N }, where ud,i =
{ud,i,1, .., ud,i,K}� reflects the encoding weights for unit xd,i(θ)
on day d. Each weight ud,i,j evolves as a discrete-time Ornstein–
Uhlenbeck (OU) process, taking a new value on each day (Sim-
ulated Drift). The firing rate of each encoding unit is given as a
nonlinear function of the synaptic activation ad,i(θ) = u�

d,is(θ):

xd,i(θ) = φ[γi ad,i(θ) + βi ], [2]

where γi and βi are vectors that set the sensitivity and threshold
of each unit. To model the nonlinear response of the readout and
prevent negative firing rates, we use an exponential nonlinearity
φ(·) = exp(·).

In this model, the mean firing rate and population sparsity
of the readout can be tuned by varying the sensitivity γ and
threshold β in Eq. 2, respectively. In the brain, these single-
cell properties are regulated by homeostasis (24). Stabilizing
mean rates 〈xd,i(θ)〉θ ≈ μ0 ensures that neurons remain active.
Stabilizing rate variability varθ[xd,i(θ)]≈ σ2

0 controls population
code sparsity, ensuring that xd(θ) carries information about θ
(48). This is achieved by adapting the bias βi and gain γi of each
unit xd,i(θ) based on the errors εμ, εσ between the statistics of
neural activity and the homeostatic targets μ0, σ0:

Δγ ∝ εσ = σ0 − σx

Δβ ∝ εμ = μ0 − μx .
[3]

Fig. 1 shows that this model qualitatively matches the drift seen
in vivo (2). Tuning is typically stable, with intermittent changes
(Fig. 1E). This occurs because the homeostatic regulation in
Eq. 3 adjusts neuronal sensitivity and threshold to achieve a
localized, bump-like tuning curve at the location of peak synaptic
activation, θ0. Changes in tuning arise when the drifting weight
matrix causes the encoding neuron to be driven more strongly at
a new value of θ. The simulated population code reconfigures
gradually and completely over a period of time equivalent to
several weeks in the experimental data (Fig. 1F).

Hebbian Homeostasis Improves Readout Stability Without External
Error Feedback. Neural population codes are often redundant,
with multiple units responding to similar task features. Dis-
tributed readouts of redundant codes can therefore be robust
to small changes in the tuning of individual cells. We explored
the consequences of using such a readout as an internal error
signal to retrain synaptic weights in a readout population, thereby
compensating for gradual changes in a representation without
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external feedback. This re-encodes a learned readout function
y(θ) in terms of the new neural code xd(θ) on each “day”
and improves the tuning stability of neurons that are driven by
unstable population codes, even in single neurons. We first sketch
an example of this plasticity and then explore why this works.

Using our drifting population code as input, we model a
readout population of M neurons with tuning curves yd(θ) =
{yd,1(θ), .., yd,M (θ)}� (Fig. 1D). We model this decoder as a
linear–nonlinear function, using decoding weights W and biases
(thresholds) b (leaving dependence on the day d implicit):

y(θ) = φ[W�x(θ) + b]. [4]

On each simulated day, we retrain the decoding weights using an
unsupervised Hebbian learning rule (c.f. ref. 49). This potentiates
weights wi,j , whose input xj (θ) correlates with the postsynaptic
firing rate yi(θ). We modulate the learning rate by an estimate of
the homeostatic error in firing-rate variability (δ̃). Thresholds are
similarly adapted based on the homeostatic error in mean-rate
(β̃). We include a small baseline amount of weight decay “ρ” and
a larger amount of weight decay “c” that is modulated by δ̃. For
a single readout neuron y(θ), the weights and biases evolve as:

Δw ∝ δ̃
[
〈x(θ)y(θ)�〉θ − cw

]
− ρw

Δb ∝ β̃ 〈x(θ)〉θ .
[5]

We apply Eq. 5 for 100 iterations on each simulated day, sampling
all θ on each iteration. We assume that the timescale of Hebbian
and homeostatic plasticity is no faster than the timescale of
representational drift. The error terms δ̃, β̃ are leaky integrators
of instantaneous errors (Eq. 3) for each cell, εσ , εμ, respectively:

δ̃t+1 = 0.5 δ̃t + εσ (analogously for β̃, εμ). For the readout y(θ),
the homeostatic targets (μ0,σ0) are set to the firing-rate statistics
in the initial, trained state (before drift has occurred). Eq. 5
therefore acts homeostatically. Rather than scale weights uni-
formly, it adjusts the component of the weights most correlated
with the postsynaptic output, y(θ). Plasticity occurs only when
homeostatic constraints are violated. Further discussion of this
learning rule is given in Synaptic Learning Rules.

