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Senescence in Post-Mitotic Cells: A Driver of Aging?
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Abstract

Significance: Cell senescence was originally defined by an acute loss of replicative capacity and thus believed
to be restricted to proliferation-competent cells. More recently, senescence has been recognized as a cellular
stress and damage response encompassing multiple pathways or senescence domains, namely DNA damage
response, cell cycle arrest, senescence-associated secretory phenotype, senescence-associated mitochondrial
dysfunction, autophagy/mitophagy dysfunction, nutrient and stress signaling, and epigenetic reprogramming.
Each of these domains is activated during senescence, and all appear to interact with each other. Cell senes-
cence has been identified as an important driver of mammalian aging.
Recent Advances: Activation of all these senescence domains has now also been observed in a wide range of
post-mitotic cells, suggesting that senescence as a stress response can occur in nondividing cells temporally
uncoupled from cell cycle arrest. Here, we review recent evidence for post-mitotic cell senescence and spec-
ulate about its possible relevance for mammalian aging.
Critical Issues: Although a majority of senescence domains has been found to be activated in a range of post-
mitotic cells during aging, independent confirmation of these results is still lacking for most of them.
Future Directions: To define whether post-mitotic senescence plays a significant role as a driver of aging
phenotypes in tissues such as brain, muscle, heart, and others. Antioxid. Redox Signal. 34, 308–323.
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What Is Senescence?

Cellular senescence was first discovered and defined
by Hayflick and Moorhead in 1961 to describe the

phenomenon of limited proliferation capacity in cultured
human fibroblasts (50). This replicative senescence (RS) was
found to be mainly induced by the dysfunction and critical
shortening of telomeres (9, 27, 136). With more studies being
conducted on senescence, the understanding and the defini-
tion have been expanded and evolved. For example, stressors,
such as DNA damage, oxidative stress, and oncogene acti-
vation, were also found to trigger permanent cell cycle arrest
and this phenomenon was named as stress-induced premature
senescence (SIPS) (16, 82, 119, 129). It was often assumed
that RS would be dependent on telomere shortening, whereas
SIPS would be telomere length independent. However, this

distinction is much less straightforward than originally
believed, because stresses can either accelerate telomere
shortening (130, 131), thus inducing RS prematurely (84,
107), or uncap telomeres without any shortening (51), caus-
ing telomere-dependent SIPS. This led to the suggestion that
all forms of senescence are cellular stress responses (132),
which is now generally accepted (48). Although senescence
plays important beneficial roles for tissue remodeling during
embryonic development (96, 125), in tissue repair and wound
healing (33, 75) and as a tumor suppressor (117), it has be-
come abundantly clear that the accumulation of senescent
cells in multiple, if not all, tissues is a major driver of de-
generative phenotypes, disabilities, and diseases during aging
(5, 121, 140).

Recent studies have shown that senescence is much more
than an extended cell cycle arrest (2, 48, 66, 106). Several
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‘‘building blocks’’ or phenotypes participate and interplay in
senescence, forming positive feedback loops that trigger,
develop, and maintain the senescent cell state (Fig. 1).

A persistent DNA damage response (DDR) is probably the
most consistently observed feature of senescent cells. Al-
though it can be triggered and maintained by non-telomeric
DNA damage (106), the repair deficiency of telomeres (36,
108, 112) makes them prime candidates for inducers of the
senescent DDR (51). The main DDR downstream pathway
comprises Ataxia telangiectasia mutated (ATM) and ATM
and RAD3-related (ATR) kinases, which belong to the
phosphatidylinositol 3-kinase like family of protein kinases

(71, 80). Activated ATM/ATR subsequently activate Chk1
and Chk2, leading to p53 phosphorylation and stabilization
and transcriptional induction of the cyclin-dependent kinase
(CDK) inhibitor p21, which then inhibits CDK1/2 and Cyclin
A/E complexes (17, 21). Their inhibition triggers the hypo-
phosphorylation of Rb, eventually leading to cell cycle arrest
(21). In addition, upregulation of gene expression from the
CDKN2A locus, mainly p16INK4a and p14ARF (human)/p19ARF

(mouse), is also an initiator of senescence (45, 63, 65). Re-
pression of these genes in young cells is released in tissue
during aging due to the loss of the polycomb repressive
complexes (11, 55) via unclear mechanisms. p14/p19ARF can
inactivate the p53-degrading E3 ubiquitin protein ligase
MDM2 and, therefore, maintain p53 at a high level (45, 63);
whereas p16INK4a, a CDK inhibitor, can directly inhibit
CDK4, 6 and cyclin D complexes, leading to hypo-
phosphorylation of Rb and cell cycle arrest (45, 63).

Although these pathways initiate the cell cycle arrest, they
are usually not sufficient to keep it persistent, which in most
cells requires the induction both of the senescence-associated
secretory phenotype (SASP) (2, 66) and of senescence-
associated mitochondrial dysfunction (SAMD) (106). The
SASP comprises a variety of secreted factors. These include
preferentially proinflammatory cytokines and chemokines,
growth factors, and matrix-modifying factors that are typi-
cally driven by nuclear factor-jB (NF-jB) and CCAAT/
enhancer binding Protein-b transcription factors. A second
arm of the SASP is preferentially immunosuppressive and
fibrogenic and dependent on Wnt/Notch-1, mainly producing
transforming growth factor beta (TGFb) (52); whereas a third
damage-associated molecular patterns-dependent arm se-
cretes acetylated HMGB1, heat shock proteins, oxidized
lipids, reactive oxygen species (ROS) (e.g., hydrogen per-
oxide), DNA, and microRNAs, which are often associated
with exosomes (10, 22, 23, 57, 79, 127). The production and
secretion of SASP facilitates the maintenance and spreading
of senescence by autocrine and paracrine mechanisms. This,
on one hand, promotes tissue remodeling and repairing (33,
75, 95, 96, 125), but on the other hand, it may contribute to
tissue functional decline, age-related tissue degeneration, and
tumorigenesis (22, 31, 56, 67, 87).

