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Whole-Genome DNA Methylation Profiling of
Intrahepatic Cholangiocarcinoma Reveals Prognostic
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ABSTRACT
◥

Intrahepatic cholangiocarcinoma (iCCA) is the second most
prevalent primary liver cancer. Although the genetic character-
ization of iCCA has led to targeted therapies for treating tumors
with FGFR2 alterations and IDH1/2 mutations, only a limited
number of patients can benefit from these strategies. Epigenomic
profiles have emerged as potential diagnostic and prognostic
biomarkers for improving the treatment of cancers. In this study,
we conducted whole-genome bisulfite sequencing on 331 iCCAs
integrated with genetic, transcriptomic, and proteomic analyses,
demonstrating the existence of four DNA methylation subtypes
of iCCAs (S1–S4) that exhibited unique postoperative clinical
outcomes. The S1 group was an IDH1/2 mutation–specific
subtype with moderate survival. The S2 subtype was character-
ized by the lowest methylation level and the highest mutational
burden among the four subtypes and displayed upregulation of a
gene-expression pattern associated with cell cycle/DNA replica-
tion. The S3 group was distinguished by high interpatient
heterogeneity of tumor immunity, a gene-expression pattern

associated with carbohydrate metabolism, and an enrichment
of KRAS alterations. Patients with the S2 and S3 subtypes had the
shortest survival among the four subtypes. Tumors in the S4
subtype, which had the best prognosis, showed global methyl-
ation levels comparable to normal controls, increased FGFR2
fusions/BAP1 mutations, and the highest copy-number variant
burdens. Further integrative and functional analyses identified
GBP4 demethylation, which is highly prevalent in the S2 and
S3 groups, as an epigenetic oncogenic factor that regulates iCCA
proliferation, migration, and invasion. Together, this study
identifies prognostic methylome alterations and epigenetic dri-
vers in iCCA.

Significance: Characterization of the DNA methylome of intra-
hepatic cholangiocarcinoma integrated with genomic, transcrip-
tomic, and proteomic analyses uncovers molecular mechanisms
affected by genome-wide DNAmethylation alterations, providing a
resource for identifying potential therapeutic targets.

Introduction
DNA methylation is one of the key epigenetic mechanisms regu-

lating gene expression and maintaining genome stability (1), which is
characterized by adding methyl groups to the 50 carbon of cytosine
nucleotides adjacent to CpG dinucleotides, resulting in 5-methylcy-
tosine nucleotides (2). In various cancer types, the hypermethylation of
CpG islands (CGI) in promoter regions decreases the expression of
tumor suppressor genes, whereas hypomethylated regions are posi-
tively correlated with the activation of oncogenes and genome insta-
bility (3). Owing to the implication of DNAmethylation aberrations in
oncogenesis, recent studies based on large scales of patients with
cancer, including those with esophageal adenocarcinoma (4), acute
lymphoblastic leukemia (5), glioblastoma (6), prostate cancer (7), and
meningioma (8), have depicted the DNA methylation heterogeneity
among patients and identified methylation subtypes with potential
therapeutic targets.

As the second most common primary liver cancer with globally
increasing incidence (9), intrahepatic cholangiocarcinoma (iCCA) is
characterized by high invasiveness and, while surgical resection
remains the main treatment option with curative intent, high fre-
quency of postoperative recurrence. Despite great progress in systemic
therapies such as FGFR2-fusion– and IDH-mutation–targeted ther-
apies, only a limited number of iCCA patients can benefit from
them (10). Thus, deeper mechanistic insights into the pathogenesis
of iCCA are still in urgent need for the identification of novel and
effective therapeutics. Currently, research on iCCA is still focused
on the genomic level (11–13). As the DNA methylation pattern
has emerged as a diagnostic and prognostic assay for molecular
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classification of various cancers, characterization of iCCA based on
DNA methylation pattern may therefore provide additional informa-
tion into the molecular heterogeneity from an epigenetics perspective,
which cannot be captured by genomics analysis alone. Previously,
some groups have performed DNA methylation studies on cholan-
giocarcinoma, which included extrahepatic cholangiocarcinoma
(eCCA) samples, perihilar cholangiocarcinoma samples, and iCCA
samples. Considering the genetic variations among different subtypes
of cholangiocarcinoma, a comprehensive understanding of the DNA
methylation landscape on iCCA-only samples will be more beneficial
for the patient-tailored therapies (11, 12, 14). Meanwhile, because
many significant regulatory regions are outside the array-targeted
areas, whole-genome bisulfite sequencing (WGBS) is required to
systematically study the DNA methylation of the entire genome at
single-base resolution. However, at this moment, no sequencing-based
methods have been conducted on the genome-wide DNAmethylation
pattern of iCCAs, especially on a large cohort of patients. Besides, there
is only a limited number of studies reporting the application ofWGBS
on large cancer cohorts. Moreover, multiomics studies integrating
WGBS with other high-throughput approaches to comprehensively
evaluate the effect of DNAmethylation on the inner biological features
of cancer have rarely been reported.

Herein, we presented a WGBS study comprising over 300 iCCA
cases from a multicenter cohort, in which multiple complementary
approaches were integrated, including whole-exome sequencing
(WES), RNA sequencing (RNA-seq), proteomics and IHC. The clin-
ical information in detail facilitates the identification of prognostic
significance of methylome alterations, and further functional analyses
were performed to identify epigenetic drivers with prognostic
potential.

Materials and Methods
Acquisition of clinical specimens

The iCCA samples used in this study were harvested from a
multicenter and retrospective cohort of iCCA patients undergoing
primary resection without any anticancer treatments before surgery
from May 2010 to July 2019, including patients from Zhongshan
Hospital of Fudan University (FU-iCCA, n ¼ 121), West China
Hospital (WCH-iCCA, n ¼ 154), and Tianjin Medical University
Cancer Institute and Hospital (TMUCIH-iCCA, n ¼ 56). Nine non-
neoplastic samples of cholangiocytes originating from the common
bile duct of healthy liver-transplantation donors were enrolled as the
normal controls. Tissues were obtained and stored in liquid nitrogen
for less than 30 minutes after surgical resection. The WES, RNA-seq,
and proteomics data from FU-iCCA cohort were applied for meth-
ylation-based integration analysis (Supplementary Fig. S1A and S1B;
ref. 15). The use of cancer and normal-control specimens was
approved by the Research Ethics Committee of each center, and we
obtained written informed consent from each patient before surgical
resection. The study was conducted according to the Declaration of
Helsinki Principles. The analysis pipelines for multiomics data of
iCCA samples included in this study can be found in Supplementary
Methods.

Public data set
Publicly available chromatin immunoprecipitation sequencing

(ChIP-seq) data of HuCC-T1 for transcription factors (YAP, TEAD1,
TEAD4, and PRH) and H3K27ac were downloaded from Gene
Expression Omnibus (16, 17). The annotation of CGIs for hg19 was
downloaded from the UCSC Genome Browser. CGI shores were

defined as the 2 kb flanking a CGI on each side, whereas shelves were
defined as the 2 kb flanking the shores. CGIs with methylation levels ≥
0.2 were defined as methylated CGIs. Promoters were defined as the 2
kb flanking annotated TSS in GENCODE (release 19). The annotated
gene coordinates in GENECODE annotation were defined as gene
bodies. Publicly available 18-state chromatin segmentation data of
adult human liver were obtained from ChromHMM (http://compbio.
mit.edu/ChromHMM/) and grouped into the following categories:
Active TSS (1_TssA, 2_TssFlnk, 4_TssFlnkD, 3_TssFlnkU), Bivalent
TSS (14_TssBiv), Transcript (6_TxWk, 5_Tx), Enhancer (11_EnhWk,
9_EnhA1, 7_EnhG1, 15_EnhBiv, 10_EnhA2, 8_EnhG2), Heterochro-
matin (12_ZNF/Rpts, 13_Het), Repressive (17_ReprPCWk,
16_ReprPC), and Quiescent (18_Quies). Annotations of consensus
PMDs, HMDs, and solo-WCGW CpGs across various malignant
tissues were obtained at https://zwdzwd.github.io/pmd.

