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Abstract

While it is generally accepted that language and speech have genetic foundations, and that

the widespread inter-individual variation observed in many of their aspects is partly driven

by variation in genes, it is much less clear if differences between languages may also be

partly rooted in our genes. One such proposal is that the population frequencies of the so-

called “derived” alleles of two genes involved in brain growth and development, ASPM and

Microcephalin, are related to the probability of speaking a tone language or not. The original

study introducing this proposal used a cross-linguistic statistical approach, showing that

these associations are “special” when compared with many other possible relationships

between genetic variants and linguistic features. Recent experimental evidence supports

strongly a negative effect of the “derived” allele of ASPM on tone perception and/or process-

ing within individuals, but failed to find any effect for Microcephalin. Motivated by these

experimental findings, I conduct here a cross-linguistic statistical test, using a larger and

updated dataset of 175 samples from 129 unique (meta)populations, and a battery of meth-

ods including mixed-effects regression (Bayesian and maximum-likelihood), mediation and

path analysis, decision trees and random forests, using permutations and restricted sam-

pling to control for the confounding effects of genealogy (language families) and contact

(macroareas). Overall, the results support a negative weak effect of ASPM-D against the

presence of tone above and beyond the strong confounding influences of genealogy and

contact, but they suggest that the original association between tone and MCPH1 might

have been a false positive, explained by differences between populations and languages

within and outside Africa. Thus, these cross-linguistic population-scale statistical results are

fully consonant with the inter-individual-level experimental results, and suggest that the

observed linguistic diversity may be, at least in some cases, partly driven by genetic

diversity.
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Introduction

It is becoming increasingly accepted that, in order to fully understand language, its origins,

evolution, change, and patterns of diversity, we need to re-root it into its wider environment

[1–3]. This comprises not only climate [3], altitude [4] and ecology [5], but also the biology of

the speakers [1]. While the universal effects of the species-wide shared properties of our per-

ception, processing and production of language have a long history of intense study [6–8],

much less attention has been given to inter-individual variation and its influences on the emer-

gence of the observed patterns of linguistic diversity [1].

One of the first well-supported proposals linking the biological and linguistic diversities is

represented by [9], which suggested that the cross-linguistic distribution of linguistic tone is

partly explained by the population frequency of certain genetic variants (or alleles) of two

genes involved in brain growth and development, ASPM and Microcephalin. The evidence in

support of this suggestion consisted of a set of statistical analyses, showing that, indeed, after

controlling for the effects of shared history and contact, these alleles have a weak negative effect

on the probability that a language is a tone language. It was further speculated that this is due

to a negative bias that is very weak at the individual level (as any normal child can acquire per-

fectly the phonological system of any human language she has proper exposure to), but that

can be amplified by the repeated transmission of language across generations in populations of

speakers with similar biases [9–11]. Because the frequency of these alleles varies between popu-

lations, the presence and/or strength of this bias should vary as well, helping explain why tone

languages are distributed the way they are, but, emphatically, this is just one weak explanatory

factor among many others, easily overwritten by other, much stronger forces, such as language

contact and language-internal developments [12–14] or even climate [3].

However, this proposal has been greeted with a certain scepticism (with some exceptions;

e.g., [15]) due to several factors, one of the most important being, as detailed below, methodo-

logical. This resulted in the perception that, most probably, the effect of the two alleles on tone

was, at best, a false positive, an artefactual result of the inadequacy of the data and of the inca-

pacity of the statistical techniques to effectively control for confounds, or, at worst, yet another

case of “double-dipping” (or “circular analysis”) in which the same data is used to generate a

hypothesis and then to test it [16]. Nevertheless, as emphasized in the original publication and

in several subsequent ones [9–11], this study should be seen as generating hypotheses while try-

ing to reduce the probability of false positives, using the best available data and methods.

During the intervening years, various approaches to testing this hypothesis have been tried.

For example, in [17, 18] I used computer simulations of different implementations of such a

genetic bias (both Bayesian and “ad-hoc”) in different types of settings (simple transmission

chains, transmission chains with two agents per generation, and complex societies) to show

that, under certain conditions, weak biases rooted in genetics can be amplified by the repeated

transmission of language to produce correlations similar to those observed between tone and

the two alleles. If tone was affected by the genetic structure of the population, and given that,

in general, allele frequencies change much slower than language, then we could predict that

tone should tend to be quite stable. Applying Bayesian phylogenetic methods from evolution-

ary biology to language structures, [19] found that, indeed, tone tends to be among the most

stable features of language—a finding supported by other, sometimes widely different, meth-

ods [20, 21].