To test whether the readout can tolerate complete reconfigu-
ration in the encoding population, we change encoding features
one at a time. For each change, we select a new, random set
of encoding weights ui and apply homeostatic compensation to
stabilize the mean and variability of xi(θ). Eq. 5 is then applied to
update the decoding weights of the readout cell. This procedure
is applied 200 times, corresponding to two complete reconfigura-
tions of the encoding population of N=100 cells (Single-Neuron
Readout).

With fixed weights, drift reduces the readout’s firing rate with-
out changing its tuning (Fig. 2A). This is because the initial tuning
of the readout requires coincident activation of specific inputs to
fire for its preferred θ0. Drift gradually destroys this correlated
drive and is unlikely to spontaneously create a similar conjunc-
tion of features for some other θ. For small amounts of drift,
homeostasis Eq. 3 can stabilize the readout by compensating for
the reduction in drive (Fig. 2B). Eventually, however, no trace
of the original encoding remains. At this point, a new (random)
θ will begin to drive the readout more strongly. Homeostasis
adjusts the sensitivity of the readout to form a new, bump-like
tuning curve at this location.

Fig. 2C shows the consequences of Hebbian homeostasis
(Eq. 5). Drift in the encoding x(θ) decreases the excitatory
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Fig. 2. Homeostatic Hebbian plasticity enables a stable readout from unstable populations. (A) Simulated drift in a redundant population causes a loss of
excitability, but little change in tuning, to a downstream linear–nonlinear readout neuron. Since the cell is selective to a conjunction of features, it loses
excitatory drive when some of its inputs change. Since most drift is orthogonal to this readout, however, the preferred tuning θ0 does not change. The
rightmost plot shows that the excitability diminishes as a larger fraction of inputs change. Two complete reconfigurations of an encoding population of 100
cells are shown. (B) Homeostatic adjustments to increase the readout’s sensitivity can compensate for small amounts of drift. As more inputs reconfigure, the
cell compensates for loss of excitatory drive by increasing sensitivity (“gain”, γ). However, the readout changes to a new, random location once a substantial
fraction of inputs have reconfigured (B, Right). This phenomenon is the same as the model for tuning curve drift in the encoding population (c.f. Fig. 1E).
(C) Hebbian homeostasis increases neuronal variability by potentiating synaptic inputs that are correlated with postsynaptic activity or depressing those
same synapses when neuronal variability is too high. This results in the neuron relearning how to decode its own tuning curve from the shifting population
code, supporting a stable readout despite complete reconfiguration (C, Right) (Single-Neuron Readout).
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drive to the readout, activating Hebbian learning. Because
small amounts of drift have minimal effect on tuning, the
readout’s own output provides a self-supervised teaching signal.
It relearns the decoding weights for inputs that have changed due
to drift. Applying Hebbian homeostasis periodically improves
stability, despite multiple complete reconfigurations of the
encoding population. In effect, the readout’s initial tuning
curve is transported to a new set of weights that estimate the
same function from an entirely different input (for further
discussion, see SI Appendix, Weight Filtering). In the long term,
the representation degrades, for reasons we dissect in the next
section.

Hebbian Homeostasis with Network Interactions. In the remainder
of the manuscript, we show how Hebbian homeostatic principles
combine with population-level interactions to make readouts
more robust to drift. Generally, a mechanism for tracking drift
in a neural population should exhibit three features:

1) The readout should use redundancy to mitigate error caused
by drift.

2) The readout should use its own activity as a training signal to
update its decoding weights.

3) The correlations in input-driven activity in the readout neu-
rons should be homeostatically preserved.

We explore three types of recurrent population dynamics that
could support this: 1) population firing-rate normalization;

2) recurrent dynamics in the form of predictive feedback; and
3) recurrent dynamics in the form of a linear–nonlinear map.
Fig. 3 summarizes the impact of each of these scenarios on a
nonlinear population readout, and we discuss each in depth in
the following subsections.
Population competition with unsupervised Hebbian learning. In
Fig. 2C, we saw that Hebbian homeostasis improved stability in
the short term. Eq. 5 acts as an unsupervised learning rule and
pulls the readout y(θ) toward a family of bump-like tuning curves
that tile θ (36). Under these dynamics, only drift Δx(θ) that
changes the peak of y(θ) to some new, nearby θ′0 can persist. All
other modes of drift are rejected. If the encoding population is
much larger than the dimension of θ, there is large null space in
which drift does not change the preferred tuning. However, in
the long run Hebbian homeostasis drives the neural population
toward a steady state, which forgets the initial tuning (Fig. 3C).
This is because Hebbian learning is biased toward a few salient
θ0 that capture directions in x(θ) with the greatest variability (30,
50, 51).