The DDR can initiate SAMD via p38MAPK and TGFb
pathways (8, 64, 94, 106) or by SASP via upregulation of NF-
jB (61). SAMD is characterized by the concomitant increase
in mitochondrial uncoupling (and decrease in mitochondrial
membrane potential) together with hyperproduction of ROS
(106, 107). Enhanced ROS, in turn, facilitate more DNA
damage (106) and SASP secretion (24), thus driving positive,
senescence-stabilizing feedback loops. Moreover, SAMD
may also promote mechanistic/mammalian target of rapa-
mycin (mTOR) activity independent of nutrition deprivation
in senescent cells (99), which contributes to a constant high
level of mTOR activity, the nutrient signaling feature of se-
nescence (19, 139).

The contribution of mTOR activity to senescence has been
hypothesized via the competitive binding of mTOR com-
plexes (mTORC) 1 and 2 to p53, leading to p53 phosphory-
lation at serine 15 and activation of downstream pathways for
the development of senescence (59). A high level of mTOR,
especially mTORC1 activity, also suppresses autophagy,
which has been suggested in some studies to induce senes-
cence (62, 81, 126). However, the role of autophagy in

FIG. 1. Phenotypes (‘‘building blocks’’) of the senes-
cent state and observable markers associated with it.
Although all phenotypes are tightly interrelated (not shown),
individual phenotypes might be more or less strongly acti-
vated in individual senescent cells depending on contexts
including senescence inducer, cell type, tissue environment,
and others. For each phenotype, there are multiple markers
that enable assessment of its involvement in a given se-
nescent state. CI, complex I of the mitochondrial elec-
tron transport chain; DDF, DNA damage foci; DDR,
DNA damage response; ROS, reactive oxygen species;
SADS, senescence-associated distension of satellites;
SAHF, senescence-associated heterochromatin foci; SAMD,
senescence-associated mitochondrial dysfunction; SASP,
senescence-associated secretory phenotype; SCARS, DNA
segments with chromatin alterations reinforcing senescence;
TAF, telomere-associated foci; TL, telomere length. Color
images are available online.
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senescence is still controversial, as senescence can also be
promoted by overexpression of the autophagy-related gene
ULK3 and suppressed by knockdown of autophagy core
genes Atg5 and 7 (101, 138). Importantly, mitochondria-
specific autophagy (mitophagy) is consistently downregula-
ted in senescence, probably due to mTORC1 over-activation
(64). This disturbs the balance between mitochondrial bio-
genesis and turnover, resulting in the accumulation of dys-
functional, damaged mitochondria, leading to more ROS
generation and enhanced DDR (30). So far, it is not yet clear
whether mitophagy decline is the primary driver for SAMD,
or whether SAMD start before declining mitophagy during
senescence induction. The accumulation of lipofuscin (non-
degradable, highly autofluorescent residual lysosomal con-
tent, consisting of cross-linked oxidized lipids and proteins)
due to lysosomal overload is also a feature of senescence
(123). Lysosomal accumulation of lipofuscin may impair not
only autophagy and mitophagy but also the proteasome
(122), forming another senescence-stabilizing feedback be-
tween multiple features of senescence.

Finally, epigenetic reprogramming and chromatin reor-
ganization occur during senescence, driven, for instance, by
mitochondrial retrograde response (15, 107) and increased
lamin B1 (LB1) degradation by abnormal autophagy (37, 40).
Markers of epigenetic reprogramming in senescence are: the
appearance of senescence-associated heterochromatin foci,
domains of facultative heterochromatin that contribute to
silencing of proliferation-promoting genes (100), and chan-
ges (generally lower levels) in DNA and histone methylation,
specifically H3K9me3 and H3K27me3 (115). The epigenetic
reprogramming stabilizes other senescence building blocks
by promoting mitochondrial dysfunction (47) and SASP
production (18, 120).

In conclusion, and in agreement with a recent consensus
(48), we define cell senescence as a cellular response to a
wide variety of stresses (including replicative, oncogenic,
oxidative, DNA damage, developmental and other stresses)
in which the phenotypes indicated earlier generate a
senescence-stabilizing interaction network. Individual phe-
notypes might be weakly expressed or even absent, as long as
the majority of them ensures a sufficiently stable network to
maintain the cell senescent state.

Such an understanding of the cell senescence program
allows for the temporal separation between a full senescence
phenotype and cell cycle arrest. We believe that this may be
important in two different ways. First, tumor cells can be
induced to senesce by DNA-damaging therapies; however,
after having developed a senescent phenotype, some of these
revert from cell cycle arrest and resume cycling, but they
appear to retain features of SASP, SAMD, and senescent
epigenetic reprogramming. Importantly, these features ren-
der these previously senescent cells very similar to cancer
stem cells, providing increased proliferative and metastatic
potential (26, 90, 91, 133). Thus, although it may simply be a
semantic distinction whether to call these reverted cells se-
nescent, it would be of major practical importance to un-
derstand how some features of senescence can be retained
during resumption of proliferation.

Second, this understanding of the senescence program
enables us to use the huge accumulated body of knowledge
about cellular senescence to better understand stress re-
sponses and cell aging mechanisms in post-mitotic cells.

Post-mitotic cells are essential for the function of major tis-
sues, including brain, heart, and skeletal muscle. There are
preliminary observations of a senescent phenotype develop-
ing and increasing during aging in these tissues, which we
will review later. Importantly, how different mechanisms that
promote aging, including DNA damage, chronic inflamma-
tion, and mitochondrial dysfunction, are interlinked in these
tissues is still not well understood. Obviously, if post-mitotic
senescence is relevant, translation of knowledge from the cell
senescence field might lead to very interesting and novel
clues regarding on how such tissues are aging. We will
speculatively address this possibility in the final part of this
review.