But probably the most convincing type of test for this hypothesis is represented by an exper-
imental design, whereby a link can be found between the genome of an individual and her per-

formance related to linguistic tone. (There are other types of evidence, involving for example,

animal models or molecular genetics, but these are still far in the future). However, besides the
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high costs and the logistics of such designs, the fundamental issue is the operationalization of

this bias in terms of actual psycholinguistic or neuro-cognitive tasks which have high reliabil-

ity, show enough inter-individual variation, and are arguably related to the learning, percep-

tion, processing or production of linguistic tone. Several such attempts were made, including

the perception of missing fundamental tones [22], the use of pitch variation in word segmenta-

tion [23], and the learning of an artificial tone language in an fMRI paradigm [24]—but while

all these produced interesting results, they have arguably failed to shed much light on the

nature of the bias.

While these experimental approaches were purely at the behavioural or neuro-cognitive lev-

els, without any genetic component, [25] took a completely different route. They recruited a

total of 32 young adults, native speakers of American English and self-identified “Caucasians”.

These participants were genotyped for the alleles of interest for the two genes, ASPM and

Microcephalin, and performed a set of behavioural and neuro-cognitive tasks in order to test if

(and in what way) their genotype predicted their behavioural and/or neural responses after

controlling for various confounds (age, sex, auditory working memory, and phonemic aware-

ness). In a nutshell, the behavioural task of interest was a “tone perception task” where the par-

ticipant heard a resynthesized Mandarin vowel with one of three Mandarin tones

superimposed. The participant had to indicate which way the pitch was going, by selecting the

correct arrow among two shown on the screen (! for Mandarin tone 1 level,% for tone 2 ris-

ing, and& for tone 4 falling). 13 of these participants also took part in an fMRI adaptation

experiment, which looked at how the brain’s response “adapts” to the repeated presentation of

the same Mandarin tone. Despite being relatively underpowered, this experiment did find an

effect of ASPM on the “tone perception task”, but apparently in the opposite direction to that

predicted by [9], and failed to find any effect for Microcephalin. The opposite sign of ASPM’s

effect could be due to several factors, including the genetic background of the participants and

the fact that they did not speak a tone language [25], but most probably it is because the “tone

perception task”, instead of operationalising what the native speakers of a tone language such

as Mandarin Chinese do, captures what speakers of an intonation language (such as English)

do, namely separate the pitch contour from the segments [23, p. 340]—if this is the case, then

[25]’s results are actually precisely in the direction predicted by [9].

Building on this work, [26] recruited a massive sample of 426 native speakers of Cantonese

(a language with a complex tone system), mostly from Hong Kong. All these participants were

genotyped not only for the two alleles of interest for ASPM and Microcephalin, but for a further

20 more variants in a total of 10 genes that have been involved in the brain, cognition, speech

and language (CDK5RAP2, COMT, DRD1, DRD2, CNTNAP2, ATP2C2, CMIP and FOXP2).

After a hearing test, they provided the number of years of musical training, performed a test of

non-verbal intelligence, and four experimental tasks: “lexical tone perception” (an ABX task

matching the last tone to the first or the second), “musical pitch perception” (judging if pairs

of short melodies were identical or different in one note), “rhythm perception” (as above, but

the difference was in rhythm), and a working memory task. Among all the possible associa-

tions between the genetic variants and the measures, only that between “lexical tone percep-

tion” and ASPM was significant, even after controlling for non-verbal IQ and years of musical

training; moreover, the effect was in the direction predicted by [9], and its effect size was com-

patible with a weak bias and with other known genetic effects [26].

Therefore, taken together, [25] and especially [26], seem to suggest that the cross-linguistic

effect of ASPM on linguistic tone, proposed by the earlier exploratory study in [9], may have

an individual basis. Citing previous work, [26] suggests that this is mediated by ASPM’s effects

on the structure of the auditory cortex (including Heschl’s gyrus), influencing thus the percep-

tion and processing of pitch. Thus, we could conclude that, while not the last word on the
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matter, this may be a canonical example of a hypothesis-generating exploratory study leading,

more than 10 years later, to an experimental hypothesis-testing design, supporting the initial

proposal using completely different data and methods. However, this scientific success story

generated two nagging questions for me: (i) what is going on with Microcephalin?, and (ii) the

data, methods and results in [9] are from 2005–2006: how would they look in 2020?