Models of unsupervised Hebbian learning address this by in-
troducing competition among a population of readout neurons
(50, 51). Such rules can track the full covariance structure of
the encoding population and lead to a readout population of
bump-like tuning curves that tile the space θ (52–55). In line
with this, we incorporate response normalization into a readout
population (56). This serves as a fast-acting form of firing-rate
homeostasis in Eq. 3, causing neurons to compete to remain
active and encouraging diverse tunings (54, 57).
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Fig. 3. Self-healing in a nonlinear rate network. Each plot shows a population readout y(θ) from a drifting code x(θ) of N=100 cells (Left); a schematic
of the readout dynamics (Center); and a plot of readout tuning after applying each learning rule if 60% of the encoding cells were to change to a new
tuning (Right) (Population Simulations). (A) Drift degrades a readout with fixed weights. Drift is gradual, with τ=100. The simulated time frame corresponds
to 10 complete reconfigurations. (B) Homeostasis increases sensitivity to compensate for loss of drive, but cannot stabilize tuning (σ2: firing-rate variance;
σ2

0 : target variance; εσ : homeostatic error; Δγ: gain adjustment). (C) Hebbian homeostasis (Eq. 5) restores drive using the readout’s output as a training
signal. Error correction is biased toward θ that drive more variability in the encoding population. (ΔW: weight updates.) (D) Response normalization (Eq. 6)
stabilizes the population statistics, but readout neurons can swap preferred tunings (ŷ: normalized response). (E) A recurrent linear–nonlinear map (Eq. 8)
pools information over the population, improving error correction (yf : feed-forward estimates; A: recurrent weights). (F) Predictive coding (Eq. 7) corrects
errors via negative feedback (τ indicates dynamics in time). All simulations added 5% daily variability to x(θ) and applied 1% daily drift to the decoding
weights W. SI Appendix, Fig. S2 evaluates readout stability for larger amounts of variability and readout-weight drift; SI Appendix, Fig. S3 quantifies readout
stability for each scenario.
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Because it is implemented via inhibitory circuit dynamics, we
assume that this normalization acts quickly relative to plasticity
and model it by dividing the rates by the average firing rate across
the population. If yf (θ) is the forward (unnormalized) readout
from Eq. 4, we define the normalized readout yn(θ) by dividing
out the average population rate, 〈yf (θ)〉M, and multiplying by a
target mean rate μp :

yn(θ) = μp · yf (θ)/〈yf (θ)〉M. [6]

We found that response normalization improves readout stability
(Fig. 3D). However, it does not constrain individual readout
neurons to any specific preferred θ0. The readout thus remains
sensitive to noise and perturbations, which, in the long run, can
cause neurons to swap preferred tunings (Fig. 3D; Population
Simulations).
Error-correcting recurrent dynamics. The error-correction mech-
anisms explored so far use redundancy and feedback to reduce
errors caused by incremental drift. However, there is no com-
munication between different readouts yi(θ) to ensure that the
correlation structure of the readout population is preserved. In
the remainder of the paper, we explore how a readout with a
stable internal model for the correlation structure of y(θ) might
maintain communication with a drifting population code.

Where might such a stable internal model exist in the brain?
The dramatic representational drift observed in, e.g., the hip-
pocampus (7, 58) and parietal cortex (2) is not universal. Rela-
tively stable tuning has been found in the striatum (59) and motor
cortex (60–62). Indeed, perineuronal nets are believed to limit
structural plasticity in some mature networks (63), and stable
connections can coexist with synaptic turnover (14). Drift in areas
closer to the sensorimotor periphery is dominated by changes
in excitability, which tends not to affect tuning preference of
individual cells (3, 5). Thus, many circuits in the brain develop
and maintain reliable population representations of sensory and
motor variables. Moreover, such neural populations can compute
prediction errors based on learned internal models (64), and
experiments find that neural population activity recapitulates
(65) and predicts (66) input statistics. Together, these findings
suggest that many brain circuits can support relatively stable
predictive models of the various latent variables that are used by
the brain to represent the external world.

We therefore asked whether such a stable model of a behav-
ioral variable could take the form of a predictive filter that tracks
an unstable, drifting representation of that same variable. To
incorporate this in our existing framework, we assume that the
readout y(θ) contains a model of the “world” (θ) in its recurrent
connections, which change much more slowly than x(θ). These
recurrent connections generate internal prediction errors. We
propose that these same error signals provide error correction to
improve the stability of neural population codes in the presence
of drift.

