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Abstract

Background: Cytochrome P450 2A5 (Cyp2a5), a mouse enzyme orthologous of human CYP2A6, catalyzes a number
of toxicologically important reactions, including the metabolism of nicotine, aflatoxin B1, and several other xeno- and
endobiotics. Cyp2a5 expression is complex and not yet fully understood. We investigated inter-strain differences in
the activity and mRNA expression of hepatic Cyp2a5. Cyp1al/2 and Cyp2b9/10 activities were evaluated for compara-
tive purposes. Data on the interstrain differences in the expression and activity of Cyp2a5 are important to select a
suitable mouse model for studying CYP2A6-mediated metabolism.

Results: Activity of Cyp2a5 (coumarin 7-hydroxylase) was highest in DBA-2 and DBA-1, intermediate in B6D2F1
(hybrid) and low in the remaining strains (C57BL/6, C57BL/10, CBA, BALB/cAn, SW). Contrasting with the activity,
background levels of Cyp2a4/5 mRNA did not differ between high- and low-activity murine strains. Phenobarbital (PB,
80 mg/kg body weight/day x 3 days, i.p.) increased Cyp2a5, Cyplal/2 (ethoxyresorufin-O-deethylase) and Cyp2b9/10
(bezyloxyresorufin-O-debenzylase) activities while only Cyp2a5 was enhanced by pyrazole (PYR, 100 mg/kg body
weight/day x 3 days, i.p.). Inductions of Cyp2a5 activity by PYR and PB were accompanied by increases of Cyp2a4/5
mRNA. PYR and PB did not upregulate heme oxygenase-1 (hmox-1) mRNA expression in any strain, a finding that is
apparently at odds with the notion that Cyp2a5 and hmox-1 inductions are coordinated events.

Conclusions: Since background levels of Cyp2a4/5 gene transcripts of high-activity strains did not differ from those
of low-activity mice, distinct constitutive activities did not result from different transcription rates and/or mRNA
half-lives. Results therefore suggested that interstrain differences in constitutive activity of Cyp2a5 possibly arise from
distinct translation efficiencies, protein half-lives and/or enzyme kinetics toward the substrate. Data from this study
indicated that all tested strains are suitable models for studying toxicants that are substrates for human CYP2A6; DBA-
2, DBA-1 and the hybrid B62DF1, however, have the advantage of presenting high constitutive activities of Cyp2a5.

Keywords: Cyp2a4, Cyp2a5, Heme oxygenase, Liver toxicity, Coumarin 7-hydroxylase

Background

The cytochrome P450 2A gene subfamily (CYP2A)
encompasses 23 genes and pseudogenes, including four
genes identified in mice (Cyp2a4, Cyp2a5, Cyp2al2
and Cyp2a22), three in rats (CYP2A1, CYP2A2 and
CYP2A3) and three in humans (CYP2A46, CYP2A7 and
CYP2A13) [1]. Mouse Cyp2a5 is orthologous of rat
CYP2A3 and human CYP2A6. Among all members of
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CYP2A subfamily, human CYP2A6 (and also CYP2A13)
and mouse Cyp2a5 are most similar regarding tissue
distribution and substrate specificity. Both CYP2A6
and Cyp2a5 are expressed in the olfactory mucosa,
other tissues of the respiratory tract, oesophagus and
the liver. Moreover, Cyp2a5 shares many pharmaco-
and toxicologically important substrates with CYP2A6
including drugs, coumarin, nicotine, cotinine, aflatoxin
B1, the nicotine-derived nitrosamine ketone (NNK),
N-nitrosodiethylamine, other xenobiotics and some
endogenous compounds (steroid hormones, heme and
bilirubin) [2, 3]. Cyp2a5 gene is expressed in the liver and
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in extra-hepatic tissues (e.g., olfactory mucosa, kidneys,
lungs, brain, small intestines), and its activity and expres-
sion in the liver is female-predominant [2, 3].

Regulation of Cyp2a5/CYP2A6 expression is com-
plex and not yet fully understood. Cyp2a$5 is induced by
a variety of structurally unrelated chemicals (e.g., met-
als, pyrazole, phenobarbital) and it can be either up- or
down-regulated by pathophysiological conditions such
as infections, liver cancer and inflammatory stimuli [2,
4-9]. Hypotheses have been advanced on the involve-
ment of liver injury, oxidative and endoplasmic reticu-
lum stress and perturbations of heme homeostasis in
the over-expression of liver Cyp2a5/CYP2A6. The mode
by which liver pathological conditions regulate Cyp2a5/
CYP2A6 expression and activity, however, remains to be
elucidated.