Senescence in Post-Mitotic Cells: The Present
Evidence

To our knowledge, our group published the first study
describing a ‘‘senescence-like phenotype’’ in post-mitotic

FIG. 2. Senescence markers measured in neurons. (A)
Purkinje neurons (labeled by calbindin, purple) in an old (32
months) mouse frequently stain positive for IL-6 (green)
(60). (B) Senescence markers observed and senescence
phenotypes inferred in neurons (60, 98, 104). IL, interleukin.
Color images are available online.
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cells (60). This work showed that multiple senescence
markers were found together in the same neurons (in both the
central nervous system and peripheral ones) from old, but not
from young, mice. Importantly, by using single- and double-
gene knock-out mice, we also showed that accumulation of
neurons bearing senescence markers was initiated by a DDR
driven by dysfunctional telomeres and was dependent on
signaling through p21 (60).

Since this seminal study, accumulation of multiple se-
nescence markers in aging mice has been shown for major
post-mitotic cells types residing in different tissues, such as
retinal ganglion cells, cardiomyocytes, skeletal myofibers,
cochlear cells, and osteocytes (Fig. 2). Most of these results
are very recent, and were not covered by other reviews (114).
So far, only in the case of neurons, confirmatory data have
been presented by independent laboratories (60, 98, 104);
whereas our knowledge about post-mitotic senescence in
other tissues is still only based on a single publication per
tissue. Moreover, information about some important cell
types is completely lacking. For instance, there is no doubt
about occurrence and functional relevance of cell senescence
in fat tissue (20, 54, 128, 135). However, it remains unclear
whether this is restricted to preadipocytes or whether termi-
nally differentiated adipocytes are able/prone to senesce as
well. Moreover, to our knowledge, there are no data yet on
the role of cell senescence in aging of organisms made up
preferentially of post-mitotic cells such as Caenorhabditis
elegans or Drosophila melanogaster.

Here, we focus on the question as to what extent a full
senescent phenotype has been confirmed in post-mitotic cell
types by assessing markers covering the majority or all of the
senescence domains indicated earlier. Studies that showed
only upregulation of senescence markers in whole tissues
without discriminating between post-mitotic and mitotically
competent cells were considered only in exceptional cases as
confirmatory evidence. We also excluded in vitro studies, as
these were generally performed in differentiating stem cell
systems, where a clear distinction of proliferation-competent
progenitor cells and post-mitotic, terminally differentiated
cells is often far from trivial. Results are summarized in
Figures 2–6.

Neurons

Our group previously analyzed the abundance of multiple
senescence markers in cerebellar Purkinje neurons, cortical
neurons, and neurons of the myenteric plexus during aging of
mice between 4 and 32 months (60). More recently, brain
neuron senescence was also observed in neurons bearing tau
neurofibrillary tangles (NFT) from Alzheimer’s disease pa-
tients as well as in the brains of an Alzheimer’s disease mouse
model with elevated tau expression (98). Moreover, senes-
cence phenotypes were reported in the mouse retinal ganglial
cell layer under ischemia (104). Colocalization of senescence
signals with neuronal markers was shown in two of the
studies (60, 104). In addition, Musi et al. (98) used micro-
dissection of NFT-bearing human neurons to show tran-
scriptional upregulation of TGFb-, p38MAPK-, NF-jB-, and
p53-regulated genes, and they showed consistent tracking of
multiple senescence markers with NFT burden in human
disease and in multiple mouse models, including mice treated
with senolytics (98). Jurk et al. showed co-localization of

FIG. 3. Senescence markers measured in cardiomyo-
cytes. (A) Mouse cardiomyocytes (labelled with Troponin
C, white) show co-localization of telomeres (red) and
cH2AX-positive DDF (green) (4). Cardiomyocyte nuclei are
labelled with dotted lines. (B) Senescence markers observed
and senescence phenotypes inferred in cardiomyocytes (4).
Color images are available online.
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multiple senescence markers in the same neurons (60). In-
terestingly, in the oxygen-induced retinopathy model, retinal
ganglion neurons were the first cell type to present senes-
cence markers after stress, and senescence was spread from
neurons to retinal microglial cells and the vasculature by
bystander signals (104). The following senescence domains
were assessed in these studies (Fig. 2).

FIG. 4. Senescence markers measured in skeletal
muscle myofibers. (A) Gastrocnemius muscle from a 32-
month-old mouse. Blue: DAPI, red: p21, green: auto-
fluorescence (28). White arrows indicate p21-positive
centrally located nuclei. (B) Senescence markers observed
and senescence phenotypes inferred in skeletal myofibers
(28). Color images are available online. FIG. 5. Senescence markers measured in osteocytes.

(A) SADS (arrows) in an osteocyte freshly isolated from
bone marrow of old (24 months) mice (38). (B) Senescence
markers observed and senescence phenotypes inferred in
osteocytes (38). Color images are available online.
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DDR and cell cycle arrest markers. All three studies
used cH2A.X as a DDR marker, which was shown to co-
localize with neuronal markers by Jurk et al. and Oubaha
et al. (60, 104), whereas p53 target genes were elevated in
NFT-bearing neurons (98). cH2A.X-positive Purkinje neu-
rons were shown to be also positive for the lipid peroxidation
product 4-hydroxynonenal (4-HNE), suggesting co-activation
of DDR and SAMD (60), whereas cH2A.X co-localized with
promyelocytic leukemia protein bodies in retinal ganglion

cells (104). A strong cH2A.X signal in Purkinje and cortical
neurons was driven by dysfunctional telomeres and was de-
pendent on intact p21 (60). cH2A.X levels and CDKN2A (p16)
expression correlated with NFT burden in both human and tau-
transgenic mouse brains (98). In retinal ganglion neurons,
CDKN1A and CDKN2A expression and p53, p16, and
cH2A.X protein abundance were elevated after ischemia (104).