We consider two kinds of recurrent dynamics. Both of these
models are abstract, as we are not primarily concerned with the
architecture of the predictive model, only its overall behavior.
We first consider a network that uses inhibitory feedback to
cancel the predictable aspects of its input, in line with models of
predictive coding (67–69). We then consider a linear–nonlinear
mapping that provides a prediction of y(θ) from a partially
corrupted readout.
Recurrent feedback of prediction errors. Some theories propose
that neural populations retain a latent state that is used to predict
future inputs (67–69). This prediction is compared to incoming
information to generate a prediction error, which is fed back
through recurrent interactions to update the latent state. This
is depicted in the schematic in (Fig. 3F). Here, we assume that
the network contains a latent state “z” and predicts the readout’s
activity, ŷ = φ(z), with firing-rate nonlinearity φ as defined pre-
viously. Inputs provide a feed-forward estimate yf (θ), which is

corrupted by drift. The prediction error is the difference between
yf (θ) and ŷ. The dynamics of z are chosen as:

τz ż=−z+Ap [yf − ŷ]. [7]

We set the weight matrix Ap to the covariance of the activa-
tions z=W�x during initial training (motivation for this choice
is in SI Appendix, Predictive Coding as Inference). In making this
choice, we assume that part of the circuit can learn and retain the
covariance of z. This could, in principle, be achieved via Hebbian
learning (refs. 49, 50, and 70; Learning Recurrent Weights).

Assuming that a circuit can realize the dynamics in Eq. 7, the
readout ŷ will be driven to match the forward predictions yf .
We assume that this converges rapidly relative to the timescale
at which yf (θ) varies. This improves the tracking of a drifting
population code when combined with Hebbian homeostasis and
response normalization (Fig. 3F). The readout continuously re-
aligns its fixed internal model with the activity in the encoding
population. We briefly discuss intuition behind why one should
generally expect this to work.

The recurrent weights, Ap , determine which directions in
population-activity space receive stronger feedback. Feedback
through larger eigenmodes of Ap is amplified, and these modes
are rapidly driven to track yf . Due to the choice of Ap as the
covariance of z, the dominant modes reflect directions in popu-
lation activity that encode θ. Conversely, minor eigenmodes are
weakly influenced by yf . This removes directions in population
activity that are unrelated to θ, thereby correcting errors in the
readout activity caused by drift.

In summary, Eq. 7 captures qualitative dynamics implied by
theories of predictive coding. If neural populations update in-
ternal states based on prediction errors, then only errors related
to tracking variations in θ should be corrected aggressively. This
causes the readout to ignore “off manifold” activity in ŷ(θ)
caused by drift. However, other models of recurrent dynamics
also work, as we explore next.
Low-dimensional manifold dynamics. Recurrent dynamics with a
manifold of fixed-point solutions (distributed over θ) could also
support error correction. We model this by training the readout
to make a prediction ŷ of its own activity based on the feed-
forward activity yf , via a linear–nonlinear map, (c.f. ref. 71):

ŷ[t + 1]← φ
(
A�

r yf [t ] + v
)
, [8]

with timestep, t, and recurrent weights and biases Ar and v,
respectively (Learning Recurrent Weights). We chose this discrete-
time mapping for computational expediency, and Eq. 8 was
applied once for each input yf (θ) alongside response normal-
ization. In simulations, the recurrent mapping is also effective
at correcting errors caused by drift, improving readout stability
(Fig. 3F).

We briefly address some caveats that apply to both models
of recurrent dynamics. The combination of recurrent dynamics
and Hebbian learning is potentially destabilizing, because lean-
ing can transfer biased predictions into the decoding weights.
Empirically, we find that homeostasis (Eq. 3) prevents this, but
must be strong enough to counteract all destabilizing influences.
Additionally, when the underlying θ has continuous symmetries,
drift can occur along these symmetries. This is evidenced by
a gradual, diffusive rotation of the code for, e.g., a circular
environment. Other manifolds, like the T-shaped maze in ref. 2,
have no continuous symmetries and are not susceptible to this
effect (SI Appendix, Fig. S5). Overall, these simulations illustrate
that internal models can constrain network activity. This provides
ongoing error correction, preserves neuronal correlations, and
allows neural populations to tolerate substantial reconfiguration
of the inputs that drive them.
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Discussion
In this work, we derived principles that can allow stable and
plastic representations to coexist in the brain. These self-healing
codes have a hierarchy of components, each of which facilitates a
stable readout of a plastic representation: 1) single-cell tuning
properties (bump-like tuning and redundant tiling of encoded
variables) that make population codes robust to small amounts
of drift; 2) populations that use their own output as a training
signal to update decoding weights; and 3) circuit interactions
that track evolving population statistics using stable internal
models. All of these components are biologically plausible, some
corresponding to single-cell plasticity mechanisms (Hebbian and
homeostatic plasticity), others corresponding to circuit architec-
tures (response normalization and recurrence), and others cor-
responding to higher-level functions that whole circuits appear
to implement (internal models). As such, these components may
exist to a greater or lesser degree in different circuits.