Strain differences in the constitutive activity of cou-
marin 7-hydroxylase (COH, a marker for Cyp2a5 activ-
ity) and coumarin metabolism have been reported and
the activity recorded in the DBA-2 mice is generally
higher than that found in other strains [10-12]. Mouse
COH activity has an additive mode of inheritance due
to the presence of two alleles at the Cyp2a5 gene locus
on chromosome 7, one for high activity and the other for
low activity [10, 13, 14].

This study was designed to investigate interstrain
differences in the constitutive activities of Cyp2a5,
Cyplal/2 and Cyp2b9/10, and Cyp2a5 mRNA expression
in the mouse liver. To the authors’ knowledge, no previ-
ous study has investigated differences between murine
strains in the expression of Cyp2a4 or Cyp2a5 genes in
the liver. Additionally, we investigated whether the up-
regulation of Cyp2a5 activity and expression by known
inducers (pyrazole and phenobarbital) was necessarily
associated with clinical manifestations of liver damage
and enhanced expression of heme oxygenase-1 (hmox-
1). Data from this study are expected to be of help for
selection of a suitable mouse model in toxicological stud-
ies dealing with xenobiotic compounds metabolized by
Cyp2a5/CYP2A6.

Methods

Animals

Female mice, 8—10 weeks old, from the Oswaldo Cruz
Foundation (FIOCRUZ) breeding stock (Swiss Webster,
BALB/cAn, C57BL/6, C57BL/10, CBA, DBA-1, DBA-
2, and the F1 hybrid of C57BL/6 female and DBA-2
male, B6D2F1) were used. Six mice of the same strain
were housed per cage (standard plastic cage with stain-
less steel cover lids) and white wood shavings were used
as bedding. The animals were maintained under con-
trolled environmental conditions (12 h light/12 h dark
cycle, lights on from 7 am to 7 pm; room temperature
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of 23 £ 2 °C and relative humidity of approx. 70%) with
free access to a commercial rodent diet (Nuvital CR1,
Nuvilab®, Curitiba, PR, Brazil) and filtered tap water. The
research project was approved by the “Ethics Committee
on the Use of Animals of the Oswaldo Cruz Foundation”
(CEUA-FIOCRUZ). All procedures were conducted in
accordance with Brazilian animal protection and welfare
legislation and international guidelines [15].

Chemicals

Benzyloxy-, ethoxyresorufin, coumarin, EDTA, pyrazole,
Bradford reagent, BSA, B-NADDP, glucose-6-phosphate,
glucose-6-phosphate dehydrogenase, resorufin, umbel-
liferone and glycine were from Sigma Chemical Co (St.
Louis, MO, USA). Phenobarbital (Fenocris®) was from
Cristdlia Produtos Quimicos Farmacéuticos LTDA (Sao
Paulo, Brazil). All other chemicals used in the experi-
ments were of high analytical grade.

Treatment

Mice received intraperitoneal (i.p.) injections of pyrazole
(PYR, 100 mg/kg body weight/day), phenobarbital (PB,
80 mg/kg body weight/day) or phosphate buffered saline
solution only (vehicle-control group, 10 mL/kg body
weight/day) for 3 consecutive days, and were euthanized
by cervical dislocation 24 h after the last injection. Blood
was taken from the retro orbital sinus immediately before
the cervical dislocation. Animals were always treated and
killed between noon and 2:00 pm. Mice (N = 18 of each
strain) were allocated at random (N = 6 per group) to
one of the treatment groups (control, PYR and PB).

Preparation of liver microsomes

After euthanasia, livers were quickly removed, freed from
fat and extra tissue, weighed and frozen in liquid nitro-
gen. Liver microsomal fraction (LMF) was prepared
essentially as described by De-Oliveira et al. [16], except
for using Tris (100 mM)-KCl (150 mM) buffer (pH 7.4)
instead of sucrose solution. LMF was aliquotted in cryo-
genic tubes that were stored in liquid nitrogen until fur-
ther use. Protein concentration of LMF was determined
by the method of Bradford [17] adapted to a multi-well
plate spectrophotometer reader (Spectramax Plus®,
Molecular Devices, USA).

Enzyme activities

Coumarin 7-hydroxylase

Coumarin 7-hydroxylase activity (COH, a marker for
Cyp2a5-catalyzed activity) was assayed essentially as
reported by van lersel et al. [11] with a few modifications:
assay tubes (final volume of 0.5 mL) contained 50 mM
Tris buffer pH 7.4, 10 pM coumarin and 0.8 mg/mL of
protein. After a 3 min pre-incubation of coumarin and
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microsomal protein, the reaction was initiated by addi-
tion of a NADPH regenerating system (0.5 mM -NADP,
10 mM glucose 6-phosphate, 0.5 U/mL glucose 6-phos-
phate dehydrogenase and 10 mM magnesium chloride).
Reaction was carried out for 10 min at 37 °C with shaking
until being stopped by the addition of 2 N HCI to assay
tubes. The reaction product, umbelliferone, was taken
to tubes containing a 1.6 M glycine-NaOH (pH 10.4)
solution and transferred to quartz cuvettes for fluores-
cence measurement in a spectrofluorimeter (Shimadzu
RF5301PC). The equipment parameters were set as fol-
lows: excitation at 355 nm, emission at 460 nm and band
slit width at 3 nm. A standard curve of umbelliferone was
run in parallel with each assay.