Senescence-associated secretory phenotype. The pro-
portion of Purkinje and cortical neurons with a positive
staining signal of proinflammatory cytokine interleukin (IL)-
6, a classic SASP member, was found to increase with age in
mouse brain neurons and IL-6-producing neurons were
shown to be also positive for the oxidative damage marker
4-HNE (60). NF-jB, IL-b, and CXCL1 were transcriptionally
upregulated in NFT-bearing human neurons (98). Oubaha
et al. (104) found increased expression of multiple SASP
marker genes in the retinal ganglion cells, including matrix-
degrading enzyme plasminogen activator inhibitor 1 (Pai1),
TGF-b1, IL-6, IL-1b, and vascular endothelial growth factor
a. Retinal ganglion cell SASP was dependent on semaphorin
3A (SEMA3A) expression, and suppression of SEMA3A was
able to block paracrine propagation of senescence (104).

Senescence-associated mitochondrial dysfunction. In
old mice, Purkinje and cortical neurons accumulated the lipid
peroxidation product 4-HNE and more ROS were produced
in enteric neurons as shown by increased fluorescence from
the ROS indicator dye dihydrorhodamine-123 (60). More-
over, increased autofluorescence in brain neurons of old mice
indicated accumulation of lipofuscin, another indicator of
oxidative stress and damage (13, 14). In hippocampus and
cortex of NFT-bearing tau transgenic mice, complex I- and
-II-linked ATP production was decreased without change of
mitochondria mass (98), indicating impaired mitochondrial
function. Although the study by Oubaha et al. (104) used
oxidative stress to induce retinopathy and senescence, SAMD
indicators were not measured.

Autophagy dysfunction. Senescence-associated beta-
galactosidase (SA-b-Gal) reporting lysosomal overload and
thus the possibility of autophagy dysfunction, is a frequently
used marker for senescence and was assessed in all three
studies. SA-b-Gal staining was enhanced in brain, mesenteric
and retinal ganglion neurons (60, 104). Although no SA-b-
Gal staining was found in NFT-bearing mouse brains, the
expression of the GLB1 gene encoding for b-galactosidase
was enhanced (98). In addition, the previously mentioned
lipofuscin accumulation (60) can also be considered as a
marker for autophagy dysfunction as lipofuscin accumulation
inhibits both autophagic flux and proteasomal protein deg-
radation (53, 122, 124).

Nutrient and stress signaling. p38MAPK is a sensor and
responds to a wide range of different stresses, which can
initiate senescence (41). High levels of phosphorylated
p38MAPK were observed in neurons in aging mice, espe-
cially those that were also positive for 4-HNE (60), and
p38MAPK and downstream regulated genes were upregu-
lated in NFT-bearing human neurons (98). In retinal ganglion
neurons, p38MAPK was not assessed but high levels of
phosphorylated inositol-requiring enzyme 1a (IRE1a), a

FIG. 6. Senescence markers measured in post-mitotic
cochlear cells. (A) Basal region of cochlear explant stained
with myosin 7A (red, outer hair cell [OHC] and inner hair
cell [IHC]) and with neurofilament 200 (green, auditory
nerve fibers, nf) (6). (B) Senescence markers observed and
senescence phenotypes inferred in cochlear cells (6). Color
images are available online.
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marker for endoplasmic reticulum (ER) stress, were observed
(104). In fact, retinal senescence was dependent on the en-
doribonuclease activity of IRE1a (104). ER stress had been
implicated in different senescence modes, including onco-
gene HRASG12V-induced senescence (35) and of chon-
drocyte senescence in osteoarthritis (77). Markers of nutrient
signaling have to our knowledge not been assessed in the
context of neuron senescence.

Epigenetic modification. Markers for epigenetic repro-
gramming in neurons were only assessed in one of the stud-
ies. Jurk et al. (60) showed enhanced nuclear granularity for
the heterochromatin-associated histone variant mH2A in
Purkinje and cortical neurons from old mice.

Cardiomyocytes

Recent studies indicate that human and mouse cardio-
myocytes retain the ability to divide, but do so very rarely
leading to turnover rates of <1% in adulthood (7, 111, 118). A
recent paper showed that mouse and human cardiomyocytes
acquire senescence-like phenotypes during aging from 3 to
30 months in mice and from adult (46–65 years) to old (74–82
years) age in humans. This was characterized by persistent
DNA damage at telomeres, p21 and p16 activation, and a
noncanonical SASP (4). In detail, the following senescence
domains were considered (Fig. 3).

DDR and cell cycle arrest markers. Telomere-associated
DNA damage foci (telomere-associated foci [TAF]) can be
instigated by DNA damage even at long telomeres and are a
persistent form of DNA damage (42, 51) and thus potent
inducers of a senescent phenotype (61). They were found to
trigger senescence regardless of telomere length both in vivo
in old mouse and human hearts and in vitro in cultivated
mouse embryonic cardiomyocytes. Independence of telo-
mere length strongly indicated that the cardiomyocytes that
underwent this type of aging were, in fact, post-mitotic (4).
Increased TAF frequencies were paralleled by enhanced
transcription of cell cycle arrest markers p21, p16INK4a, and
p15INK4b and increased p21 protein abundance in cardio-
myocytes from old mice. Transgenetically induced telomeric
DNA double-strand breaks remained persistent and were able
to induce further markers of senescence in cardiomyocytes,
whereas non-telomeric DNA damage was repaired within a
few hours and did not cause a senescent phenotype (4).