For (i), both experimental studies [25, 26] fail to find any evidence for an effect of Microce-
phalin and, while this could be a false negative (its effect is too weak to be detected even with

more than 400 participants) or simply not captured by the tasks, it is worthwhile taking it at

face value and assuming that Microcephalin could have very well been a false positive in the

original [9] study. For (ii), the intervening years have seen a revolution in the methods used to

ask cross-cultural questions [27], ranging from the generalisation of mixed-effects/hierarchical

regression [28, 29], to the use of Bayesian methods [2, 30], permutation/randomisation [31],

and of phylogenetics [32] and machine learning [33]. Likewise, the availability and quality of

linguistic (and cultural) data has dramatically improved, with databases such as WALS Online;
[34], PHOIBLE; [35], LAPSyD and D-PLACE [36] being easily accessed by humans and

machines. On the genetic side, while the genomic coverage of the data has exploded (we now

have not only full exomes and genomes, but epigenetic data as well), both in modern and

archaic humans (including Neanderthals and Denisovans), it has remained rather circum-

scribed geographically and ethno-linguistically, despite efforts such as the 1000 genomes
project [37], the Simons Genome Diversity Project [38], and the The ALlele FREquency
Database (ALFRED) [39]. So, if we were to collect new linguistic and genetic data, and use the

methods now available, how would the relationship between ASPM, Microcephalin and tone

look like?

This paper first summarises the original data, methods and results in [9], then describes the

new data collected (as of early 2020), the methods used and their results, ending with a discus-

sion and conclusions.

A summary of the original 2007 study

In this section, I briefly review and summarize the 2007 study [9] that originally introduced

the hypothesis of a relationship between tone, ASPM and Microcephalin. (To facilitate reading,

I prefix the titles of this section’s subsections with “2007:”).

2007: Two papers in Science
In 2005, two papers from the same research group were published in the same issue of Science,
each detailing the story of one of two genes: ASPM [40] and Microcephalin (or MCPH1; [41]).

These two genes are involved in brain growth and development, as shown by the fact that sev-

eral mutations result in microcephaly [42], and they seem to have played an important role in

the evolution of the brain [43–45]. However, the two Science papers focused on variants that

are not involved in microcephaly or, in general, in any other pathology [40, 41], but instead

seem to be part of the range of normal genetic variation in our species [46]. These so-called

“derived” variants (or alleles) of the two genes (henceforth denoted as the “derived” alleles, or

as ASPM-D and MCPH1-D, respectively) are characterised each by a change in the sequence

of its respective gene, change that is relatively recent and contrasting with the “ancestral” ver-

sion from which they derive. The papers estimated that ASPM-D emerged some 5,800 years

ago (95% confidence interval between 14,100 and 500 years ago), and MCPH1-D some 37,000

years ago (between 60,000 and 14,000 years ago). However, what was truly striking about these

alleles was the geographic distribution of their population frequency; please see [40, Fig 1.,

p. 1721] and [41, Fig 3., p. 1719] for the original maps, and Fig 1 for maps using newer data. As
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a reminder, the vast majority of locations on our genome (or loci), including genes such as

ASPM and MCPH1, come in pairs, with one copy inherited from the mother and one from the

father. Thus, in simple cases as discussed here, each individual can have 0, 1 or 2 “derived”

alleles in her genome—independently for each of the two genes. In a population (or group) of

people, we can thus compute the frequency of the “derived” allele (for each gene indepen-

dently), fD, by diving the number of “derived” alleles across individuals, ND, to twice the total

number of individuals genotyped in the population, 2N (as each individual can have up to two

such alleles): fD ¼
ND
2N . This can vary between 0% (the “derived” allele is absent from the popula-

tion) and 100% (everybody has it) but, importantly, its estimation can be affected by many

types of errors and biases, the most important being the number of people that are genotyped,

the genealogical relationships between them, and their representativity for the considered

(meta)population. (Please see [46] for a gentle introduction to population and evolutionary

genetics). Also, while not directly relevant to the hypothesis in [9], it is nevertheless important

to mention that the original papers claimed that (i) the “derived” alleles of both ASPM and