Cell lines and cell culture
HuCC-T1 and HCCC-9810 human iCCA cell lines authenticated

and tested negative for Mycoplasma were purchased from the Cell
Bank of the Shanghai Institute for Biological Sciences (Chinese
Academy of Sciences). These two cell lines were maintained in
RPMI-1640 medium with 10% fetal bovine serum (HyClone) and
cultured in a humidified incubator at 37�Cwith 5%CO2. Themethods
for RNA interference and Western blot analysis can be found in
Supplementary Methods.

DNA isolation and WGBS
Genomic DNA from tissues was extracted using the TiangenDP304

kit according to the manufacturer’s protocol. DNA purity was mea-
sured by the NanoPhotometer spectrophotometer (IMPLEN). DNA
was quantified using Qubit DNA Assay Kit in Qubit 2.0 Fluorometer
(Life Technologies). A total amount of 5.2-mg genomic DNA spiked
with 26 ng lambda DNA per sample was randomly fragmented into
200 to 300 bp with Covaris S220, followed by end repair and adenyla-
tion. Cytosine-methylated barcodes were ligated to sonicated DNA
following the manufacturer’s instructions, then the barcode-ligated
DNA fragments were treated twice with bisulfite using EZ DNA
Methylation-GoldTM Kit (Zymo Research), which was followed by
PCR amplification of bisulfite-treated single-strand DNA fragments
using KAPAHiFi HotStart Uracilþ ReadyMix (2�), quantification of
library concentration by Qubit 2.0 Fluorometer (Life Technologies),
and assessment of insert size on Agilent Bioanalyzer 2100 system.
Finally, the constructed library was sequenced on an IlluminaNovaSeq
platform atNovogene Co., Ltd., in which 150 bp paired-end reads were
generated.

Consensus clustering for variably methylated blocks
To characterize the DNA methylation heterogeneity among iCCA

candidates at the whole-genome level, we first divided the genome into
continuous genomic regions (blocks) showing homogeneous methyl-
ation levels across multiple CpGs for each iCCA sample by wgbstools
(https://github.com/nloyfer/wgbs_tools; ref. 18) with parameters “–
min_cpg 3 –max_bp 5000.” Blocks with sufficient coverage of at least
10 observations (calculated as sequenced CpGs) over 2 of 3 of the
iCCAs included were further retained. K-nearest neighbor (k-NN)
imputation by R package “pamr” (v 1.56.1) was applied to impute the
missing values. Principal component analysis (PCA) was then per-
formed on the retained blocks (n ¼ 2,150,292) in R using the base
command “prcomp” (parameters: center ¼ TRUE; scale ¼ FALSE).
The elbow method showed that the optimal number of PCs is 3 or 4,
but PC4 was excluded, as it contributed less than 5% of the variance
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(Supplementary Fig. S2A). In contrast, both PC1 and PC3 contributed
to > 5% variance. Thus, variable blocks from the first three PCs were
chosen for analysis. Then, we selected the top 666 blocks from PC1 to
PC3 (1,998 blocks) based on the absolute gene loading score values
within eachPC. The top 1,998 blockswere used forK-means consensus
clustering to generate iCCA subtypes using R package “Consensu-
sClusterPlus” (v1.54.0) with the following parameters: number of
repetitions: 1,000 bootstraps; pItem: 0.8 (resampling 80% of any
samples); pFeature: 0.8 (resampling 80% of any blocks); clusterAlg:
“km”; innerLinkage: average, finalLinkage: average, distance: Euclid-
ean; lower limit of cluster number: 2; upper limit of cluster number: 6.
Selection of cluster number was based on the average pairwise con-
sensus matrix within consensus clusters, the delta plot depicting the
relative change in the area under the cumulative distribution
function curve, and the averaged silhouette distance for consensus
clusters. A 4-cluster was selected as the best solution because the
consensus matrix with k ¼ 4 exhibited the clearest separations
among clusters (Supplementary Fig. S2B–S2D). Moreover, the
average silhouette distance reached the highest when k ¼ 4 (Sup-
plementary Fig. S2E). Based on the evidence above, the iCCA
WGBS data were clustered into 4 groups. Using the top 333,
1,000, 1,333, or 1,666 blocks from each PC only regrouped 1% to
6% of iCCAs, suggesting the number of selected blocks across the
top three PCs did not affect the results of consensus clustering.

Global DNA methylation analysis
To avoid the bias caused byCGI, the globalmethylation level of each

sample was calculated using the arithmetic mean of the methylation
levels of all CpGs outside CGIs, as the high CpG densities within CGIs
yield unbalanced mean methylation values, not representative of
global methylation. The CGI methylation level of each sample was
determined using the arithmetic mean of the methylation levels of all
CpGs within CGIs. The methylation of each consensus partially
methylated domain (PMD) or highly methylated domain (HMD) was
determined by the arithmetic mean across solo-WCGW CpGs within
the PMD or HMD. Overlap of CpGs with features was determined
using bedtools (19) “intersectBed.” Only features covered by at least 3
CpGs were considered for further analyses.

Clustering of CGIs
To identify iCCA-specific CGI clusters, we selected commonly

covered CGIs between iCCAs and normal controls, followed by CGI
clusters generated by R package “ConsensusClusterPlus” (v1.54.0)
with the following parameters: number of repetitions: 100 bootstraps;
pItem: 0.8; pFeature: 1; clusterAlg: “pam”; innerLinkage: average,
finalLinkage: average, distance: Euclidean; lower limit of cluster num-
ber: 2; upper limit of cluster number: 12. CGIswith an arithmeticmean
methylation level over 0.8 or less than 0.2 were excluded for clustering.
Three clusters were selected as the best solution based on the consensus
matrix. CGIs were annotated to overlap specific features (gene body,
promoter, transcription factor binding site, H3K27ac, consensus
PMDs, and HMDs) if either 20% of the CGI or 20% of the features
were overlapping. The chromatin state of each CGI was determined by
the largest overlap. CGIs with an arithmetic mean methylation level
less than 0.2 or over 0.8 were designated as "Cluster low" and "Cluster
high" clusters, respectively.

Analysis of Infinium HumanMethylation450 BeadChip
To verify our WGBS-based subtyping on global iCCA populations,

we recruited 450K data of iCCAs from the studies by Goeppert and
colleagues (11) and Jusakul and colleagues (12) in IDAT format. Raw

data in IDAT format were preprocessed using the R package “ChAmp”
(v 2.21.1). To validate the accuracy of WGBS-based subtyping, we
performed consensus clustering onblockswith probes covering the top
1,998 variable blocks across iCCAs in this study by R package “Con-
sensusClusterPlus” (v1.54.0) with the same parameters described
above, in which 269 of the top 1,998 variable blocks were involved.
For each of these blocks, the arithmetic mean b value from probes
within this block was used to represent the methylation level.

Tissue microarray experiment
iCCA samples from patients in the WCH-iCCAs (n ¼ 59) were

recruited for tissue microarray (TMA) construction, for which the
tissue core punctured from a representative area of the formalin-fixed,
paraffin-embedded (FFPE) slide of each iCCA samplewas selected. For
immunostaining, TMA slides were first deparaffinized in xylene and
rehydrated by sequential incubation in EtOH/water solutions, fol-
lowed by microwave antigen retrieval. After blocking endogenous
peroxidase and nonspecific binding sites, the slides were incubated
overnight at 4�C for anti-GBP4 primary antibody (Abcam, No.
ab232693) according to the manufacturers’ recommendation, and the
corresponding secondary antibody and 3,30-diaminobenzidine chro-
mogens were applied to perform the staining. Slides were then digitally
scanned in the Aperio AT system (Aperio, Leica Microsystems) and
reviewed by two experienced pathologists who were blind to the
clinical parameters. The expression of GBP4 was recorded from 5
representative areas at 20�magnification in each stained iCCA section
by using a modified histologic score (H-score; ref. 20) based on the
percentage of positively stained cells and the intensity of staining (with
amaximum score of 300). The arithmeticmean value of the 5 areas was
used for further analyses.