Autophagy dysfunction and cellular morphology change.
Increased SA-b-Gal activity was found in the hearts of old
mice and was localized solely to cardiomyocytes (4), which
showed that autophagy dysfunction occurred specifically in
the post-mitotic cells. Telomeric DNA double-strand breaks,
induced in cultured rat neonatal cardiomyocytes after trans-
fection with a telomere-targeting endonuclease, were suffi-
cient to induce increased SA-b-Gal activity (4). Moreover,
cardiomyocyte hypertrophy was found in vivo in old mice
and in vitro in cultivated rat neonatal cardiomyocytes under
all senescence-inducing conditions, possibly due to elevated
Myh7 and Acta1 gene expression (4).

Senescence-associated mitochondrial dysfunction. Mi-
tochondrial dysfunction was evidenced by decreased ex-

pression of many mitochondrial genes, especially those
related to mitochondrial inner membrane and electron
transport chain (4). Expression of MnSOD (SOD2) and
catalase was reduced in old cardiomyocytes, whereas the
expression of monoamine oxidase A, an enzyme promoting
oxidative stress, was increased (4). Further, frequencies of
cardiomyocytes positive for the markers of ROS-mediated
damage 4-HNE and 8-oxodG were also increased in old
mice (4).

Senescence-associated secretory phenotype. Classical
proinflammatory SASP markers such as IL-6 and CXCL1
were found to be elevated in old mice whole hearts (103) but
not in purified cardiomyocytes showing telomeric DNA
damage, SA-b-Gal activity, and SAMD. In contrast, these
cells displayed a noncanonical SASP characterized by en-
hanced expression of Edn3, TGFb2, and Gdf15 with en-
hanced Edn3 expression specific to old cardiomyocytes. This
SASP (especially TGFb2) was antiproliferative, profibrotic,
and prohypertrophic in co-cultured cells (4).

Epigenetic modification. Senescence-associated disten-
sion of satellites (SADS) has been suggested to be an early
chromatin modification in senescence, which frequently oc-
curs in replicative and oncogene-induced senescence (25).
Increased frequencies of SADS-positive cardiomyocytes
were found in the hearts of old mice (4).

Skeletal muscle myofibers

In the context of a study of the bystander effects of se-
nescent cells in vivo, our group recently reported the in-
duction of multiple markers of senescence in gastrocnemius
and biceps femoris muscle of mice aging from 8 to 32
months. Myofiber senescence marker correlated with low
fiber diameter, an indicator of muscle aging and sarcopenia
at both interindividual and single fiber levels (28). A limi-
tation of this study is that myofiber nuclei were only iden-
tified by their position within a fiber as outlined by wheat
germ agglutinin staining, but satellite cells were not ex-
cluded by positive staining with a stem cell marker. How-
ever, satellite cell frequencies were regarded as too low to
significantly falsify counts of myofiber nuclei bearing se-
nescence markers. The following senescence domains were
assessed (Fig. 4).

DDR and cell cycle arrest markers. In old mice skeletal
muscles, there was a higher frequency of TAF-positive nuclei
as well as a tendency toward more p21-positive nuclei (28).
This result was strengthened by an experiment, in which
senescent cells were xenotransplanted into muscle of im-
munodeficient NOD scid gamma mice. In this experiment,
significant higher frequencies of TAF- or p21-positive
myofiber nuclei were found in the vicinity of the transplanted
senescent cells, but not next to nonsenescent transplanted
cells. Moreover, p16 and p21 mRNAs were increased in old
muscles.

Senescence-associated secretory phenotype. The
proinflammatory SASP genes IL-1a, IL-1b, IL-6 and tumor
necrosis factor alpha (TNF-a) were enhanced at mRNA level
in old muscles. However, no evidence was found for
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enhanced protein levels of proinflammatory cytokines in ei-
ther muscles from old mice or in the myofibers in muscles
transplanted with senescent cells. Reasons for this discrep-
ancy were not clear, and potential non-proinflammatory
SASP components were not evaluated in this study (28).

Senescence-associated mitochondrial dysfunction. The
article used Sudan Black B (SBB) staining as an indicator of
oxidative damage as described (44). However, in skeletal
muscle, the SBB staining pattern is primarily determined by
fiber type, with oxidative fibers positive for SBB in contrast
to glycolytic fibers. Therefore, a reliable assessment of mi-
tochondrial dysfunction as stress response in any fiber type
has not yet been performed.

Epigenetic modification. Nuclear exclusion of HMGB1
and decrease of LB1 at the nuclear lamina are well-
established senescence markers (32, 40). Both decreased
HMGB1 nuclear staining and increased heterogeneity of the
LB1 distribution over the nuclear lamina were found in
myocyte nuclei of old mice. LB1 heterogeneity over the
nuclear lamina was also increased in the vicinity of xeno-
transplanted senescent cells (28).

Osteocytes and osteoblasts

Farr et al. separately isolated T cells, myeloid cells, oste-
oblast progenitors, and, important in the present context,
mature post-mitotic osteocytes and osteoblasts from bone
marrow in young (6 months) and old (24 months) mice (38).
A range of senescence markers was measured in these frac-
tions without any in vitro subculturing of the cells (Fig. 5). In
general, increases of senescence markers observed in post-
mitotic osteoblasts and osteocytes were at least comparable
in magnitude if not larger than those seen in progenitor and
hematopoietic lineage cells.

DDR and cell cycle arrest markers. The percentage of
TAF-positive osteocytes increased from <20% in young mice
to almost 90% in old ones together with an increase in p21
gene expression. p16Ink4a mRNA levels were found to in-
crease dramatically in both osteocytes and osteoblasts iso-
lated from trabecular and cortical bones of both old female
and male mice. In addition, p16Ink4a and p21 mRNA ex-
pression was also increased in bone biopsies of old female
human donors, although this analysis did not distinguish cell
types (38).