Microcephalin were evolving under positive natural selection (i.e., that there is a selective

advantage to the individuals having them in their genomes), and (ii) that this selective advan-

tage was probably related to “cognition”. However, the method they used to test for positive

selection is not robust, and the selection signal is probably an artefact [47, 48]. More impor-

tantly, given the controversies the original papers generated (including accusations of implicit

racism) [49], subsequent work did not find any influence of these “derived” alleles on cogni-

tion, brain size or any other such phenotypes [50, 51] (with some debatable exceptions; [52,

53]). Therefore, while the crucial roles played by these two genes in the evolution and ontogeny

of the human brain are clear, with very probable episodes of positive selection in our lineage

[43–45], it is currently unclear what phenotypic effects their “derived” alleles may have [26, 54]

and odds are that the recent and current evolution of these particular alleles is mainly driven

by neutral demographic processes and not by selective pressures [47, 48, 54].

Fig 1. The distribution of the two “derived” alleles in the newer data. Left: ASPM-D, right: MCPH1-D. Each circle on the maps represents a unique

sample, and its colour represents the frequency (%) of the “derived” allele in that sample. The inset shows the overall histogram of the allele frequency

across all the samples. Please note that the maximum percentage (corresponding to the lightest colour) differs between the two panels. The maps were

generated with the R package maps which uses public domain data from the Natural Earth project https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0253546.g001
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2007: The hypothesis

There were three factors that prompted us to explore the relationship between these two

“derived” alleles and linguistic tone back in 2005–2006:

1. the striking visual resemblance between the maps of the two “derived” alleles (Fig 1) and

that of linguistic tone (Fig 3 and https://wals.info/feature/13A)

2. the probable involvement of the two genes in brain growth and development, and

3. the evidence of a genetic basis for language and speech was rapidly increasing, not only in

terms of heritability studies [55], but also of candidate genes [56], including the relatively

recently discovered FOXP2 [57]; while most of these concerned “universal” aspects of

speech and language or their pathologies, a few did focus on normal inter-individual varia-

tion (see [58] for a contemporary review and discussion).

Thus, while the suggestion that these two “derived” alleles influence tone was not an a priori
hypothesis that pre-existed seeing the data, but instead was prompted by the data itself, it did

nevertheless have pre-existing theoretical roots, especially in the prediction that, given their

genetic bases and the widespread inter-individual and inter-group genetic variation, there

should be aspects of language and speech whose patterns of diversity are influenced by genetic

diversity [58, 59]. Therefore, it is important to see [9] as an attempt to reject the hypothesis of a

link between the geographic distributions of ASPM-D, MCPH1-D and tone, using a super-set

of the data partly responsible for the generation of this hypothesis. The failure to achieve this

rejection can be taken, in extremis [60], as a confirmation that human visual perception is

really good at detecting matching patterns and that [9] is a futile and misleading exercise in

“dubble dipping”/”circular analysis”, or, as repeatedly highlighted [9, 10, 58], as the generation

of a hypothesis from a combination of data and theoretical expectations, followed by the

reduction of the probability of false positives.

2007: The data

In order to check this hypothesis, we started from the genetic data in [41, 40], consisting of the

frequency of the two “derived” alleles in 59 populations, relatively widespread across the globe,

but with a clear bias towards Africa and Eurasia, and very little data from the Americas and the

Pacific, and no data from Australia. We manually mapped these populations to languages

(using the meta-data in the two papers), and we collected data concerning not only their tone

systems (using a binary coding of “no tone” versus “tone”) but also various other structural

aspects of language (mostly from [61], supplemented with data from other secondary and pri-

mary sources, including questionnaires sent to specialists in various languages); likewise, we

collected data about the frequency of many more genetic loci spread across the genome in

these populations from databases such as ALFRED [39] and HGDP [62] (see [9, 58] for details).

Due to missing and ambiguous data, we included only 49 of these 59 populations in our analy-

ses (in particular, we did not include the 5 populations from the Americas in the statistical

analyses, but we used them as an informal test of the results, in the sense that they have low fre-

quencies of ASPM-D, high of MCPH1-D, and show both tonal and nontonal languages).