Cell viability and migration/invasion assays
Cell viability was examined by Cell Counting Kit-8 (CCK-8) assay

(Beyotime Biotechnology). Detailed methodology initiated with seed-
ing 1.5� 103 cells suspended in 100 mL of complete culture media into
96-well plates, which was followed by 10 mL of CCK-8 solution added
into each well at the indicated time point and incubated at 37�C for
2 hours. Absorbance detection of each well was performed using the
EonTM Microplate Reader (BioTek) at a wavelength of 450 nm.

Migration/invasion assays were executed utilizing a transwell
chamber (Corning Costar) coated with (invasion) or without
(migration) Matrigel. For the migration assay setup, a cell popu-
lation of 2 � 104 cells, commandeered in a volume of 500 mL of
serum-depleted medium, was planted in the upper chamber in the
insert of a 24-well plate. Correspondingly, for the invasion assays,
4 � 104 cells, suspended in the same serum-free medium volume,
were placed in equivalent topographical conditions. To the lower
chamber, a medium complemented with a 10% FBS concentration
was introduced. After an incubation period of 24 hours, cells
revealed to have migrated to the nethermost surface of the chamber
were immobilized with paraformaldehyde and stained utilizing a
crystal violet reagent.

Statistical analyses
All the statistical analyses were performed using R (v4.2.0). Mann–

Whitney or Kruskal–Wallis test was used to compare quantitative data
between groups. The chi-square or Fisher exact test was used to
compare categorical data. Log-ranked tests were used to determine
statistical significance between groups in all Kaplan–Meier (KM)
curves. A multivariable Cox regression model was performed by
integrating variables with statistical significance in univariable Cox
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Figure 1.

WGBS-basedmultiomics profiling of iCCAs.A,Methylation subtype–based supervised hierarchical clustering of iCCAs (n¼ 331) and normal controls (N, n¼ 9) using
themost variablemethylation blocks (1,897 of 1,998) across iCCAs, alongwith the clinicopathologic features of eachmethylation subtype. It should be noted that 101
blocks identified in iCCA samples were not covered by WGBS data in normal controls. Thus, only commonly covered blocks (n ¼ 1,897) by both iCCAs and normal
controls were visualized in this figure. B, KM curve for the OS of each methylation subtype. (Continued on the following page.)
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regression analysis. The threshold for statistical significance was
defined as P < 0.05 or BH-adjusted P < 0.05.

Data availability
The previously published WES, RNA-seq, and proteome data

analyzed in this study can be viewed in the biosino National Omics
Data Encyclopedia (NODE) database at OEP001105. The 450K Bead-
Chip-array data of iCCAs analyzed in this study were obtained
from Gene Expression Omnibus at GSE201241 and GSE89803. The
ChIP-seq data of HuCC-T1 analyzed in this study were obtained from
Gene Expression Omnibus at GSE68388. The annotation of CGIs for
hg19 was obtained from the UCSCGenome Browser at http://hgdown
load.cse.ucsc.edu/goldenpath/hg19/database/. The BED file of the
annotated TSSs was obtained from GENCODE (release 19) at
https://www.gencodegenes.org/human/release_19.html. The 18-state
chromatin segmentation data of adult human liver were obtained from
ChromHMM at http://compbio.mit.edu/ChromHMM/. Annotations
of consensus PMDs, HMDs, and solo-WCGW CpGs across various
malignant tissues were obtained from Zhou and colleagues (21) at
https://zwdzwd.github.io/pmd. TheWGBS data of iCCAs generated in
this study have been deposited in the National Genomics Data Center
database at HRA004700. Access to these data will be granted upon
completion of the following forms from applicants: (i) Ethical approval
of the research project; (ii) a data sharing agreement for the project
between the data owner (corresponding authors) and the PI/colla-
borator of the project. All other raw data generated in this study are
available upon request from the corresponding author.

Results
iCCA cohorts and data resources

To characterize the DNAmethylation landscape of iCCA at single-
base resolution, WGBS was performed on 331 primary iCCA tumors
from three independent centers, including Zhongshan Hospital of
Fudan University (FU-iCCA, n ¼ 121), West China Hospital (WCH-
iCCA, n¼ 154), and Tianjin Medical University Cancer Institute and
Hospital (TMUCIH-iCCA, n¼ 56). Meanwhile, nine healthy samples
of cholangiocytes originating from the common bile duct were ana-
lyzed as the normal controls (Supplementary Fig. S1A). The clinico-
pathologic features of the iCCA patients are shown in Supplementary
Table S1.

Paired-end sequencing generated a mean aligned sequencing depth
of 21� in each sample after removing duplicate reads, which resulted
in �22 million CpGs at 10� per sample across autosomes (Supple-
mentary Table S2). Compared with the previously reported array-
based methods (11, 12, 14), WGBS identified far more covered CpGs
across samples. Of note, WGBS retained over 3 million CpGs, which
were commonly captured at 10� by all the tumor and normal samples

included. Therefore, theWGBS results might potentially providemore
methylation information than the array-based methods. In addition,
WES, RNA-seq and proteomics data on the same tumors in the FU-
iCCA cohort (15) and previously publishedChIP-seq data of iCCA cell
lines (16, 17) were also incorporated in this study (Supplementary
Fig. S1A and S1B).

WGBS profiling of iCCAs revealed methylation subtypes with
loss of global methylation

To investigate the variation in DNA methylation patterns across
iCCA individuals, we coalesced CpG methylations across the entire
genome of each iCCA into blocks of homogeneouslymethylatedCpGs.
Unsupervised PCA based on WGBS blocks showed no obvious batch
effect was observed among the three centers (Supplementary Fig. S1C).
By K-means consensus clustering (Supplementary Fig. S2A–S2E) on
the top variable blocks, four DNA methylation subtypes (S1–S4)
with apparent intergroup heterogeneity were revealed, in which most
of the blocks were hypomethylated in iCCAs when compared
with normal controls (Fig. 1A; Supplementary Fig. S3 and Supple-
mentary Table S3). This clustering output was different from the array-
based clustering (n ¼ 3) on 97 iCCAs by Jusakul and colleagues (12),
in which even one cluster consisted almost entirely of patients
with liver fluke, highlighting the necessity of DNA methylation sub-
typing at the genome-wide level. To validate our WGBS-based sub-
typing for the global iCCA populations, we reanalyzed the array-based
(Infinium HumanMethylation450 BeadChip, 450K) DNA methyla-
tion data [from Jusakul and colleagues (12) and Goeppert and
colleagues (11)] from 148 iCCA samples. It was found that 98.8% of
450K probes could be detected byWGBS even at a minimum coverage
of 10, whereas most of the CpGs found byWGBS (98.0%) could not be
targeted by 450K array (Supplementary Fig. S4A). Consensus clus-
tering using 450K probes covering 269 of the top 1,998 variable blocks
across iCCAs in this study also revealed four DNA methylation
subtypes with apparent intergroup heterogeneity (Supplementary
Fig. S5A–S5C), each of which could be classified into one of the
WGBS-based methylation subtypes (Supplementary Fig. S5D–S5E),
suggested the robustness of our subtyping methods. Remarkably,
geographic analysis (Supplementary Fig. S5E) on the 450K iCCA
cohort showed that most of the patients from East Asia (54 of 63)
fell into the S2 subtype, whereas patients from Europe were equally
distributed among S1, S3, and S4 subtypes. These findings indicated S2
as a specific subtype for East Asians and proved the sufficiency of our
WGBS-based subtyping in covering global iCCA incidences.