The expression of a panel of 36 established SASP genes
was investigated by Real Time quantitative polymerase chain
reaction (RT-qPCR) on different types of cells isolated from
old and young mouse bones (1, 22, 23). Very few of these
SASP factors were significantly altered in B cells, T cells,
osteoblast progenitors, or osteoblasts. However, 23 of the 36
SASP genes analyzed were significantly increased in old
versus young osteocytes. Twelve SASP genes out of the same
36 gene panel were also enhanced (at p < 0.05) at whole tissue
level in bone biopsies from old versus young human donors,
although an enrichment analysis for the whole gene set did
not result in statistical significance (38).

Autophagy dysfunction. The expression of two autop-
hagy marker genes, Atg7 and Map1lc3a (commonly

known as LC3) was measured by RT-qPCR. Lower expres-
sion of both in osteocytes (but not osteoblasts) from old
mice was found (38).

Epigenetic modification. The presence of SADS was
analyzed as a marker for chromatin reorganization in senes-
cence, and an increase from 2% to 11% of SADS-positive
osteocytes was found in the bone cortices of old mice (38).

Cochlear hair cells

Recently, Benkafadar et al. reported the upregulation of
multiple markers of cell senescence in the cochlea of pre-
maturely aging SAMP8 mice (6). Proliferation-competent
support and progenitor cells are present in the cochlea,
whereas major cell types are the post-mitotic sensory hair
cells and ganglion neurons. Some of the analyzed markers
(e.g., SA-b-Gal staining) were localized by the authors to the
hair cells in the organ of Corti and to spiral ganglion neu-
rons, whereas others were only assessed in whole tissue
homogenates. However, the authors also studied oxidative
stress-induced senescence in explanted and in vitro cultured
cochleae and organs of Corti, again showing preferential
senescence induction in hair cells, especially those of the
outer layer. Markers for the following senescence domains
were assessed (Fig. 6).

DDR and cell cycle arrest markers. Significant increases
of p21, p16, p53, and p-Chk2 protein levels were found in
whole cochlear extracts from SAMP8 mice compared with
slow-aging SAMR1 mice starting from 6 to 12 months of age
(6). Activation of a DDR in the hair cells was confirmed in the
ex vivo model, showing increased numbers of cH2A.X and
53BP1 foci in outer and inner hair cell nuclei at 3 days after
oxidative stress. This result was confirmed by Western blot
on whole cochlear extracts (6). Moreover, higher levels of the
DNA nucleotide excision repair protein DDB2 (DNA bind-
ing protein 2) were also found in these cells, associated with
increased levels of phosphorylated Chk2, p53, and p21 (6).

Senescence-associated mitochondrial dysfunction. In
whole cochlear extracts from aged SAMP8 mice, lower pro-
tein levels of MnSOD and the oxidant resistance regulator
Nrf2 and higher levels of p66Shc and phospho-p66Shc, a
negative regulator of MnSOD (69) whose upregulation can
lead to higher oxidative stress (46), were found. In isolated
cochlear extracts at 3 days after oxidative challenge, MnSOD
and catalase protein and activity were enhanced, as were
p66Shc and phospho-p66Shc and malondialdehyde content,
indicating persistently increased oxidative stress. Whether this
was associated with mitochondrial dysfunction as in fibroblast
stress-induced senescence (106) has not been established.

Autophagy dysfunction. SA-b-Gal activity was associ-
ated with inner and outer hair cells and spiral ganglion cells in
both in vitro cultured cochlea after oxidative stress and in
cochleae from aged SAMP8 mice. In addition, higher levels
of phosphorylated Beclin 1, Rab7, and LC3 II were found in
cochlear extracts of old SAMP8 mice and in stressed cochlea
in vitro (6). These results suggested an increased autophagy
with inefficient lysosomal flux clearance, indicating autop-
hagy dysfunction.
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Stress signaling. At 3 days after oxidative stress, co-
chlear hair cells became senescent, marked by the increased
levels of p38 and its phosphorylated form (6).

Conclusions

Three independent laboratories have shown different types
of neurons expressing markers for multiple senescence do-
mains under different age-related stressors. Markers for each
of the senescence-associated domains shown in Figure 1 were
found in stressed and/or aged neurons (Fig. 2), and some of
these markers were co-localized in the same cells (60). Al-
together, the data provide robust evidence that neurons do
respond to age- or disease-associated stress by senescence,
even when they have long before ceased to proliferate.

Evidence related to cell senescence in other post-mitotic
cell types is less strong. Results per cell type have not yet
been independently confirmed. Markers for four to six of the
seven senescence domains identified in Figure 1 were as-
sessed in each of the examined non-neuronal post-mitotic cell
types (Figs. 3–6). Only DDR markers were measured in all
cell types and were found to be consistently activated. Se-
cretions of the canonical proinflammatory SASP were not
confirmed in heart nor skeletal muscles, and there could be
cell-type specific differences. On the other hand, variations of
the SASP have been observed as well during senescence of
proliferation-competent cells, indicating that the SASP is
modified by a multiplicity of factors, including engagement
of check-point proteins p53, p21, and p16, mitochondrial
(dys) function, response kinetics, and cell type (17, 52).
Together, we feel that the evidence is good enough to con-
clude that probably all post-mitotic cells have the ability to
mount a senescence response, and that they probably do so in
measurable quantities during aging and under physiologi-
cally and pathologically relevant stresses.

How Important Is Senescence of Post-Mitotic Cells
to Understand Mammalian Ageing In Vivo?