Alkoxy-resorufin-O-dealkylases

Benzyloxy- (Cyp2b9/10) and ethoxy- (Cyplal/2) resoru-
fin-O-dealkylases (BROD and EROD, respectively) were
assayed in 96-well microplates as described by Kennedy
and Jones [18] with some modifications. The final con-
centrations of components in the reaction were 5 pM
substrate (benzyloxy- or ethoxi-resorufin), 0.25 mM
B-NADP, 5 mM glucose 6-phosphate, 0.5 U/mL glucose
6-phosphate dehydrogenase and 2.5 mM magnesium
chloride. A constant amount of microsomal protein
(0.025 mg) was added to each well. After a 10 min reac-
tion time at 37 °C in a shaker water-bath, acetonitrile was
added to each well. The product of the reaction (resoru-
fin) was measured using a fluorescence plate reader
(Spectramax Gemini XS®, Molecular Devices, USA) with
excitation and emission wavelengths set at 530 nm and
590 nm, respectively.

Alanine and aspartate aminotransferases

Serum alanine (ALT) and aspartate aminotransferase
(AST) activities were determined by a colorimetric
method using a commercially available kit (Bioclin®,
Belo Horizonte, MG, Brazil) adapted to a multi-well plate
spectrophotometer reader (Spectramax Plus®, Molecular
Devices, USA), and absorbance was registered at 505 nm.

Determination of mRNA levels

mRNA was extracted from the liver tissue with TRI Rea-
gent® and quantified using a Nanodrop® spectropho-
tometer while cDNA was synthesized using the High
Capacity RNA-to-cDNA kit® (Applied Biosystems®) and
a T100™ thermocycler (BioRad®). TagMan® gene expres-
sion assays were purchased from Applied Biosystems®
(MmO00487248 gl for Cyp2a4/5, Mm00516007_m1 for
hmox-1 and 4352341E for B-actin, used as endogenous
control). Real-time reactions were performed in a Step
One Plus real-time thermocycler (Applied Biosystems®).
The relative quantification of the target genes was made
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using the Q-Gene software application (Equation 3 of the
manuscript) [19].

Statistical analysis

Data following a normal distribution (e.g. enzyme activi-
ties) were analyzed by one-way analysis of variance
(ANOVA) and Dunnett’s post hoc test. For data that are
known not to be normally distributed (e.g., percentages
and ratios), the Kruskal-Wallis test was used, followed by
the Mann—Whitney U test with Bonferroni correction.
Statistical evaluation was performed using GraphPad
Prism version 5.01 for Windows (GraphPad Software,
San Diego, California USA), and differences were consid-
ered statistically significant at a value of P < 0.05.

Results and discussion

Interstrain differences in Cyp2a5 activity

Results from this study showed that constitutive
(non-induced) activity of COH in the liver microso-
mal fraction markedly varied among mouse strains
(P < 0.05, ANOVA and Dunnett’s post hoc test). The
DBA-2 (D2) strain—the oldest of all inbred strains of
mice—ranked first for COH activity (mean + SEM:
228.4 + 24.8 pmol/mg ptn/min), while DBA-1 (D1)
(142.5 £ 28.3 pmol/mg ptn/min) exhibited the second
highest activity. Of the remaining murine strains, CBA,
BALB/cAn (BALB) and C57BL/6 (B6) presented COH
activities ranging from 32.9 £ 5.0 to 44.5 &+ 6.0 pmol/
mg ptn/min, while the lowest activities were found
in C57BL/10 (B10) (24.4 + 3.8 pmol/mg ptn/min)
and Swiss Webster (SW) mice (24.1 £+ 5.3 pmol/
mg ptn/min). Owing to its additive mode of inherit-
ance, Cyp2a5 (COH) activity in the liver of the hybrid
B6D2F1 (F1) (113.3 & 11.6 pmol/mg ptn/min) was in
between those of its parental high- (D2) and low- (B6)
activity strains (Fig. 1; Table 1).