Regarding clinical parameters, both S2 and S3 were featured by
tumors with higher carbohydrate antigen 19-9 (CA19-9) level, carci-
noembryonic antigen (CEA) level, and frequency of vascular invasion.
Of note, a higher frequency of iCCA patients with hepatolithiasis was
observed in S3 (5.77%) compared with the other three subtypes,

(Continued.) C, Multivariable regression hazard ratio (HR) forest plots for OS using clinical variables and methylation subtype based on Cox proportional hazards
model (Wald test, two-sided, no adjustment for multiple comparisons). Pink dots, means; error bars, 95% confidence intervals. Only variables reaching statistical
significanceby univariable analysis (P<0.05)were included in this analysis.D,Genomebrowser tracks forWGBSdata of the representative iCCAof eachmethylation
subtype and a representative normal control for an exemplary region (chr19: 6,282,123–6,425,048). The violin plot shows the global methylation levels averaged
across all covered CpGs outside of CGIs per sample for iCCAs in eachmethylation subtype and normal controls. The top and bottom hinges of boxplots inside violins
represent the 75th and 25th percentiles, respectively. The center line represents the median. The whiskers extend to the largest and smallest values within 1.5 times
the interquartile range. ThepairwiseMann–Whitney testP values are listed above the violin plot.E,Density plots showing comparisonsof themeanmethylation levels
of CpGs commonly identifiedby iCCAs in each subtype and normal controls. The horizontal and vertical axes represent themeanCpGmethylation levels in iCCAs and
normal controls, respectively. Initially, these plotswere dot plots showing themethylation of eachCpG, inwhich each dot represented aCpGcommonly identified. For
the convenience of visualization, we converted the dot plots into gradient density plots, in which the density of CpGs (dots) in a region is represented by colors
(blue, low density; red, high density). The bar plots next to density plots show the percentage of Dmethylation (iCCAs vs. normal controls) in each range.
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despite the limited individuals with hepatolithiasis in this study. KM
analysis showed that patients from S2 and S3 had significantly poorer
overall survival (OS) than those from S1 and S4, with no statistical
difference found between each other. Notably, patients in S4 had the
best OS among the four subtypes, with a median OS of �60 months
(Fig. 1B). Multivariable Cox analysis confirmed that our DNA meth-
ylation-based subtyping was a significant prognosticator independent
of clinicopathologic features (Fig. 1C).

Global DNA methylation loss (excluding CpGs inside CGIs) has
long been regarded as a characteristic feature of oncogenesis (22, 23),
which has been highlighted by a previous pan-cancer study based on
WGBS (5). Consistently, a representatively global methylation loss
(excluding CpGs inside CGIs) was readily seen in S1–S3, with S2
showing the lowest methylation level among the four subtypes,
whereas S4 demonstrated a methylation level comparable to that of
normal controls (Fig. 1D; Supplementary Fig. S6A and S6B). Corre-
lation analysis on normal-control samples and each iCCA subtype also
showed a higher similarity in the global methylation level (excluding
CpGs inside CGIs) between S4 and normal controls when compared
with S1–S3, and only mild gain in CpG methylation (Dmethylation >
0.1) was observed across iCCA subtypes (Fig. 1E). These findings
turned out to be in sharp contrast to the results from the array-based
works claiming the symbolic hypermethylation states of iCCA (11, 14).
One possible reasonmay be due to the variations as to the information
of CpG sites captured by array-basedmethods andWGBS. Specifically,
previous studies only analyzed the methylation states of�10,000 CpG
sites (11, 14). In contrast, our analysis of global methylation states was
based on information from about 20 million CpGs per sample
(Supplementary Fig. S4B), which potentially provided more informa-
tion and resulted in inconsistencies with the previous studies. To verify
this hypothesis, we recalculated the global methylation level of each
WGBS individual using CpGs overlapping 450K probes (Supplemen-
tary Fig. S4C), which inversely showed a significant trend toward
hypermethylation in the majority of iCCAs when compared with
normal controls, further proving the necessity of WGBS for an
accurate evaluation of iCCADNAmethylation. Altogether, theWGBS
revealed four methylation subtypes of iCCAs with clinical significance
and that loss of global methylation (excluding CpGs inside CGIs) is a
common feature among most of the iCCAs.

Characterizing the methylation pattern of each iCCA subtype
It has been reported that global loss of DNAmethylation (excluding

CpGs inside CGIs) in cancers tends to accumulate in PMDs, the
genomic regions with incomplete loss of methylation, which are prone
to CpGs lacking flanking CpGs, known as solo-WCGW CpGs (21).
Contradictory findings indicate that hypomethylation of PMDs may
confer a growth advantage to neoplastic cells, suggesting a potential
mechanistic role in tumor progression, or conversely could merely be
an epiphenomenon of oncogenesis, lacking causative significance in
the pathophysiology of cancer (24, 25). Contrasted with PMD, HMD
make up the remainder of the genome and help maintain the DNA
methylation of the cell genome by “neighbor-guided correction” (26).
In addition, aberrantly hypermethylated CGI has long been regarded
as a symbolic epigenetic reprogramming in cancer (27). Typically,
promoter CGIs act as an epigenetic control responsible for aberrant
gene inactivation in cancer. Besides, the differentially methylated
regions (DMR) between tumor and normal samples can provide
information on possible functional regions involved in gene transcrip-
tional regulation. Based on these facts, to comprehensively evaluate the
DNA methylation pattern of iCCAs, 6 methylation types were sum-
marized for each iCCA subtype (Fig. 2A) in this section, including

methylation patterns in PMDs, solo-WCGW CpGs, HMDs, CGIs,
hypermethylated DMRs (hyperDMRs, tumor vs. normal) and hypo-
methylated DMRs (hypoDMRs, tumor vs. normal).

First, to further characterize the global hypomethylation observed
among the iCCA candidates, measurements were taken to assess the
DNA methylation level in solo-WCGW CpGs, CGIs, and consensus
PMDs/HMDs (only solo-WCGWCpGswere involved) obtained from
the pan-cancer analysis (Fig. 2B; ref. 21). Overall, most iCCAs showed
a decreased methylation level of solo-WCGW CpGs (Fig. 2B) but did
not deviate much (D methylation ≤ 0.1) from the average of normal
controls regarding solo-WCGW CpGs in PMDs or HMDs (Fig. 2B;
Supplementary Fig. S7A). However, a pronounced trend of hypo-
methylation (Dmethylation > 0.1) in PMDs and a minor shift toward
hypomethylation (D methylation ≤ 0.1) was found in HMDs for S2
iCCAs, respectively (Supplementary Fig. S7A). In concordance with
these findings, S2 showed significantly lower methylation levels of
solo-WCGW CpGs in both PMDs and HMDs when compared with
other subtypes (Fig. 2B). When additionally analyzing solo-WCGW
CpG methylation in PMDs across chromosome 16p, for example, we
did observe that these CpGs were strongly hypomethylated in iCCAs
compared with normal controls, with a sharp contrast in the hypo-
methylation level between S2 and other subtypes, and solo-WCGW
CpGs of S2 in HMD regions were also prone to loss of methylation
(Supplementary Fig. S7B). Therefore, these results suggested that
methylation patterns of PMDs and HMDs are distinct on a
genome-wide scale in each iCCA methylation subtype. Regarding the
methylation level in CGIs, a focal hypermethylation state in CGIs was
observed across all the iCCA subtypes (Fig. 2B; Supplementary
Fig. S8). Meanwhile, we found that S1 and S4 exhibited a higher CGI
methylation level than S2 or S3, and the normal tissues showed the
lowest CGI methylation level (Fig. 2B). This was in line with the
findings in most solid tumor types (5).