2007: The methods

With these, we estimated the association between tone and the population frequencies of

ASPM-D and MCPH1-D either individually, using Pearson’s r correlation coefficients, and

together, using logistic regression. Besides evaluating the effect sizes and the statistical signifi-

cance of these measures of association as such, we also compared their effect sizes against
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those of all possible associations between all the linguistic features and all the genetic markers

in our database. This procedure quantifies “how special” the relationship between tone and the

two “derived” alleles is relative to what would be expected when repeatedly picking random

aspects of language and our genome, allowing us to implicitly control for multiple confounds,

such as climate, environment, contact, language family diversification, and past demographic

processes and events.

On top of this, we also explicitly controlled for two major confounds [27]: shared inheri-

tance and contact. The first refers to the fact that the features of related languages are not inde-

pendent due to inheritance from their common ancestor (“Galton’s problem”; [63]), a point

also applicable to the genetic makeup of populations that descend from a common ancestor.

The second captures the fact that languages in contact tend to exchange features, just as popu-

lations may exchange genes. For this explicit control, we used the Mantel test [64], which com-

putes the (partial) correlations between two distance matrices (possibly controlling for others),

and repeatedly permutes the data in order to compensate for the non-independence of the

observations. The distances used were (the first two are of interest for the hypothesis, the last

two are the confounds):

• the “structural distance” between languages, defined as the Euclidean distance on the space

defined by one or more structural features: small distances reflect higher structural similari-

ties between the languages

• the “genetic distance” between populations, defined as Nei’s D [65]: small distances mean

that the populations have very similar allele frequencies

• the “geographic distance” between languages, computed as the great circle distances con-

strained by the geography of the continents: presumably languages closer in space would

have had more chances for linguistic and genetic exchanges, and

• the “historical linguistic distance”, quantifies the degree of genealogical closeness between

two languages using the classification in the 15th edition of the Ethnologue [66].

2007: The main results

The Pearson correlations between tone and ASPM-D (r = −0.53, p = 9.63 � 10−5) and MCPH1-

D (r = −0.54, p = 7.22 � 10−5) are not only highly significant, but also stronger than most

(> 98.5%) of all the possible 25,558 such correlations. Likewise, the logistic regression of tone

on both ASPM-D and MCPH1-D simultaneously was very good (Nagelkerke R2 = 52.8%,

βASPM−D = −7.2, p = 0.010, βMCPH1−D = −4.9, p = 0.026) and better than 97.3% of all the

11,582,690 possible such logistic regressions.

Turning to the Mantel correlations: r = 0.17, p = 0.015 for tone–geography, r = 0.07, p = 1.0

for ASPM-D–geography, r = 0.54, p< 0.001 for MCPH1-D–geography; r = 0.33, p< 0.001 for

tone–(ASPM-D, MCPH1-D), r = 0.29, p = 0.003 for tone–(ASPM-D, MCPH1-D) while con-

trolling for geography, and r = 0.28, p< 0.001 for tone–(ASPM-D, MCPH1-D) while control-

ling for geography and history.

2007: Potential issues

However, besides the nature of the hypothesis and its testing discussed above, there are several

potential issues with the data and the methods. Concerning the data, first, the main constraint

was the availability of frequency information for the “derived” alleles, limiting the study to the

skewed and rather small sample in [41, 40]. Second, the identification of some samples was far
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from unambiguous, resulting in uncertain judgements with respect to the linguistic variables

(including tone).

While the comparison with the empirical distribution of many other similar associations

should control for many potential confounds, the technique used for their explicit control,

namely the Mantel test, is far from ideal. First, it does not quantify the association between the

actual values, but between distances derived from these values, introducing extra degrees of

freedom and potential noise. For example, the way geographical distance is computed assumes

a linear effect on contact, and the historical linguistic distance assumes that unrelated lan-

guages are only slightly more dissimilar than languages from the same family but in different

“genera” (a distance of 4 versus 3). Second, controlling for the historical and geographical dis-

tances does not fully model their effects on the relationship between tone and the two

“derived” alleles. For these (and other) reasons, the Mantel test is very rarely used nowadays,

the preference being to explicitly model the sources of statistical non-independence using, for

example, phylogenetic approaches, mixed effects/hierarchical models, permutation/randomi-

sation or restricted sampling.

I now turn to the current study, detailing its data, methods and results.

Data

Please note that all the data, and the R and Rmarkdown code need to reproduce the results

reported here, as well as the full analysis report (as a self-contained HTML document) are freely

available on Zenodo at doi:10.5281/zenodo.4762169 and (except the HTML full analysis report,

due to its size) also in the GitHub repository https://github.com/ddediu/tone-genes-update.