PYR (100 mg/kg body weight/day i.p. x 3 days)
enhanced COH activity in all strains (Table 1) with induc-
tion factors (IF: ratio of induced to non-induced activity)
ranging from 2 to 2.5-fold for BALB, D2, D1 and B6 mice,
and from 3.3 to 3.9-fold for SW, CBA, B10 and F1 mice
(see Additional file 1). The administration of PB (80 mg/
kg body weight/day i.p. x 3 days), a pleiotropic inducer of
xenobiotic biotransformation enzymes, increased COH
activity in all strains, except B6, D1 and SW (Table 1).
The induction of COH by PB, however, was less marked
than that caused by PYR. Induction factors (IFs) after
treatment with PB ranged from 2.1 to 2.8-fold for BALB,
D2, B10, F1 and CBA mice (see Additional file 1).

In summary, results indicated that COH, a Cyp2a5-
mediated activity, varies up to 10-fold between mouse
strains. Notwithstanding the marked variation of con-
stitutive activities, mice from all strains evaluated in this



Poca et al. BMC Res Notes (2017) 10:125

Constitutive activity
300 - .

200 -+

100 -

JnmE e

Balb CBA B6 B10 D1

pmol/ mg ptn/ min

D2 F1

Sw
Fig. 1 Constitutive coumarin-7-hydroxylase activity (pmoles umbel-
liferone/mg ptn/min) in liver microsomes of different strains of mice.
Histogram bar heights are mean = SEM. Strain COH activities that
differ from that of B6 strain are indicated by an asterisk above the bar
(*P < 0.05, ANOVA and Dunnett's post hoc test). N = 6 per mouse
strain

study responded to challenges with PB and PYR, a find-
ing that suggests that constitutive strain-related differ-
ences do not involve xenoreceptors or mechanisms by
which Cyp2a5-mediated activity is induced by xenobi-
otics. It is of note that PB, a pleiotropic inducer of mice
Cyp2a5, 2b9/10, 3all and other CYP isoforms, and PYR,
an inducer of Cyp2a4, 2a5, 2el and 2j, enhance Cyp2a5-
catalyzed activities by distinct mechanisms [20-22].
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Interstrain differences in Cyp1a and Cyp2b activities
Strain-related variations of Cyplal/2 (EROD) and
Cyp2b9/10  (BROD) constitutive activities were
far less pronounced than those observed with
Cyp2a5 (COH) activity, and ratios of the high-
est to the lowest strain activity were 2.6 and 2.5-
fold for Cyplal/2 (B10 = 1322 =+ 9.4 pmol/mg
ptn/min; D1 = 50.2 £+ 3.3 pmol/mg ptn/min) and
Cyp2b9/10 (BALB = 56.6 + 5.7 pmol/mg ptn/min;
CBA = 22.0 £ 2.3 pmol/mg ptn/min), respectively
(Table 1).

PYR did not enhance Cyplal/2- and Cyp2b9/10-medi-
ated activities in any mouse strain (i.e., IFs were nearly
1), a finding that is consistent with the notion that this
heterocyclic diazole compound is a selective inducer of
Cyp2a, 2j and Cyp2el activities in the liver tissue [22].

PB, on the other side, markedly enhanced activi-
ties mediated by Cyplal/2 and Cyp2b9/10 in all mouse
strains, thereby confirming that it causes a pleiotropic
induction of hepatic monooxygenase activities. Treat-
ment with PB provoked a nearly fourfold increase in
Cyplal/2 activity (EROD) in all mouse strains, except
for BALB, the IF of which was 7.5 (see Additional file 2).
As far as induction of Cyp2b9/10 (BROD) is concerned,
the effect of PB on CBA (9.7 fold), D1 (10.1 fold), F1 (8.7-
fold) and D2 (6.7 fold) was more pronounced than the
effect on BALB, B6, B10 and SW (3 < IF < 5) (see Addi-
tional file 3). Chatuphonprasert et al. [23] also noted
that inductions of EROD and BROD by PB in D2 were
stronger than the inductions in B6 mice.

Table 1 Liver Cyp2a5 (COH), Cyp1a1/2 (EROD) and Cyp2b9/10 (BROD) activities in different mouse strains. Female mice
were treated ip with PBS (CON), pyrazole (PYR 100 mg/kg bw/days x 3 days), or phenobarbital (PB, 80 mg/kg bw/days x 3