To globally assess the variability of PMDs across iCCAs, we defined
PMDs for each sample using MethylseekR (see Supplementary Meth-
ods). Compared with normal controls, most of the iCCA samples
showed a higher fraction of the genomeharboringPMDs, especially for
samples of the S2 subtype, with a median value over 50% (Supple-
mentary Fig. S9A). Regarding themethylation level of PMDs, however,
only S2 demonstrated significantly lower (P < 0.001) PMD methyl-
ation compared with normal controls (Supplementary Fig. S9B).
Indeed, evaluation of the methylation of recurrent PMDs (rPMD; see
SupplementaryMethods) of each iCCA subtype also showed a globally
lower methylation in rPMDs of S2 when compared with other iCCA
subtypes (Supplementary Fig. S9C), whichwasmainly attributed to the
lowest global methylation of S2 among these four subtypes.

Previous WGBS-RNA-seq integration analysis revealed the down-
regulation of genes when inside PMDs (28). With available gene-
expression data at both mRNA and protein levels, we were able to
determine the mean expression of genes as a function of PMD
frequency through multiomics integration. As a consequence, there
were numerous genes located in PMDs of iCCAs, with a median
percentage of over 30%, and S3 iCCAs tended to have the most
considerable number of genes within PMDs among the four methyl-
ation subtypes (Supplementary Fig. S10A). As expected, across all the
iCCA subtypes, genes inside PMDs are expressed at consistently lower
levels with higher variations than genes outside PMDs at both mRNA
and protein levels (Supplementary Fig. S10B and S10C). Moreover,
genes within PMDs showed a tendency toward lower expression in
highly frequent PMDs (Supplementary Fig. S10D and S10E). These
were consistent with the findings in breast cancer (28). Gene set
enrichment analysis showed that genes downregulated when inside
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Figure 2.

Characterizing themethylation pattern of each iCCA subtype.A,Anupfront list showing themethylation types thatwill be analyzed in this section.B,Themethylation
level of solo-WCGWCpGs, PMDs, HMDs, and CGIs in each iCCA subtype and normal controls. The top and bottom hinges of boxplots inside violins represent the 75th
and 25th percentiles, respectively. The center line represents the median. The whiskers extend to the largest and smallest values within 1.5 times the interquartile
range. The pairwise Mann–Whitney test P values are listed above the violin plot. C, Circo plots show the genome location of DMRs in each iCCA subtype. Red,
hyperDMRs; blue, hypoDMRs. D, DNAmethylation profiles for ChIP-seq (16, 17)–based transcription factor binding and H3K27ac sites from iCCA cell lines. N, normal
controls. E,MIRA scores for transcription factor binding and H3K27ac sites inD. The top and bottomhinges represent the 75th and 25th percentiles, respectively. The
center line represents themedian. Thewhiskers extend to the largest and smallest valueswithin 1.5 times the interquartile range. F, Enrichment of DMRs of each iCCA
subtype for regulatory motifs. Shown are the top transcription factor binding site motifs using HOMER motif analysis (binomial P values). Motifs similar to previous
(more significant) hits are not included.
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PMDs were involved in the initial processes of cell development
(Supplementary Fig. S10F and S10G), suggesting the participation of
PMDs in downregulating genes related to iCCA carcinogenesis.

Strong methylation dip in putative regulatory regions of iCCAs
Next, local DNA methylation alterations for each iCCA subtype

were evaluated by calling subtype-specific DMRs to identify the
different methylation patterns between each iCCA subtype and nor-
mal controls (Supplementary Table S4A–S4D). We found that
although most of the iCCAs were globally hypomethylated,
hyperDMRs comprised the majority of DMRs in S1, S3, and S4,
whereas S2 showed significantly more hypoDMRs (Fig. 2C). Enrich-
ment analysis (Supplementary Fig. S11) showed the highest enrich-
ment of hyperDMRs in CGIs and chromatin states predicted for adult
liver [transcription start sites (TSS) in bivalent genes] in each iCCA
subtype, further supporting the focal hypermethylation of iCCA in
CGIs. Of note, hypoDMRs tended to enrich in H3K27ac-associated
regions and transcriptional binding sites (TFBS) across the genome.
Overall, these results confirmed the absence of strong hypomethyla-
tion in a major proportion of iCCAs (S1, S3, and S4) at the local level
and indicated that DNA methylation changes across iCCAs affect
similar types of regions.

A negative correlation of the DNA methylation level with tran-
scription factor occupancy and regulatory activity at the binding sites
has been demonstrated (29–32). To further investigate the local
depletion ofDNAmethylation at putative regulatory regions identified
in iCCA cell lines (16, 17), we calculated theDNAmethylation inferred
regulatory activity (MIRA) score (33) for each iCCA and normal
control, with a highMIRA score reflecting a high regulatory activity of
a given region set. A total of five markers (H3K27ac, PRH, TEAD1,
TEAD4, and YAP) were enrolled for analysis as they were identified as
putative regulatory regions by ChIP-seq (16, 17). For each iCCA, a
strong methylation dip was observed at these sites when compared
with the surrounding genome, suggesting the association of regulatory
activities with hypomethylation at these sites (Fig. 2D). Although
statistical significance was not always achieved, putative regulatory
regions showed an inclination toward increasedMIRA scores in iCCAs
compared with normal controls. Moreover, comparison among iCCA
subtypes revealed a subtype-specific transcription factor regulatory
pattern, in which S2 and S4 generally showed higherMIRA scores than
S1 and S3 (Fig. 2E). To further calculate the enrichment of DMRs on
known transcription factor binding motifs, we performed motif
analysis using HOMER (34). We found that the top shared motifs
for hyperDMRs in each subtype included bHLH (such as
Twist2/Tcf21) and CTF (such as NF1) transcription factors acting as
tumor suppressors (35–38), whereas the shared top motifs for
hypoDMRs in each subtype included bZIP transcription factors (such
as JunB/Fos/Jun-AP1) acting as oncogenes (Fig. 2F; Supplementary
Table S5A and S5B; refs. 39–41). The findings suggested hypomethy-
lation of bZIP-binding sites as a symbolic biological feature of iCCA.

Clustering of CGIs revealing different CGI subgroups with
biological relevance

Although iCCA is characterized by global methylation loss (exclud-
ing CpGs in CGIs), it was also notable that a positive association was
revealed between averaged global and CGI methylation levels across
iCCAs (Fig. 3A). In addition, the averaged CpG methylation level
within CGIs was much lower than that of global methylation in each
sample, which ranged from < 0.25, corresponding to the lowest global
methylation, to about 0.5 for samples with the global methylation level
reaching 0.8 (Fig. 3A). To depict the biological relevance of CGI

methylation accumulation in iCCAs, we performed PCA on com-
monly covered CGIs (n¼ 3,103) across all tumor and normal-control
samples, in which the averagedmethylation value of CpGs within each
CGI was used, showed a distribution of samples by CGI methylation
and a continuous range from levels close to normal controls to more
extreme hypermethylation, rather than a clear separation of normal
controls from tumor samples or a clear separation of eachmethylation
subtype from the others (Fig. 3B). PCA based on the methylation
states of CGIs in each sample (the percentage of methylated CGIs,
which was defined as > 0.2) also showed a similar distribution pattern
(Fig. 3C), suggesting the accumulation of CGI hypermethylation
across iCCA subtypes. To inspect these findings further, we then
performed a consensus clustering based on the commonly covered,
variable CGIs across tumors and normal controls (n ¼ 805). CGIs
with an arithmetic mean methylation over 0.8 or less than 0.2 were
excluded for clustering, as these CGIs contributed little to the varia-
tions. Finally, five CGI clusters were identified (Fig. 3D; Supplemen-
tary Fig. S12A), including three clusters identified by consensus
clustering (Clusters 1–3) and two clusters not recruited for consensus
clustering, which were designated as Cluster low (CGIs with an
arithmetic mean methylation < 0.2) and Cluster high (CGIs with an
arithmetic mean methylation > 0.8). Cluster low mostly consisted of
unmethylatedCGIs (methylation level< 0.2) across iCCAs and normal
controls, whereas both Clusters 1 and 2 mostly consisted of unmethy-
lated CGIs in normal controls, and heterogeneous and sample-specific
methylation states in the iCCAs. In contrast, CGIs of Cluster 3 and
Cluster high showed a relatively homogeneous gain of methylation
across iCCAs and normal controls, tending to be fully methylated in
almost all samples (Fig. 3D; Supplementary Fig. S12B).