The pathogenic roles of senescent cells are now well rec-
ognized. Growing evidence shows that selective elimination
of senescent cells, or reducing the SASP and thus senescence-
induced bystander effects, improves a wide range of age-
associated and/or pathologic conditions (121). This may also
hold for post-mitotic cell senescence. For example, in a
model of ischemic retinopathy, retinal ganglion cells became
senescent and the resulting SASP caused pathologic angio-
genesis, which worsened the retinopathy. Metformin, which
reduced the SASP, prevented the adverse effects of ischemic
retinopathy (104). It is less clear whether and to what extent
post-mitotic senescent cells affect normal tissue physiologi-
cal functions, especially aging. However, there are striking
similarities between cell senescence, including post-mitotic
senescence, and aging phenotypes as observed in tissues
composed to a large extent of post-mitotic cells. It might thus
be speculated that a better understanding of the cellular
regulatory pathways that govern the senescent stress response
might lead to a deeper comprehension of, and better possi-
bilities for, interventions into age-associated functional de-
cline in post-mitotic tissues. Keeping in mind the present
limitations of knowledge, we will now discuss some of the
possible relevance of post-mitotic senescence for aging, us-
ing myofiber senescence and muscle aging as an example.

Ageing of skeletal muscle

Skeletal muscle not only has a primary role in locomotion
and in the maintenance of posture but also shapes metabolic
homeostasis by taking up glucose and oxidizing fatty acids.
There are four major fiber types in mammalian muscle: slow
(type 1) and three fast types (2A, 2X, and 2B). Each type is
characterized by the expression of one specific isoform of the
myosin heavy chain, which is the main determinant of their
contractile properties. Fiber types differ in their metabolic
profiles, ranging from slow/oxidative to fast/glycolytic (116).

One prominent change in skeletal muscle during aging is
the decline of skeletal muscle mass and function. It leads to
gait instability and increased risk of falls (137) and is a pri-
mary cause of sarcopenia, a leading cause of death in elderly
(68). By age 70, the mean cross-sectional area of skeletal
muscle is reduced by 25%–30% and muscle strength di-
minishes by 30%–40% (109). These changes are believed to
be both due to a decrease in the number of muscle fibers and
due to atrophy and weakening of those remaining (12, 73, 74).

Age-related sarcopenia in humans affects fast fibers more
strongly than slow ones (3, 72). Maintenance of muscle mass
is achieved by anabolic and catabolic balance. The main
anabolic stimulation comes from muscle contraction to
which the muscle cells respond by adaptive mechanisms.
Resistance exercise is known to counteract the loss of muscle
mass and function; however, aged muscle fails to readily
adapt to exercise and this anabolic resistance is proposed to
play a major role in sarcopenia.

Mitochondrial activity in skeletal muscles has long been
known to correlate with exercise capacity (39), with a recent
observation showing that especially with respect to complex I
(43), suggesting mitochondrial function is critical for skeletal
muscle function. Mitochondrial content has widely been
observed to decrease with age in skeletal muscles (58, 78,
97). Skeletal muscle mitochondria also undergo functional
changes with age; respiratory coupling decreases, and the rate
of ROS release per unit of mitochondrial protein increases
(49, 83). Therefore, decreases in both quality and quantity of
mitochondria contribute to the overall loss of mitochondrial
function in aged skeletal muscles.

Is post-mitotic senescence relevant for skeletal
muscle aging?

Senolytic treatment was shown to be effective in pre-
serving muscle fiber diameter in skeletal muscles (5). Me-
chanistically, this has been assumed to be caused by either
systemic reduction of SASP factors or improved stem (sat-
ellite) cell function. However, do senescent myocytes also
account for development of sarcopenia and other features of
aged skeletal muscles?

Our current understanding of the nature of post-mitotic
senescence in general and in muscle specifically is limited.
This poses a number of unanswered questions. For instance,
what are the actual proportions of cells that senesce in
different muscles? Are different myofiber types differently
susceptible to senescence? There appears to be a cellular
state of transition from normal to senescent (106), but how
long does this transition last in myofibers in vivo? How
efficient is immunosurveillance of senescence in muscle?
How long do senescent myofibers persist in the tissue?
When senescent cells were implanted into skeletal muscles
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in immune-deficient mice, neighboring cells became se-
nescent within about 1 month (28). However, during nor-
mal, healthy aging in vivo endogenous stress factors might
be different and the immune system is generally competent,
leading to possibly a different time course of senescence
development.

Despite these limitations, it appears well possible that
senescent myocytes may account for the development of
sarcopenia in multiple ways. Importantly, an association
between the presence of senescence markers in myocyte
nuclei and low fiber diameter in the vicinity has been es-
tablished (28). During mammalian aging, fast glycolytic
fibers undergo a significant size reduction in aging, unlike
slow fibers (97). Interestingly, our preliminary data in a
premature aging mice model show higher frequencies of
nuclei bearing the senescence marker telomere-associated
DNA damage foci in glycolytic fibers than in slow/oxidative
fibers. However, it is unknown whether induction of a se-
nescent stress response caused fiber atrophy or conversely,
was due to it.

The main anabolic stimulation important for maintenance
of muscle mass derives from muscle contraction to which the
muscle cells respond. These adaptive response mechanisms
include those through redox-signaling pathways medicated
by contraction-mediated increases in the generation of su-
peroxide and nitric oxide by skeletal muscle fibers (85).
However, aged muscle fails to adapt to exercise mainly be-
cause of an attenuated response to ROS-stimulated redox
signaling, and this anabolic resistance is proposed to play a
major role in sarcopenia. Elevated levels of oxidative stress
cause the chronic activation of multiple signaling pathways,
contributing to the blunted response of aged muscle to
contraction-medicated signals. In both single fibers and iso-
lated mitochondria from skeletal muscles, ROS were found to
increase with age (83, 105). Although there are no empirical
data yet on ROS levels specifically in senescent myocytes,
elevated ROS production in senescent cells, in general, is
well documented (61, 93, 106). Thus, it is very possible that
senescent myocytes contribute to the elevated oxidative
stress in aging muscle tissue. However, as we do not know the
proportion of senescent myocytes in aged skeletal muscles,
we cannot yet establish the relative importance of the con-
tribution of senescent myocytes to oxidative stress in aged
muscles.