Hebbian plasticity is synonymous with learning novel asso-
ciations in much of contemporary neuroscience. Our findings
argue for a complementary hypothesis that Hebbian mecha-
nisms can also reinforce learned associations in the face of
ongoing change—in other words, prevent spurious learning. This
view is compatible with the observation that Hebbian plasticity
is a positive-feedback process, where existing correlations be-
come strengthened, in turn promoting correlated activity (72).
Abstractly, positive feedback is required for hysteresis, which is
a key ingredient of any memory-retention mechanism, biological
or otherwise, because it rejects external disturbances by reinforc-
ing internal states.

Homeostasis, by contrast, is typically seen as antidote to possi-
ble runaway Hebbian plasticity (72). However, this idea is prob-
lematic due to the relatively slow timescale at which homeostasis
acts (73). Our findings posit a richer role for homeostatic (nega-
tive) feedback in maintaining and distributing responsiveness in
a population. This is achieved by regulating the mean and the
variance of neural activity (24).

We considered two populations: a drifting population that
encodes a behavioral variable and another that extracts a drift-
resilient readout. This could reflect communication between
stable and plastic components of the brain or the interaction
between stable and plastic neurons within the same circuit. This
is consistent with experiments that find consolidated stable rep-
resentations (12, 16) or with the view that neural populations
contain a mixture of stable and unstable cells (74).

By itself, Hebbian homeostasis preserves population codes in
the face of drift over a much longer timescale than the lifetime of
a code with fixed readout (Fig. 2). Even though this mechanism
ultimately corrupts a learned tuning, the time horizon over which
the code is preserved may be adequate in a biological setting, par-
ticularly in situations where there are intermittent opportunities
to reinforce associations behaviorally. However, in the absence
of external feedback, extending the lifetime of this code still
further required us to make additional assumptions about circuit
structures that remain to be tested experimentally.

We found that a readout population can use an internal model
to maintain a consistent interpretation of an unstable encoding
population. Such internal models are widely hypothesized to exist
in various guises (64, 66, 67, 69). We did not address how these
internal models are learned initially, nor how they might be
updated. By setting fixed recurrent weights, we are also assuming
that population responses in some circuits are not subject to drift.
This may be reasonable, given that functional connectivity and
population tuning in some circuits and subpopulations is found
to be stable (11–13).

The recurrent architectures we studied here are reminiscent
of mechanisms that attenuate forgetting via replay (e.g., refs. 75
and 76). The internal models must be occasionally reactivated
through rehearsal or replay to detect and correct inconsistencies

caused by drift. If this process occurs infrequently, drift becomes
large, and the error correction will fail.

The brain supports both stable and volatile representations,
typically associated with memory retention and learning, respec-
tively. Artificial neural networks have so far failed to imitate this
and suffer from catastrophic forgetting, wherein new learning
erases previously learned representation (77). Broadly, most pro-
posed strategies mitigate this by segregating stable and unstable
representations into distinct subspaces of the possible synaptic
weight changes (c.f. ref. 18). These learning rules therefore pre-
vent disruptive drift in the first place. The mechanisms explored
here do not restrict changes in weights or activity: The encoding
population is free to reconfigure its encoding arbitrarily. How-
ever, any change in the code leads to a complementary change in
how that code is read out. Further exploration of these principles
may clarify how the brain can be simultaneously plastic and stable
and provide clues to how to build artificial networks that share
these properties.

Materials and Methods
Data and Analysis. Data shown in Fig. 1 B and C were taken from Driscoll
et al. (2) and are available online at Dryad (47). Examples of tuning-curve
drift were taken from mouse 4, which tracked a subpopulation of cells
for over a month using calcium fluorescence imaging. Normalized log-
fluorescence signals (ln[x/〈x〉]) were filtered between 0.3 and 3 Hz (fourth-
order Butterworth, forward–backward filtering), and individual trial runs
through the T maze were extracted. We aligned traces from select cells based
on task pseudotime (zero, start; one, reward). On each day, we averaged
log-fluorescence over all trials and exponentiated to generate the average
tuning curves shown in Fig. 1B. For Fig. 1C, a random subpopulation of 40
cells was sorted based on their peak firing location on the first day. For
further details, see refs. 2 and 19.

Simulated Drift. We modeled drift as a discrete-time OU random walk on
encoding weights U, with time constant τ (in days) and per-day noise
variance α. We set the noise variance to α=2/τ to achieve unit steady-state
variance. Encoding weights for each day are sampled as:

ud+1,i,j = ud,i,j

√
1 − α + ξ

√
α, ξ∼N (0, 1). [9]

These drifting weights propagate the information about θ available in the
features s(θ) (Eq. 1) to the encoding units x(θ) in a way that changes
randomly over time.