To elucidate the outcomes of CGI consensus clustering, we analyzed
the overlap of CGIs with genomic features and annotated functional
elements in each cluster (Supplementary Table S6), specifically for
those exhibiting sustained low and high levels of methylation (Cluster
low and Cluster high). We found that the fraction of CGIs in gene
bodies increased along with the elevated methylation across clusters
(from Cluster low to Cluster high) and constituted the highest fraction
of CGIs in each cluster, which is presumably owing to the hyper-
methylation of intragenic CGIs as a common mechanism regulating
transcriptional activity in healthy and tumor cells (42–45). On the
other hand, the fraction of CGIs overlapping promoters, enhancer sites
(marked by H3K27ac ChIP-seq peaks; refs. 16, 17), and transcription
factor binding sites decreased along with the elevated methylation
across clusters (from Cluster low to Cluster high; Fig. 3E), suggesting
the stable maintenance of hypomethylation at these transcription-
regulating sites in normal and iCCA samples. Although the fractions of
CGIs overlapping consensus HMDs remain stable across clusters, the
fraction of CGIs overlapping consensus PMDswas significantly higher
in Clusters 1–3 and Cluster high than in Cluster low, which was
consistent with the finding that CGI methylations preferentially
accumulate in PMDs (28). At the same time, the relatively stable
frequency of HMD CGIs across clusters also suggested no preference
for CGI hypermethylation in HMD regions.

As for the chromatin states of CGIs in each cluster (Fig. 3F), we
found that the fraction of active and bivalent TSSs descended from
97.5% (Cluster low) to less than 2% (Cluster high). On the contrary, the
fraction of CGIs overlapping repressive, heterochromatin, and quies-
cent regions increased along with the elevated methylation across
clusters (despite a decreased fraction in Cluster high when compared
with Cluster 3), suggesting a trend of CGI hypermethylation in regions
with low transcriptional activity. Indeed, genes associated with pro-
moter CGIs in Cluster high were mostly silenced at both RNA and
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protein levels, whereas genes in Cluster low remained actively
expressed (Supplementary Fig. S12C and S12D). However, the incon-
sistency between the RNA and protein levels of gene-expression
transition across CGI clusters was found, suggesting the influence of
posttranscriptional regulations. Moreover, genes associated with pro-
moter CGIs in Cluster low and Cluster 1, which were mostly meth-
ylated in S1 and S4, were generally enriched in pathways related to cell
maintenance, such as cell division,mRNAsplicing, differentiation, and
translation, which clarified the reason for their unmethylation states
(Supplementary Fig. S12E and S12F).

Taken together, these findings indicated that the unmethylation
states of CGI are essential for the transcription activity of genes
responsible for cell maintenance in both iCCA and normal samples.

The relationship of iCCAmethylation subtyping with covariates
To explore the association of covariates with different iCCA sub-

types, we performed multiomics integration to identify the genome
and molecular features underlying methylation subtyping. In our
previous work based on a Chinese iCCA cohort consisting of 262
patients (15), we have found somatic copy-number variations (SCNV)

and 16 significantly altered genes with driver potential in iCCAs (15).
The landscape of genetic alterations in this cohort was generally
consistent with previous reports based on White, Asian, and Black
orAfrican populations (12, 14, 46, 47).Of note, this cohort also showed
statistically higher KRAS mutation frequency and lower IDH1,
ARID1A, and TERT mutation frequencies than the cohort of Far-
shidfar and colleagues (14, 15), which is composed of Western iCCA
candidates, suggesting the geographical difference in genomic altera-
tions between Western and Eastern populations. Then, we mapped
these events to this study, the WES data of which were available in
93.4% (113 of 121) of FU-iCCAs. It was shown that S2 demonstrated
the highest tumor mutation burdens and tumor neoantigen burdens
among the fourmethylation subtypes, whereas S4was characterized by
the highest SCNV burdens (Fig. 4A). Furthermore, genetic alterations
closely relating to iCCAs carcinogenesis (48) appeared to be subtype-
specific (Supplementary Tables S7–S9). Specifically, consistent with
the clustering results by multiomics integration (11), we also found a
methylation subtype (S1) that nearly all the samples with IDH (IDH1
or IDH2) mutations (17/18 samples with mutation) were classified
into, and these samples comprised almost all the S1 samples (17/18 S1

Figure 3.

CGI methylation patterns across iCCAs. A, Correlation between global methylation (excluding CpGs in CGIs) and CGI methylation levels across iCCAs. B, PCA based
on themethylationof the commonly coveredCGIs (n¼ 3,103) of iCCAs included in this study.C,PCAbasedon thepercentageofmethylatedCGIs (defined as>0.2) in
the commonly covered CGIs (n¼ 3,103) of iCCAs included in this study. D, Hierarchical clustering of the five clusters of CGIs identified across iCCAs. E, Fraction of
CGIs per cluster overlapping annotated functional elements/genome regions. F, Fraction of CGIs per cluster overlapping chromatin states.
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Figure 4.

The relationship of iCCA methylation subtyping with covariates. A, Genetic profile of different iCCA subtypes in the multiomics cohort (FU-iCCA). Only SCNVs with
chi-square or Fisher exact P values < 0.01 are shown. B, Integrated analysis of altered pathways at transcriptomics and proteome levels among the four methylation
subtypes in the multiomics cohort. C, Comparisons of our methylation subtyping with previous biliary cancer-related molecular (mRNA or protein) signatures.
D, Comparisons of BAP1 protein abundance (left), mRNA level (middle), and global methylation level (right) between BAP1 mutation and wild-type samples in the
multiomics cohort. The top and bottom hinges represent the 75th and 25th percentiles, respectively. The center line represents the median. The whiskers extend to
the largest and smallest values within 1.5 times the interquartile range. E, Correlation between BAP1 expression (protein and mRNA) and global methylation in the
multiomics cohort.
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samples). Interestingly, in the work by Goeppert and colleagues (11),
the IDH-mutation subgroup had amodest OS outcome, whichmirrors
the OS of S1 among our iCCA methylation subgroups. S2 was
characterized by the highest proportion of samples with TP53 altera-
tions (5/15 S2 samples), which showed the worst OS and the lowest
global methylation level. In contrast, the mutations of KRAS, which
were mutually exclusive with IDH1/2, BAP1, and FGFR2 altera-
tions (15), preferentially occurred in S3 (8/13 samples with mutation),
the prognosis of which was also poor. In addition, most of the samples
with BAP1 alterations (15/18 samples with mutation) or FGFR2
fusions (13/17 samples with fusions) were classified into subtype
S4, which had the most favorable prognosis and the highest global
methylation level. Meanwhile, amplification of known oncogenes
(such asMCL1 andMDM4, located in 1q21.3 and 1q32.1, respectively)
and deletions of tumor suppressors (such as ARID1A and MLH1,
located in 1p36.11 and 3p22.2, respectively) were dominantly pre-
sented by S4 samples.

Next, to investigate the molecular aberrations related to different
methylation subtypes, we conducted a pairwise analysis comparing
the gene-expression profiles between each methylation subtype
with the others using both RNA-seq and proteomic approaches
(Fig. 4B). S1 reached the highest enrichment of TGFb signaling,
ErbB signaling, and mTOR signaling, whereas S2 had the highest
enrichment of cell cycle, DNA replication, and transcription. S3
was characterized by the highest enrichment of various innate/a-
daptive immunities, carbohydrate metabolism, and cytoskeleton
regulation/ECM interaction. As expected, subtype S1, which con-
tained a higher frequency of IDH mutation, showed enhanced
dependence on oxidative phosphorylation (49–51). Although S1
showed a higher enrichment of oxidative phosphorylation than S2
and S3 at both mRNA and protein levels. However, this pathway
was also found to be enriched in S4 at the mRNA level, which was
potentially attributed to the highly prevalent BAP1-mutant sam-
ples. This was supported by existing evidence indicating the
contributory role of BAP1 mutations in the activation of oxidative
phosphorylation (52, 53).