days) and euthanized 24-h after the last dose

Treatment  Monooxygenase activity (pmoles/mg protein/min)
COH EROD BROD
CON PYR PB CON PYR PB CON PYR PB
Mouse strain
BALB/cAn 352429 69.7 + 4.4% 753 £6.0* 71260 1031+£90 5327+775% 566+£57 533+£40 1928+ 239%
CBA 3294+£50 1197 +£52* 919 £ 54* 749+49 615+£55 29304337% 220£23 198+35 2125+ 224%
C57BL/6 445+60 1121 £84% 622455 992+72 987+86 4443 1+286% 473+£58 334148 1589 £ 87*
C57BL/10 244 +38 88.1 £4.1% 63.6+£59% 13224+94 1355£169 5987 +£595% 426+£35 7294+£299 1813£55%
DBA-1 1425+£283 3448 £506% 261.8+246 502+£33 500£40 2657£131% 268+£14 4344124 271.0+£23*
DBA-2 2284+£248 5077 +£125% 4935+ 11.7% 749+79 643+63  3381+148% 398+28 410+£38 2669+ 285%
B6D2F1 1133+ 116 4378+£243* 3084+206* 688+34 666+£36  251.1+141% 352+41 450453  3065+£88*
SW 241 +£53 785+ 88% 425431 728+76  748+9.1 3485+£29.7% 412+78 388+102 143.6+44%

Values are shown as mean + SEM. Data were evaluated by ANOVA and Dunnett’s post hoc test. Means that are different (P < 0.05) from respective controls are
indicated by an asterisk (*). N = 6 mice of each strain per group (CON, PYR or PB)

COH (coumarin 7-hydroxylase) pmoles umbelliferone/mg protein/min, EROD (ethoxyresorufin-), BROD (benzyloxy-resorufin-O-dealkylase) pmoles resorufin/mg

protein/min
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Interstrain differences in Cyp2a4/5 expression

Cyp2a4 gene is highly related to Cyp2a5 (>98% identity
in the amino acid sequences of their coding region) and
both are expressed in the mouse liver. Despite their high
degree of similarity, Cyp2a4 and Cyp2a5 genes code for
enzymes that have distinct substrate specificities: while
the former mediates 15-a-hydroxylation of steroid hor-
mones (e.g., testosterone and estrogens), the latter cata-
lyzes the 7-hydroxylation of coumarin. A single amino
acid substitution (Phe209Leu) seems to be sufficient
to convert the specificity of Cyp2a5 reaction from cou-
marin 7-hydroxylase to testosterone 15-a-hydroxylase
[24]. Primers and probe used in this study do not distin-
guish between the highly similar transcripts of Cyp2a4
and Cyp2a$5, so that levels of both mRNAs were quanti-
fied jointly. As shown in Fig. 2, non-induced levels of
Cyp2a4/5 mRNAs exhibited only minor inter-strain

a Cyp2a4/5

fold change

b hmox-1
3 *
% 2-
c 5
] 5
£ 5
o %
% 14 . i - - S .- B
w = * ;
Lelelel — ;
e li= m %%
04 '-:-'- —
Balb CBA B6 B10 D1 D2 F

Fig. 2 Constitutive levels of Cyp2a4/5 and hmox-1 mRNA in the liver
of mice from different strains. a (upper panel) expression of Cyp2a4/5.
b (lower panel) expression of hmox-1. Relative quantification of mMRNA
was made by gPCR taking C57BL/6 liver sample as the reference

(*P < 0.05, Kruskal-Wallis test followed by Mann-Whitney U test with

Bonferroni's correction). N = 6 per mouse strain
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differences (Kruskal-Wallis test followed by Mann—
Whitney U test, P < 0.05 when levels were compared to
B6), a result that is at odds with the pronounced strain
differences in constitutive levels of Cyp2a5-mediated
activities (COH) (Table 1). For instance, while consti-
tutive activity of COH in D2 mice was nearly 10-fold
that found in SW, Cyp2a4/5 mRNA levels did not differ
between the two strains. The induction of Cyp2a5 activ-
ity (COH) by PYR, however, was accompanied by an
elevation of Cyp2a4/5 mRNA levels in all mouse strains
(Fig. 3). The effect of PB on Cyp2a4/5 mRNA was less
evident than that of PYR. Although having enhanced
Cyp2a4/5 expression in BALB/c, B6, D1, D2 and F1 mice,
PB did not produce statistically significant elevations of
Cyp2a4/5 mRNA over constitutive levels in CBA, B10 or
SW strains (Fig. 3).

Using a PCR-enhanced diagnostic analysis based on
Squires and Negishi’s method [25], Hahnemann et al.
[26] estimated the relative contributions of Cyp2a4 and
Cyp2a5 to the total Cyp2a4/5 mRNA content in the liver
of D2 and B6 male mice. The authors found that in both
mouse strains, Cyp2a5 mRNA represents nearly 90% of
constitutive levels of total Cyp2a4/5 mRNA. Hahne-
mann et al. [26] also suggested that increases in the total
Cyp2a4/5 mRNA produced by PYR were predominantly
due to elevations in Cyp2a5 mRNA levels. This inter-
pretation is also corroborated by data showing that PYR
enhanced COH activity (Cyp2a5-mediated), but did not
alter 15-a-hydroxylase activity (Cyp2a4-mediated) in the
D2 mice [26].