This random walk in encoding-weight space preserves the population
code statistics on average: It preserves the geometry of θ in the correlations
of at(θ) and the average amount of information about θ encoded in the
population activations (SI Appendix, Stability of Encoded Information). This
implies that the difficulty of reading out a given tuning curve y(θ) (in
terms of the L2 norm of the decoding weights, ‖wj‖2) should remain
roughly constant over time. This assumption, that x(θ) encodes a stable
representation for θ in an unstable way underlies much of the robustness
we observe. We discuss this further in Synaptic Learning Rules.

Because the marginal distribution of the encoding weights on each day
is Gaussian, Ud ∼ N (0, IN), the synaptic activations ad(θ) = U�

d s(θ) are
samples from a Gaussian process on θ, with covariance inherited from s(θ)
(SI Appendix, Gaussian-Process Tuning Curves). In numerical experiments,
we sampled the synaptic activation functions ad(θ) from this Gaussian
process directly. We simulated θ ∈ [0, 1) over a discrete grid with 60 bins,
sampling synaptic activations from a zero-mean Gaussian process on θ with
a spatially low-pass squared-exponential kernel (σ = 0.1). The gain and
threshold (Eq. 2) for each encoding unit was homeostatically adjusted for a
target mean rate of μ0 = 5 and rate variance of σ2

0 = 25 (in arbitrary units).
This was achieved by running Eq. 3 for 50 iterations with rates ηγ = 0.1 and
ηβ = 0.2 for the gain and bias homeostasis, respectively.

To show that the readout can track drift despite complete reconfiguration
of the neural code, we replace gradual drift in all features with abrupt
changes in single features in Fig. 2. For this, we resampled the weights for
single encoding units one-at-a-time from a standard normal distribution.
Self-healing plasticity rules were run each time 5 out of the 100 encoding
features changed. SI Appendix, Fig. S1 confirms that abrupt drift in a few
units is equivalent to gradual drift in all units. Unless otherwise stated, all
other results are based on an OU model of encoding drift.

We modeled excess variability in the encoding population that was
unrelated to cumulative drift. This scenario resembles the drift observed
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in vivo (9; SI Appendix, Fig. S4). We sampled a unique “per-day” synaptic
activation ãd,i(θ) for each of the encoding units, from the same Gaussian
process on θ used to generate the drifting activation functions ad,i(θ). We
mixed these two functions with a parameter r = 0.05 such that the encoding
variability was preserved (i.e., 5% of the variance in synaptic activation is
related to random variability):

a′
d,i(θ) = ad,i(θ)

√
1 − r + ãd,i(θ)

√
r. [10]

SI Appendix, Fig. S2A shows that the readout can tolerate up to 30%
excess variability with modest loss of stability. SI Appendix, Fig. S4
shows that neuronal recordings from Driscoll et al. (47) are consis-
tent with 30% excess variability and that the qualitative conclusions
of this paper hold for this larger amount of day-to-day variability
(SI Appendix, Calibrating the Model to Data).

We also applied drift on the decoding synapses W. This is modeled
similarly to Eq. 10, with the parameter n controlling the percentage of
variance in synapse weight that changes randomly at the start of each day:

w′
d,i,j = wd,i,j

√
1 − n + σd · ξ

√
n ξ∼N (0, 1), [11]

where σd is the empirical SD of the decoding weights on day d. Unless
otherwise stated, we use n = 1%. Larger values of drift on the decoding
weights is destabilizing for Hebbian homeostasis (with or without response
normalization), but readouts with stable internal recurrent dynamics can tol-
erate larger (∼ 8%) amounts of readout-weight drift (SI Appendix, Fig. S2B).

Synaptic Learning Rules. The learning rule in Eq. 5 is classical unsupervised
Hebbian learning, which is broadly believed to be biologically plausible
(49, 50, 70). However, it has one idiosyncrasy that should be justified: The
rates of learning and weight decay are modulated by a homeostatic error
in firing-rate variability. The simplest interpretation of Eq. 5 is a premise
or ansatz: Learning rates should be modulated by homeostatic errors. This
is a prediction that will need to be experimentally confirmed. Such a
learning might be generically useful, since it pauses learning when firing-
rate statistics achieve a useful dynamic range for encoding information. The
fact that weight decay is proportional to learning rate is also biologically
plausible, since each cell has finite resources to maintain synapses.