Furthermore, we compared our DNA methylation subtyping with
previously described molecular subtypes of iCCAs (Fig. 4C; 15,46,54–
57). Besides the signature for survival outcomes (55), no statistically
significant overlap was found between molecular signatures and S2,
and only the signature for mature hepatocyte (MH) was found to be
significantly overlapped with S1. On the contrary, both S3 and S4 had
significant overlap with various molecular signatures. S3 was charac-
terized by hepatic-stem-cell (HpSC) iCCAs with poor survivals,
whereas S4 was characterized by MH iCCAs with good survivals and
cellular differentiation signatures. Moreover, both S3 and S4 demon-
strated a high intersample heterogeneity in tumor immunities, char-
acterized by the large proportion of immunogenic/immune-actiavted
(Job_2020, Group2 and Lin_2022, Group 3, respectively) and
immune-suppressive/immune desert (Job_2020, Group1 Lin_2022,
Group 1; refs. 54, 56) samples presented simultaneously. Further
deconvolution analysis also exhibited that, despite a stronger enrich-
ment of various innate and adaptive immune cell types compared with
other subtypes, a greater intersample heterogeneity of immune infil-
tration was found among S3 samples (Supplementary Fig. S13A–
S13C). Concomitantly, the analysis of immune checkpoints (IC)
showed that most ICs reached statistical significance in the compar-
isons of methylation subtypes (Supplementary Fig. S13D), suggesting
the potential options of IC inhibitor therapies based on DNA meth-
ylation subtyping. It was also notable that both S2 and S3 subtypes have
frequent TP53 mutations. Accordingly, we also performed DMR

analysis (the same methodology as used for iCCA subtype-normal
control comparison) between the S2 and S3 subtypes. Despite the
identification of limited DMRs (Supplementary Table S10), we
observed a DMR located in the 15th exon of OBSCN (Supplementary
Fig. S14A), a well-known tumor suppressor commonly mutated in
various cancer types (58). Although no significant difference in
OBSCN mRNA was found between S2 and S3 (Supplementary
Fig. S14B), therewas a positive correlation betweenOBSCNexpression
and methylation level in the DMR region (Supplementary Fig. S14C),
suggesting the cis association of exon methylation and OBSCN gene
expression.

As a tumor suppressor gene, BAP1 exerts tumor-suppressive func-
tions on cell-cycle control, DNA damage repair, and differentia-
tion (59). A previous study on uveal melanoma proved that BAP1
loss is related to DNA methylation repatterning (60). Because BAP1
alterations were found to be S4-specific (Fig. 4A) and negatively
correlated with gene expression at both RNA and protein levels
(Fig. 4D), we sought to explore the effects of BAP1 on global and
CGI methylations, which showed that BAP1 expression at the RNA or
protein level negatively correlated global methylation of iCCAs, while
exhibited negative association with CGI methylation only at the RNA
level (Fig. 4D and E; Supplementary Fig. S15A). Nevertheless, no
significant DMR was found between BAP1-mutation and wild-type
samples (same methodology as used for iCCA subtype-normal
control comparison), which was further supported by the high
similarity of global methylation pattern between these two groups
(Supplementary Fig. S15B). Unsupervised hierarchical clustering
based on common methylation blocks of FU-iCCAs also showed
that BAP1-mutation samples merely clustered with S4 samples
sporadically, rather than being remotely separated from wild-
type iCCAs (Supplementary Fig. S15C), suggesting the BAP1-
mediated DNA hypermethylation as the symbolic features of S4.
Furthermore, we also analyzed the gene-expression pattern between
BAP1-mutation and wild-type iCCAs, which confirmed the corre-
lation between BAP1 alteration and downregulated activity of
carbohydrate metabolism (Supplementary Fig. S15D), indicating
the involvement of BAP1 loss in one-carbon metabolism and/or
related nutrient pathways inducing DNA hypermethylation (59).

Epigenetically silenced genes with prognostic and therapeutic
implication

To understand which genes underwent transcriptional repression
and consequential downregulation of protein abundance in associa-
tion with methylation changes, we performed an integrative analysis
involvingWGBS, RNA-seq, and proteomics data to evaluate the inner
interactions in DNAmethylation/mRNA/protein (see Supplementary
Methods). Comparison of genes/proteins with both methylation–
mRNA and methylation–protein correlation data showed that the
performances of methylation changes on mRNA-abundance and
protein-abundance predictions were deemed equivalent (median
Spearman rho ¼ �0.045 and �0.051, respectively). To assess the
disagreement in the effect of methylation changes between transcrip-
tomics and proteomics data, we calculated a reversion potential,
corresponding to the difference between Spearman coefficients (see
Supplementary Methods). A high reversion potential suggests genes
being transcriptionally silenced but buffering at the protein level.
Generally, 2,989 genes were reversed at the protein level (2,885 lowly
reversed and 104 highly reversed), corresponding to 38.0% of the
7,857 genes analyzed (Supplementary Fig. S16A). These reversed
proteins were characterized by the highest enrichment of metabolism
pathways (Supplementary Fig. S16B), suggesting the high prevalence
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of other mechanisms rescuing metabolism protein abundance from
methylation changes in iCCAs.

Given that cancer proteome more closely links genotype to phe-
notype thanmRNA,we set a stringent criterion to identify significantly
epigenetically silenced genes in iCCAs using both RNA-seq and
proteomics data (see Supplementary Methods), resulting in 16 genes
with significantly downregulated protein abundance in relation to
increased methylation (Supplementary Table S11). Among these
genes, the epigenetic silencing of GBP4, which belongs to a family of
GTPases induced by interferon-gamma (61), demonstrated the most
significant prognostic implication (Fig. 5A) and the most variable
prevalence among methylation subtypes (Fig. 5B). Thus, we focused
on GBP4 methylation and its biological relevance. Previous studies
revealed significant but heterogeneous correlations between GBP4
expression and survival outcomes in various cancer types (61). To
recognize the potential role of GBP4 methylation in iCCA, we first
analyzed the association of methylation states in GBP4 (“silenced” or
“not silenced”) with the survival outcomes of patients in this study
using KM curve, proving that cases with silenced GBP4 had better
survival outcomes (log-rank P¼ 0.00037), which was also validated by
the array-based cohort of Jusakul and colleagues (log-rank P ¼ 0.029;
ref. 12), suggesting GBP4 methylation as an epigenetic prognostic
indicator for favorable survival in iCCAs (Fig. 5C and D). Moreover,
IHC staining also showed that the GBP4-methylated samples had a
significantly lower level of GBP4 expression than those unmethy-
lated ones (Fig. 5E and F). Tumors with demethylated GBP4 were
significantly associated with higher expression of genes involved in
carbohydrate metabolism, drug metabolism, ECM interaction, bile
acid/fatty acid synthesis, and various innate/adaptive immune
pathways (Supplementary Fig. S17A and S17B). Further function
analysis demonstrated that silencing the expression of GBP4 sig-
nificantly inhibited iCCA cell proliferation, migration, and invasion
(Fig. 5G-I). These results implied that the demethylation of GBP4,
as a robust prognostic biomarker, functions as a strong oncogenic
factor for iCCA.