A number of studies demonstrated that liver Cyp2a5
can be induced by a myriad of structurally unrelated
organic and inorganic chemicals such as PYR, PB, CCl,,
cocaine, griseofulvin, thioacetamide, metals such as cad-
mium, indium and cobalt and also by some infectious
diseases such as hepatitis, malaria and fascioliasis [8, 9,
27, 28]. The mechanisms by which chemical agents and
infections induce Cyp2a5 are not entirely understood. It
is generally accepted that induction of liver Cyp2a5 activ-
ity and mRNA levels involves both transcriptional and
post-transcriptional events [29]. The exact role played
by several transcription factors (nuclear receptors) in the
regulation of Cyp2a5 expression, however, is not com-
pletely elucidated.

Results presented here showed that PYR increased lev-
els of total Cyp2a4/5 mRNA in all strains (Fig. 3), a find-
ing that is consistent with those reported by other authors
for D2 and B6 mice treated with this heterocyclic diazole
compound [26, 30]. It was described that the half-life of
Cyp2a5 mRNA in the liver of PYR-treated D2 mice was
at least fourfold longer than that in untreated controls, an
indication that increases in Cyp2a5 gene transcript lev-
els were predominantly due to mRNA stabilization [30].
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(See figure on previous page.)

Fig. 3 Pyrazole- and phenobarbital-induced expression of liver Cyp2a4/5 mRNAs in mice from different strains. Female mice were treated with
phosphate buffered saline (CON, PBS 10 mL/kg body weight/day x 3 days, i.p), pyrazole (PYR, 100 mg/kg body weight/day x 3 days, i.p.) or phe-
nobarbital (PB, 80 mg/kg body weight/day x 3 days, i.p.). Relative quantification of mRNA was made by qPCR taking the control mice (CON) as the
reference. An asterisk (*) above the bar indicates that mRNA levels differ (P < 0.05, Kruskal-Wallis test followed by Mann-Whitney U test with Bonfer-
roni's correction) from those of vehicle-controls (CON) of the same strain. N = 6 mice of each strain per treatment group

Subsequent studies revealed that PYR increases the level
of a heterogeneous nuclear riboprotein A1 (hnRNPA1)
that binds to a 71-nucleotide region of Cyp2a5 mRNA,
thereby protecting it from degradation [20, 31, 32]. These
studies strongly suggested that induction of liver Cyp2a5
by PYR is a mainly post-transcriptional and pre-transla-
tional event that involves Cyp2a5 mRNA stabilization.
The mechanism by which PYR and related compounds
produce alterations of Cyp2a5 mRNA-binding proteins,
however, is not entirely understood.

The induction of Cyp2a5 by PB, on the other side,
seems to involve enhanced translational efficiency and/or
protein stabilization in addition to increased transcrip-
tion rates. For instance, while increasing Cyp2a protein
and Cyp2a5 activity (COH), PB did not change levels
of Cyp2a4/5 mRNA in the liver of male D2 mice [30].
Nonetheless, Hahnemann et al. [26] reported that PB
enhanced Cyp2a4/5 mRNA and Cyp2a5 activity by 2- to
3-fold in the liver of C57BL/6 mice. In the present study,
while increasing Cyp2a5 activity (COH) by 2- to 3-fold in
most strains (Table 1), PB produced only a slight (<two-
fold) increase in Cyp2a4/5 mRNA levels (Fig. 3).

The most striking finding of the interstrain compari-
son was that, while presenting much higher constitu-
tive activities of Cyp2a5 (Table 1), D2 and D1 (and also
the hybrid B6D2F1) did not exhibit levels of Cyp2a4/5
mRNA more elevated than those found in the remaining
mouse strains (Fig. 2).

It is known that some xenobiotic metabolizing enzyme
mRNAs do not correlate well with protein expres-
sion and consequently with enzyme activities. Chang
et al. [33], for instance, found that CYP1A2 mRNA
and protein (immunoblot analysis) levels were not cor-
related in human liver samples. Along the same line,
Ohtsuki et al. [34] reported that human liver CYP1A2,
CYP2A6, CYP2C9, CYP2E1 and CYP4A1l correlated
poorly whereas other CYPs correlated highly (CYP2B6,
CYP2C8, CYP3A4) or moderately (CYP2C9, CYP2D6,
CYP3A5, CYP3A7) with protein (quantified by LC/MS/
MS analysis) expression levels. Ohtsuki et al. [34] also
noted that, for most CYPs, there was a better correlation
of enzyme activities to protein levels than to mRNAs
levels. The reasons why mRNAs of some human liver
CYPs including CYP2A6 did not correlate well with pro-
tein expression are unclear.