All external file paths referenced here are relative to the root of this repository (e.g., ./data/
genetics/code/00_preprocesses_genetics.R).

Despite the advances of the last 14 years, the availability of frequency data for the “derived”

alleles of ASPM and MCPH1 is still the limiting factor for this update. Therefore, I first col-

lected (hopefully, all) the currently available genetic data, followed by its merging with the lin-

guistic data. Please note that I focus here only on the relationship between tone and the two

“derived” alleles, and not on its comparison with other comparable relationships as in the orig-

inal paper [9]; therefore, I only collected and analysed data on ASPM-D, MCPH1-D and tone.

The “derived” alleles

Definition. The original paper [40, p. 1720] identified the “derived” allele of ASPM in

relation to “haplotype 63” and two of its polymorphic nonsynonymous sites in exon 18 in an

open reading frame (ORF), A44871G and C45126A, with ancestral alleles A and C, respec-

tively, and the derived ones, G and A. More recent publications however, use SNP (single

nucleotide polymorphism) rs41310927 with ancestral allele T and derived allele C. Likewise,

the original paper [41, p. 1717] identified the “derived” allele of MCPH1 (or Microcephalin) in

relation to G37995C in exon 8 in an ORF with ancestral allele G and derived one C. More

recent publications use SNP rs930557 with ancestral allele G and derived allele C.

Data sources. For the collection of population frequency data concerning the two

“derived” alleles, I used a total of 7 sources (see Table 1): besides the original papers [41, 40], I

extracted information from the experimental study [26] on Cantonese speakers, as well as

from several large genetic databases. However, it is important to note that, while most data-

bases contain information about the actual “derived” alleles or the corresponding SNPs

(rs41310927 and rs930557), not all do, but instead contain data on other SNPs that are in very

tight LD (linkage disequilibrium) with them. I used LDlink’s “LDproxy Tool” to obtain the list

of all SNPs in LD with the target ones across all the populations in that database—see Table 2
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for the list of retained “proxy” SNPs. For ASPM-D, these 5 “proxy” SNPs represent 289 unique

extra genetic samples out of 396 (73%), and for MCPH1-D, the single “proxy” SNPs represents

141 unique extra genetic samples out of 245 (57.6%). Please note that, while increasing the cov-

erage of the data, this procedure is not perfect, in that LD may differ between populations and

geographic regions, potentially introducing noise. However, running the analyses excluding

the “proxy” SNPs produce very similar, but somewhat weaker results to those obtained includ-

ing them (see the full HTML analysis report), suggesting that they are, indeed, good proxies for

the “derived” alleles.

The samples and (meta)populations. The unit (the “group”) for which allele frequency

information is given varies between, and even within, these data sources, and cannot be con-

sidered a priori equivalent nor unique between and within data sources. For example, 1000
genomes (and LDLink) contain populations such as “African/African-American”, “Han Chi-

nese in Beijing, China” and “Mende in Sierra Leone”, while ALFRED may contain very specific

samples from arguably the same (meta)populations, such as SA004380P and SA004595X,

both “Khanty”. Thus, I manually matched these units within and between samples using the

meta-information available in each database, resulting in 175 unique samples contained in 129

unique (meta)populations, where possible based on those available in ALFRED; each sample

has a unique ID, while for each (meta)population, besides a unique ID, I also provide a “read-

able” name. With these, a (meta)population may contain one or more samples: e.g., “Abkhaz”

[PO000844Q] contains just the ALFRED sample SA004584V, while “Adygei”

Table 1. Data sources used for estimating the population frequency of the “derived” alleles, including the number of samples/populations (column “#”) for which

such data was available.

Source URL Description #

[40] https://science.sciencemag.org/content/309/5741/1720 original source for ASPM-D 59

[41] https://science.sciencemag.org/content/309/5741/1717 original source for MCPH1-D 59

[26] https://advances.sciencemag.org/content/6/22/eaba5090 > 400 Cantonese speakers 1

LDLink https://ldlink.nci.nih.gov/?tab=home “proxy” SNPs and frequency data 26

gnomAD https://gnomad.broadinstitute.org v2.1.1; very broad populations 7

dbSNP https://www.ncbi.nlm.nih.gov/snp info form multiple databases 15

1000 genomes https://www.internationalgenome.org info included in gnomAD -

ALFRED https://alfred.med.yale.edu/alfred/index.asp many populations and samples 141

https://doi.org/10.1371/journal.pone.0253546.t001

Table 2. The original loci and their “proxy” SNPs, with their “derived” allele and the data sources (with the number of unique samples/populations) from which fre-

quency information was obtained.