Eq. 5 may also emerge naturally from the interaction between home-
ostasis and learning rules in certain scenarios. When Hebbian learning is
interpreted as a supervised learning rule, it is assumed that other inputs
bias the spiking activity y of a neuron toward a target y∗. This alters the
correlations between presynaptic inputs x and postsynaptic spiking. Hebbian
learning rules, especially temporally asymmetric ones based on spike timing
(78), adjust readout weights w to potentiate inputs that correlate with this
target. In the absence of external learning signals, homeostatic regulation
implies a surrogate training signal ỹ∗. This ỹ∗ is biased toward a target
mean rate and selectivity. For example, recurrent inhibition could regulate
both population firing rate and population-code sparsity. This could restrict
postsynaptic spiking, causing Hebbian learning to adjust readout weights
to achieve the desired statistics. Cells may also adjust their sensitivity and
threshold homeostatically. Hebbian learning could then act to adjust incom-
ing synaptic weights to achieve the target firing-rate statistics, but in a way
that is more strongly correlated with synaptic inputs.

In SI Appendix, Hebbian Homeostasis as an Emergent Property, we ver-
ify the intuition that Eq. 5 should arise through emergent interactions
between homeostasis and Hebbian learning in a simplified, linear model.
In the remainder of this section, we use a linear readout to illustrate why
one should expect Eq. 5 to be stabilizing.

The decoder’s job is to generate a stable readout from the drifting code
x(θ). This is a regression problem: The decoding weights W should map x(θ)
to a target y(θ). Since small amounts of drift are akin to noise, W should be
regularized to improve robustness. The L2-regularized linear least-squares
solution for W is:

W = [Σx + ρ2I]−1
Σxy . [12]

The regularization ρ2I corresponds to the assumption that drift will corrupt
the activity of x(θ) by an amount Δx ∼ N (0, ρ2I).

Can drift be tracked by reinferring W on each day? We lack the ground-
truth covariance Σd

xy to retrain W, but could estimate it from decoded
activity yd(θ):

Σ̂
d
xy = 〈xd(θ)yd(θ)

�〉θ . [13]

Since yd(θ) is decoded from xd(θ) through weights Wd , the estimated

covariance is Σ̂
d
xy = Σd

x Wd , where Σd
x = 〈xd(θ)xd(θ)

�〉θ is the covariance of
the inputs xd(θ). The regularized least-squares weight update is therefore:

Wd+1 = [Σ
d
x + ρ2I]−1

Σ
d
x Wd . [14]

This update can be interpreted as recursive Bayesian filtering of the weights
(SI Appendix, Weight Filtering).

Because x(θ) continues to encode information about θ, we know that
variability in the decoded y(θ) should be conserved. Each readout yi(θ)

homeostatically adjusts its sensitivity to maintain a target variability σ2
0 . As

introduced earlier, this multiplies the firing rate by a factor γ = σ0/σ1 =

1 + δ, where δ is a small parameter, and σ1 is the SD of the readout’s firing
rate after drift, but before normalization. Accounting for this in Eq. 14 and
considering the weight vector w for a single readout neuron yields:

wd+1 = [Σ
d
x + ρ2I]−1

Σ
d
x w · (1 + δ). [15]

To translate this into a plausible learning rule, the solution Eq. 15 can be
obtained via gradient descent. Recall the loss function L(w) for optimizing
regularized linear least squares:

L(w) = 1
2 〈‖w�x − y‖2〉 + 1

2ρ2‖w‖2. [16]

Gradient descent −∇wL(w) on Eq. 16 implies the weight update

Δw ∝ 〈x(y − w�x)�〉 − ρ2w. [17]

After matching terms between Eqs. 12–15 and Eq. 17 and simplifying, one
finds the following Hebbian learning rule:

Δw ∝ δ〈xd(θ)yd(θ)〉θ − ρ2w. [18]

Eq. 18 is equivalent to Eq. 5 for a certain regularization strength ρ2 (now
taking the form of weight decay). The optimal value of ρ2 depends on the
rate of drift. Since drift drives homeostatic errors, it follows that ρ2 ∝ δ for
small δ. Here, we set ρ2 = δ, corresponding to c = 1 in Eq. 18.

Single-Neuron Readout. In Fig. 2, we simulated a population of 100 encoding
neurons xd(θ) that changed one at a time (Simulated Drift). We initialized a
single readout y(θ) = φ[w�x(θ)] to decode a Gaussian bump y0(θ) (σ = 5%
of the track length) from the activations x0(θ) on the first day. We optimized
this via gradient descent using a linear–nonlinear Poisson loss function.

Δw ∝ 〈x0(θ)[y0(θ) − y(θ)]�〉θ − ρrw, [19]

with regularizing weight decay ρr = 10−4. In this deterministic firing-rate
model, the Poisson error allows the squared norm of the residuals to be
proportional to the rate. We simulated 200 time points of drift, corre-
sponding to two complete reconfigurations of the encoding population.
After each encoding-unit change, we applied 100 iterations of either naïve
homeostasis (Fig. 2B and Eq. 3) or Hebbian homeostasis (Fig. 2C and Eq. 5).
For naïve homeostasis, the rates for gain and threshold homeostasis were
ηβ = 10−3 and ηγ = 10−5, respectively. For Hebbian homeostasis, the rates
were ηβ = 10−1 and ηγ = 10−3.