Discussion
By integrating WGBS with multiomics approaches, including

genetic, transcriptomic, and proteomic analyses, our study has dem-
onstrated that iCCAs can be classified into four DNA methylation
subtypes, each of which exhibits distinct biological features and clinical
outcomes (Fig. 6). iCCA S1, phenocopying the IDH-mutation
group (11), is almost completely composed of patients with IDH
mutation, which accounts for �15% of the iCCA population world-
wide (48), suggesting patients of this subtype as ideal candidates for
IDH inhibitors (e.g., ivosidenib; ref. 62). iCCA S2 is characterized by
the lowest methylation level and the highest mutation burden among
the four subtypes, and a gene-expression pattern associated with cell
cycle/DNA replication, whereas iCCA S3 is characterized by consid-
erably high interpatient heterogeneity of tumor immunity, a gene-

expression pattern associated with carbohydrate metabolism and a
preference for KRAS alterations, which closely associates with the
response of anti–PD-1 therapy synergistically enhanced by interleu-
kin-1 receptor antagonist (IL1 Ra; ref. 63). Based on the results from
in vitro function analyses, the high frequency of GBP4 demethylation
in S2 and S3 also highlights the urgent need for future anti-GBP4
treatment, and the poor survival of S2 and S3 also raises the necessity of
combined surgical-adjuvant therapies for these two subtypes.
Although characterized by the highest SCNV burdens, the fourth
subtype, iCCA S4, has the best survival benefits from surgical resection
and shows a preference for FGFR2 fusions/BAP1 mutations, suggest-
ing them as ideal candidates for FGFR inhibitors (e.g., pemigatinib;
ref. 64). Moreover, the statistically significant overlap of S3/S4 with
proteomics subtypes (Dong_2022; ref. 15) also indicates the sensitivity
of these two subtypes to EGFR inhibitors (S3) and gemcitabine/pa-
clitaxel (S4). Despite interpatient heterogeneity in tumor immunity,
the major proportion of immunogenic/immune-activated patients in
the S3 and S4 subtypes suggests that it is worth trying immunothera-
pies on these two subtypes. Meanwhile, the controversy between the
superior survival and high frequency of genome alterations (including
somaticmutations and SCNV in oncogenes and tumor suppressors) in
S4 also suggests the mightiness of epigenetic mechanisms rescuing
patients from the oncogenic forces by genome alterations.

The global CGI methylation gain across most tumors in this study
suggests a CGI methylator phenotype (CIMP) present in iCCAs.
Indeed, hierarchical clustering on common CGIs across iCCAs
(Fig. 3F) shows a small proportion of S4 iCCAs demonstrates hyper-
methylation in all of these CGIs, denoting a CIMP of these patients.
Traditional methods for characterizing CIMP rely on DNA methyl-
ation levels of a panel of marker genes or variable CpG probes on the
Illumina Infinium Array (usually around 1,000 CpGs), which do not
consider the methylation levels of genome-wide CGIs and therefore
have limited interpretability (65, 66). Presently, only a few studies have
reported the genome-wide identification of CIMP usingWGBS data in
cancer populations (7, 67). However, the definitions of CIMP-positive
or -negative tumors in these studies remain elusive, as it is based on a
small fraction of CpGs in a limited set of CGIs defined explicitly for a
specific population. Thus, further pan-cancer analyses on the whole-
genome level are still needed to identify consensus CIMP CGIs and
explore their biological relevance.

Although gene-expression regulation by DNA methylation has
been thoroughly investigated by combined transcriptomics–
methylome analysis in various cancer types (4, 7, 44), limited studies
have reported the effect of DNAmethylation alteration on consequent
global protein abundance and posttranslational modifications, espe-
cially for patients with iCCA. To our knowledge, this study represents
the first attempt to examine the correlation between proteomics and
DNA methylation in iCCAs. By integrated methylome–transcrip-
tomics–proteomics analysis, we identified the significantly positive
correlation betweenGBP4 promoter demethylation and protein abun-
dance, which has both prognostic and therapeutic implications.

Figure 5.
Identifying epigenetically silencedgeneswith prognostic and therapeutic implications.A,Dotplot shows the prognostic analysis results of the epigenetically silenced
genes identified. B, List of epigenetically silenced genes across iCCAs. P values (listed on the left side) were calculated using the Chi-square or Fisher exact test
comparing the difference among iCCA subtypes. Each square represents the methylated states (methylated or unmethylated, cutoff¼ 0.3) of the gene promoter in
this iCCA sample. C, KM curve for the OS of GBP4-methylated and -unmethylated samples in this study. D, KM curve for the OS of GBP4-methylated and
-unmethylated samples in an array-based external validation cohort (12). E, Representative IHC staining of GBP4 in GBP4-methylated and -unmethylated samples
(n¼ 59). F, Correlation between GBP4 promoter methylation and IHC score (n¼ 59). G,Western blot of GBP4 in iCCA cells transfected with GBP4 siRNA. H, CCK-8
assays show that silencing of GBP4 inhibited the proliferation of iCCA cells. I, Transwell Matrigel invasion andmigration assay performed in GBP4-silenced iCCA cells.
Representative images (left) and statistical analyses (right) of the migrated/invaded cells are shown. Scale bars, 200 mm. Data represent the mean � SD and are
representative of 5 independent experiments (one-way ANOVA). ��� , P < 0.001; NC, normal control.
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Additionally, the prognostic value of other GBP family members, such
asGBP1,GBP2, andGBP5, has also been investigated, inwhich there is
also a disparity in the correlations between protein abundance and
survival outcomes (61).However, this disparity is largely unknown, the
explanation for which might be the distinct cellular mechanisms used
under different conditions (61). For example, GBP1 can prevent
cytoskeletal polymerization by binding to F-actin and may initiate a
resistance pathway to paclitaxel in ovarian cancer (68, 69), but
suppresses matrix metalloproteinase 1 expression and thus inhibit
glioblastoma metastasis (70). In this study, the correlation between
GBP4 demethylation and upregulated genes involved in various
metabolism pathways, including carbohydrate metabolism, lipid
metabolism, amino acidmetabolism, and glycan biosynthesis, suggests
the oncogenic role of GBP4-dependentmetabolism reprogramming in
iCCAs, which allows cancer cells to adapt to drastic changes in the

tumor environment, thus initiating the process of transformation and
promoting the growth of malignant cells (71). On the other hand,
GBP4 also serves as an immune-related biomarker predicting prog-
noses of cancer. For example, GBP4 is implicated in the orchestration
of tumor immunity of colorectal cancer, wherein it symbolizes a
proinflammatory microenvironment (72, 73). More importantly,
GBP4 plays a pivotal role in mediating type-I interferon responses
and demonstrates a notable positive association with macrophage
infiltration (74, 75). These facts suggest an immune-activated
microenvironment in iCCAs with demethylated GBP4, as evidenced
by the enrichment of various innate/adaptive immune pathways
(Supplementary Fig. S17), which inspires the adoption of immu-
notherapies for patients with demethylated GBP4. However,
the “immune desert” states of subtype S2 compared with S3 (as
shown in Fig. 4B; Supplementary Fig. S13A) highly recommend

Figure 6.

Overview of biological features of each iCCA methylation subtype.
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consideration given to these patients’ DNA methylation subtyping
when applying immunotherapies.

In summary, this study constitutes the inaugural effort to inte-
grate WGBS with an expansive range of multiomics data in the
context of iCCA. We identified major molecular mechanisms that
are affected by alterations in genome-wide DNA methylation. These
insights hold the potential for guiding the development of inno-
vative, patient-tailored therapeutic strategies for iCCA, ultimately
benefiting clinical practice. Moreover, the oncogenic GBP4 demeth-
ylation may inspire further studies on the metabolism pattern of
iCCA from the epigenetics perspective. In addition, we identified
subtype-specific blocks with cross-validated high accuracy as sym-
bolic and handful biomarkers to classify iCCAs into one of the four
methylation subtypes (Supplementary Fig. S18A–S18D; see Sup-
plementary Methods), laying foundations for developing targeted
methylation assays for future noninvasive iCCA subtyping using
small amount of tumor DNA, such as cell-free DNA (76) and
circulating tumor DNA (77).
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