In principle, increased enzyme activity when mRNAs
levels remain unchanged could be explained either
because of protein stabilization (which increases pro-
tein levels) or due to post-translational/allosteric mech-
anisms (which do not alter protein levels). Since we did
not quantify protein levels in the present study, it was
not possible to exclude one of these two explanations for
the inter-strain differences in the constitutive activity of
Cyp2a5. The interpretation that inter-strain differences in
Cyp2a5 activity might result from differences in degree of
protein stabilization (and protein levels), however, is con-
sistent with enzyme kinetic data provided by other stud-
ies. Although COH V. determined in liver microsomes
from D2 was higher than that measured in microsomes
from AKR and C57BL/6, the reaction K, did not differ
either between D2 and AKR [35], or between D2 and B6
strains [36]. Since K, was essentially the same, strain dis-
tinct COH constitutive activities should result from dif-
ferent amounts of Cyp2a5 protein in liver microsomes.
As far as the authors are aware, no previous study has
compared the constitutive levels of Cyp2a4/5 (or Cyp2a5)
mRNAs between mouse strains using a quantitative real-
time PCR method (qPCR). The lack of quantitative data
on the Cyp2a5 protein expression levels in the evaluated
mouse strains, however, is an important limitation of this
study.

Hepatotoxicity and Cyp2a5 induction

Since Cyp2a5 expression and activity are up-regulated
by hepatotoxic agents and some liver pathological con-
ditions [8, 9], it was postulated that oxidative stress or
another pathophysiological change associated with liver
injury may eventually elicit Cyp2a5 overexpression [6,
37]. PYR is hepatotoxic and dose regimens of this hetero-
cyclic compound that cause strong inductions of Cyp2a5
also produce a marked elevation of serum aminotrans-
ferases (ALT and AST), a marker for liver damage, as
demonstrated after treatment with one single injection
of 200 mg/kg bw/days [6], 150 mg/kg bw/days x 2 days
[38] or one single injection of 100 mg/kg bw of PYR [6].
In the present study, statistical analysis (Kruskal—Wallis
test followed by Mann—Whitney U test, P < 0.05) showed
a modest (<twofold) increase of ALT in CBA (IF = 1.6)
and B10 (IF = 1.8) treated with PYR. ALT serum lev-
els remained unaltered in PB-treated mice (Fig. 4). AST
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Fig. 4 Interstrain differences in serum levels of ALT after treatment with pyrazole or phenobarbital. ALT serum levels (IU/L) in BALB/c, CBA, B6, B10,
D1, D2, F1 and SW mice treated with phosphate buffered saline (CON, PBS 10 mlL/kg body weight/day x 3 days, i.p), pyrazole- (PYR, 100 mg/kg
body weight/day x 3 days, i.p.) or phenobarbital (PB, 80 mg/kg body weight/day x 3 days, i.p.). ALT serum levels are expressed as ratio of PYR- or
PB-treated to average control group levels (100%). * levels are different from those of vehicle controls (CON) of the same strain (P < 0.05, Kruskal-
Wallis test followed by Mann-Whitney U test with Bonferroni's correction). N = 6 mice of each strain per treatment group

was not altered in PYR treated mice. Except for a small
elevation (<twofold) of AST serum levels in B10 and D2
mice, AST was not altered by administration of PB either
(Additional file 4). Therefore, the dose regimen of PYR
(100 mg/kg bw/days x 3 days) chosen for this study was
sufficient to up-regulate Cyp2a5 expression and activity
without causing clinically evident liver injury.

Concomitant induction of hmox-1 and Cyp2a4/5 expression
Some authors postulated that all pathophysiological
conditions and hepatotoxic chemicals that up-regulate
Cyp2a5 share the common feature of altering cellular
redox state in the liver tissue [37, 39, 40]. Along this line,
it was suggested that Nrf2, a transcription factor regu-
lated at the post-transcription level by oxidative stress,
plays a key role in the induction of Cyp2a5 by agents and
conditions that eventually lead to liver damage. Nfr2 also
mediates the expression of a set of redox homeostasis
genes including hmox-1 [40] and concomitant induc-
tions of liver Cyp2a5 and hmox-1 in D2 mice intoxicated
with Cd [41] and in those infected with malaria parasites
[9] were reported. Enhanced hmox-1 activity results in
increased production of bilirubin, the accumulation of
which is potentially toxic. If Cyp2a5 is in fact involved
in the oxidation of bilirubin, as suggested by Abu-Bakar
et al. [41], a concurrent up-regulation of hmox-1 and
Cyp2a5 in some toxic and pathological conditions, by
maintaining a balance between bilirubin production and
elimination, would confer a certain protection against
liver damage caused by enhanced oxidative stress.