Homeostatic regulation requires averaging the statistics over time (48).
To model this, we calculated the parameter updates for the gain and bias
after replaying all θ and computing the mean and variance of the activity for
each neuron. Since the processes underlying cumulative changes in synaptic
strength are also slower than the timescale of neural activity, weight updates
were averaged over all θ on each iteration. We applied additional weight
decay with a rate ρ = 1 × 10−4 for regularization and stability and set c=1
in Eq. 5 such that the rate of weight decay was also modulated by the online
variability error δ̃.

Learning Recurrent Weights. For recurrent dynamics modeled as feedback in
Eq. 7, supervised, linear Hebbian learning implies that the recurrent weights
should be proportional to the covariance of the state variables z. To see this,
consider a linear Hebbian learning rule, where z has been entrained by an
external signal and serves as both the presynaptic input and postsynaptic
output:

d
dt Ap = 〈zz�〉θ − αAp, [20]

where α is a weight decay term. This has a fixed point at Ap = 〈zz�〉/α. In
our simulations, we ensure that z is zero-mean such that the second moment,
〈zz�〉, is equal to the covariance.

For the linear–nonlinear map model of recurrent dynamics Eq. 8, neurons
could learn Ar by comparing a target y0 to the predicted yr at the same time
that the initial decoding weights W0 are learned. For example, y0 could be
an external (supervised) signal or the forward predictions in Eq. 4 before
drift occurs, and yr could arise though recurrent activity in response error
to y0. A temporally asymmetric plasticity rule could correlate the between
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these signals with the recurrent synaptic inputs to learn Ar (78). This plasticity
rule should update weights in proportion to the correlations between
synaptic input y�

f and a prediction error y0 − yr :

ΔAr ∝ 〈yf (y0 − yr)
�〉θ − ρrAr , [21]

where ρr = 10−4 sets the amount of regularizing weight decay.
Eq. 8 is abstract, but captures the two core features of error correction

through recurrent dynamics. It describes a population of readout neurons
that predict each other’s activity through recurrent weights. Eq. 21 states
that these weights are adapted during initial learning to minimize the error
in this prediction. We assume Ar is fixed once learned.

Population Simulations. In Fig. 3, we simulated an encoding population of
100 units. Drift was simulated as described in Simulated Drift with τ = 100.
In all scenarios, we simulated M = 60 readout cells tiling a circular θ divided
into L = 60 discrete bins. Learning and/or homeostasis was applied every
five iterations of simulated drift. The readout weights and tuning curves
were initialized similarly to the single-neuron case, but with tuning curves
tiling θ.

For the predictive coding simulations (Eq. 7), we simulated a second
inner loop to allow the network activity z to reach a steady state for each
input x(θ). This loop ran for 100 iterations, with time constant of τz = 100.
The recurrent weights Ap were initialized as the covariance of the synaptic
activations on the first day (Σz, where z(θ) = W�x(θ)), and held fixed over
time. The final value ẑ was used to generate a training signal, ŷ = φ(ẑ) to
update the readout weights. For the recurrent map, recurrent weights were
learned initially by using Eq. 21 and held fixed through the simulations.

For both the linear–nonlinear map and the recurrent feedback models,
weights were updated as in Eq. 5, where the output of the recurrent

dynamics was used to compute homeostatic errors and as the signal ŷ in
Hebbian learning. For naïve homeostasis (Fig. 3B) and Hebbian homeostasis
(with and without response normalization; Fig. 3 C and D), learning rates
were the same as in the single-neuron simulations (Fig. 2; Single-Neuron
Readout). For the linear–nonlinear map (Fig. 3E), learning rates were set to
ηγ = 10−4 and ηβ = 10−1. For recurrent feedback (Fig. 3F), the learning
rates were ηγ = 5 × 10−3 and ηβ = 5. Learning rates for all scenarios were
optimized via grid search.

Response normalization was added on top of Hebbian homeostasis for
Fig. 3D and was also included in Fig. 3 E and F to ensure stability. The
population rate target μp for response normalization was set to the average
population activity in the initially trained state.

Different parameters were used to generate the right-hand column of
Fig. 3 to show the effect of a larger amount of drift. After training the
initial readout, 60% of the encoding features were changed to a new,
random tuning. Learning rates were increased by 50× for naïve home-
ostasis to handle the larger transient adaptation needed for this larger
change. The other methods did not require any adjustments in parameters.
Each homeostatic or plasticity rule was then run to steady-state (1,000
iterations).

Data Availability. Source code for all simulations have been deposited in
GitHub (https://github.com/michaelerule/selfhealingcodes). Previously pub-
lished data were used for this work (47).
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