Mitochondrial dysfunction (SAMD), characterized by in-
creased mitochondrial biogenesis, increased levels of ROS,
and reduced coupling (106) is a major senescence domain. It
is related to decreased mitophagy (30, 64). In isolated mito-
chondria from skeletal muscles of aged animals, functional
properties consistent with a typical SAMD were observed,
namely increased ROS release and decreased coupling (49,
83). Dietary restriction and dietary restriction mimetics, in-
cluding rapamycin, reduced mitochondrial ROS levels and
improved mitochondrial coupling (92, 93). Correspondingly
in vitro, rapamycin reduced both SAMD and SASP in se-
nescent fibroblasts (24, 34).

In fibroblast cell senescence in vitro, increased levels of
mitochondrial biogenesis markers such as PGC-1a/b and
increased mitochondrial mass were observed (70, 106).
However, in contrast, in aged skeletal muscles, decreased
mitochondrial mass in both fast and slow fibers was found
(97). Currently, it is unclear whether mitochondrial mass

increase is a universal feature of the senescent phenotype. A
decrease in mitophagy seems to be the essential factor
causing mitochondrial mass increase in senescing fibroblasts
(30). An experimental assessment of the balance between
mitochondrial biogenesis and mitophagy during myofiber
senescence will be necessary to clarify this point.

SASP is another senescence domain that might also con-
tribute to sarcopenia. In fact, inflammation has been proposed
as a key driver of skeletal muscle aging (29, 85). For exam-
ple, exposure of skeletal muscle to TNF-a results in muscle
weakness associated with a loss of total muscle protein
through increased NF-jB activation, at least partly mediated
by ROS signaling (76). In aged human muscle, increased
levels of NF-jB have been suggested as a contributing cause
to the anabolic resistance in aging (113). However, the sup-
porting data are inconsistent, because some papers reported
increases in gene expression levels for proinflammatory cy-
tokines in human skeletal muscles with age (86, 88, 110),
whereas others did not (89). We found elevated gene ex-
pression levels of proinflammatory cytokines IL-1a, IL-1b,
IL-6, and TNF-a in old mice skeletal muscles but no differ-
ences to young animals at protein level (28). In cardiomyo-
cytes, an atypical antiproliferative, non-inflammatory SASP
was found (4). The composition of the SASP in senescent
skeletal myofibers, and its potential contribution to chronic
inflammation in aged muscle still needs to be established.
Moreover, skeletal muscle has recently been proposed to be a
potential source of a diverse range of cytokines, termed
myokines (102, 134). Exercise-stimulated myokines, such as
IL-15, can have beneficial effects on the immune system and
on control of adiposity (102). Whether myofiber senescence
impacts myokine expression and secretion, and the role of
myokines in skeletal muscle aging are important topics for
future studies.

Conclusions

There is good evidence for a senescent phenotype as stress
response in post-mitotic cells, including skeletal myofibers. It
is possible that post-mitotic cell senescence has functional
relevance in tissue aging, but the evidence for this is still
weak. Important open questions are:

1. The phenotype of senescent myofibers needs to be
better characterized. How do they differ from fibro-
blasts? What are the functional implications? Sur-
prisingly little evidence exists for senescent myofibers
or old muscle tissues being proinflammatory.

2. The actual proportions of senescent myocytes in aging
muscles need to be determined. This requires im-
proved quantitative techniques for senescent cell de-
tection ex vivo.

3. Systemic senolytic intervention has been shown to be
effective in postponing sarcopenia (5, 140). As SAMD
is an important senescence domain, this might have
resulted in improved mitochondrial function in vivo.
Senolytic or senostatic interventions might have better
potential to improve mitochondrial function than
many other drugs that increase mitochondrial bio-
genesis. The impact of anti-senescence interventions
on muscle mitochondrial function needs to be as-
sessed.
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Abbreviations Used

4-HNE¼ 4-Hydroxynonenal
ATM¼Ataxia telangiectasia mutated
ATR¼ATM and RAD3-related
CDK¼ cyclin-dependent kinase

CI¼ complex I of the mitochondrial electron
transport chain

DDF¼DNA damage foci
DDR¼DNA damage response

ER¼ endoplasmic reticulum
IL¼ interleukin

IRE1a¼ inositol-requiring enzyme 1a
LB1¼ lamin B1

mTOR¼mammalian target of rapamycin
mTORC¼mTOR complexes

NFT¼ neurofibrillary tangles
NF-jB¼ nuclear factor-jB

PML¼ Promyelocytic leukemia protein
ROS¼ reactive oxygen species

RS¼ replicative senescence
RT-qPCR¼Real Time quantitative polymerase chain

reaction
SA-b-Gal¼ Senescence-Associated beta-Galactosidase

SADS¼ senescence-associated distension of satellites
SAHF¼ senescence-associated heterochromatin foci

SAMD¼ senescence-associated mitochondrial
dysfunction

SASP¼ senescence-associated secretory phenotype
SBB¼ Sudan Black B

SCARS¼DNA segments with chromatin alterations
reinforcing senescence

SEMA3A¼ semaphorin 3A
SIPS¼ stress-induced premature senescence
TAF¼ telomere-associated foci

TGFb¼ transforming growth factor beta
TL¼ telomere length.

TNF-a¼ tumor necrosis factor alpha
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