Data from this study, however, showed that PYR,
at a dose regimen that induced Cyp2a5 activity (and
Cyp2a4/5 mRNA expression) in the absence of signs of
hepatotoxicity, failed to enhance hmox-1 expression in
the livers of BALB, CBA, B6, B10, D2, F1 and SW mice
(Fig. 5). Nichols and Kirby [42] found an enhanced
expression of hmox-1 (micro-array analysis confirmed
with q-RT-PCR) in the liver of B6 mice 24-h after treat-
ment with a high dose of PYR (200 mg/kg bw, ip). Unlike
the PYR dose regimen used in our study (100 mg/kg bw/d
ays x 3 days), the PYR dose employed by Nichols and
Kirby [42] induced a marked rise in ALT serum levels.

Differences in the response of hmox-1 and Cyp2a5 to
treatment with PbCl, and MeHg were observed in mouse
primary hepatocytes [40]. Although Pb and Hg activated

Nfr2 and enhanced both hmox-1 and Cyp2a5 expres-
sion, the up-regulation of hmox-1 gene was more rapid
and transient as compared to that of Cyp2a5. Moreover,
contrasting with a lack of induction of Cyp2a5 expres-
sion, an enhanced expression of smox-1 was still present
in hepatocytes from Nfr2 null mice [40]. According to the
authors, a possible explanation for the aforementioned
differences could be an involvement of the transcrip-
tional repressor Bach 1 in the regulation of imox-1 gene.
In other words, while Nfr2 would be critical for regu-
lating Cyp2a5 in any case, inactivation of Bach 1 would
induce hmox-1 in the Nfr2 null mouse.

Conclusions

In conclusion, results from this study showed that con-
stitutive activity of Cyp2a5 (COH) in the liver of D2 and
D1 were clearly higher than that of the outbred SW or
the inbred strains BALB, CBA, B6 and B10. As expected
from an additive mode of inheritance, Cyp2a5 activity of
the hybrid B6D2F1 was intermediate between those of
its high- and low-activity parents (DBA-2 and C57BL/6,
respectively). Since background levels of Cyp2a4/5 gene
transcripts of high-activity strains (D1, D2) did not differ
from those of low-activity mice (e.g., SW, B6, B10), dis-
tinct constitutive activities did not result from different
transcription rates and/or mRNA half-lives. The absence
of data on Cyp2a5 protein levels was an important limita-
tion of this study. Owing to the lack of quantitative data
on protein expression levels it was not possible to eluci-
date whether constitutive activities of Cyp2a5 correlated
with protein levels. Differences in protein stabilization
and/or in post-translational/allosteric mechanisms are
possible explanations for strain differences in Cyp2a5
constitutive activity.

It was also shown that PYR up-regulated Cyp2a5 activ-
ity and Cyp2a4/5 expression, but did not affect Cyplal/2
and Cyp2b9/10 activities in the liver of mice from any
strain. As expected from a pleiotropic inductor, PB
increased activities of Cyp2a5, Cyplal/2 and Cyp2b9/10
as well. In CBA, B10 and SW PB-caused induction of
Cyp2a5 activity was unaccompanied by a clear enhance-
ment of Cyp2a4/5 mRNA levels, a finding that is consist-
ent with the prevailing notion that PB-mediated CYP2A
induction involves mainly actions at translational and/
or post-translational levels (Fig. 3). Finally, Cyp2a5
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Fig. 5 Pyrazole and phenobarbital induced expression of liver hmox-1 mRNAs in mice from different strains. Female mice were treated with
phosphate buffered saline (CON, PBS 10 mL/kg body weight/day x 3 days, i.p), pyrazole (PYR, 100 mg/kg body weight/day x 3 days, i.p.) or phe-
nobarbital (PB, 80 mg/kg body weight/day x 3 days, i.p.). Relative quantification of mRNA was made by qPCR taking the control mice (CON) as the
reference. An asterisk (*) above the bar indicates that mRNA levels differ (P < 0.05, Kruskal-Wallis test followed by Mann-Whitney U test with Bonfer-
roni's correction) from those of vehicle-controls (CON) of the same strain. N = 6 mice of each strain per treatment group

up-regulation by PYR, a known hepatotoxin, was unac-
companied by clinical signs of liver toxicity with the dose
used in this study, a result that differs from the results
observed by Gilmore et al. [6]. In this study, PYR and PB
did not up-regulate hmox-1 mRNA, a finding that is at
odds with the idea that Cyp2a5 and hmox-1 inductions
are associated events that share a common Nfr2-activa-
tion pathway.
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Additional file 1. Inter-strain differences in the induction of liver COH
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Additional file 2. Inter-strain differences in the liver EROD activity.
Additional file 3. Inter-strain differences in the liver BROD activity.
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