Target Proxy “D” allele Position and LD Data sources (#)

ASPM-D haplotype 63 “D” the target [40] (59)

ASPM-D rs41310927 C the target [26] (1), LDLink (26), gnomAD (7), dbSNP (14)

ASPM-D rs41308365 A 1:197070707; 1.0, 1.0 LDLink (26), gnomAD (7), dbSNP (2)

ASPM-D rs3762271 T 1:197070442; 1.0, 1.0 LDLink (1), gnomAD (7), dbSNP (14), ALFRED (141)

ASPM-D rs41304071 T 1:197063352; 1.0, 1.0 LDLink (26), dbSNP (7)

ASPM-D rs147068597 A 1:197058136; 1.0, 1.0 LDLink (26)

ASPM-D rs61819087 G 1:197084857; 1.0, 1.0 LDLink (26), dbSNP (6)

MCPH1-D G37995C C the target [41] (59)

MCPH1-D rs930557 C the target [26] (1), LDLink (32), dbSNP (18)

MCPH1-D rs1129706 G 8:6304814; 0.99, 0.94 ALFRED (141)

Position is given as chromosome:location. LD is given as D0 and R2.

https://doi.org/10.1371/journal.pone.0253546.t002
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[PO000017I] contains three samples, SA001509P, SA004373R and SA004585W. The

meta-information used for matching samples and (meta)populations is contained in the TAB-

separated file ./data/genetics/input/populations.tsv, and is used in the pre-

processing of the genetic data by the R script ./data/genetics/code/00_prepro-
cesses_genetics.R. For ASPM-D, I added 111 new samples representing 84 unique

(meta)populations, while for MCPH1-D, there are 107 new samples from 85 unique (meta)

populations (compared to the original 59 samples from 56 (meta)populations); the distribution

of the original and new samples and (meta)populations is given in Table 3, while the full HTML
analysis reports also plots their maps.

The frequencies of the “derived” alleles. For each unique sample there might be fre-

quency information available for more than one locus; for example, for ASPM-D in the “Ady-

gei” [PO000017I] sample SA001509P, there is information for A44871G from [40]

(frequency f = 0.40 from N = 30 alleles) and for rs3762271 from ALFRED (f = 0.41, N = 34). In

such cases, I computed the weighted average frequency as in Eq 1:

wavg ¼
P

ifi � NiP
iNi

; ð1Þ

where i goes over all data sources with relevant information, fi is the allele frequency and Ni

the number of genotyped alleles (normally twice the number of genotyped individuals) in the

data source i (in the example above, wavg(SA001509P)� 0.405). While this procedure does

not assume subjective preferences between data sources, nor does it take into account the

potentially imperfect LD between some of the “proxy” loci and the “target”, it does give more

credence to larger samples, resulting in an aggregate frequency estimate that should be more

robust than each estimate independently.

The distribution of the “derived” alleles. The patterns of distribution remain similar to

those in the original Science papers (Fig 1). The frequency of ASPM-D is globally below�60%,

is very low in sub-equatorial Africa and the Americas, higher in eastern Eurasia, and highest in

western Eurasia. MCPH1-D is almost absent in sub-equatorial Africa and relatively high every-

where else, reaching fixation (100%) in some samples.

Tone

Matching samples to languages. In most cases, the mapping of a given genetic sample to

one (or more) language(s), using the provided metadata, is far from obvious. To this end, I

used all the available information about the sample in the data source giving the allele fre-

quency, in combination with other sources such as Wikipedia, the Ethnologue, the Glottolog,

WALS, and the ISO 639–3 Registration Authority website, plus general knowledge about the

distribution of the world’s languages and ethnic groups. (For example, the description of the

population “Adygei” [PO000017I] in ALFRED, available at https://alfred.med.yale.edu/

alfred/recordinfo.asp?UNID=PO000017I, gives general data about the population, including

links to the Ethnologue, as well as more specific information about each particular sample, pos-

sibly including references to the actual publications). While this resulted in clear matches in

Table 3. The original genetic samples and (meta)populations (in parentheses) used in [9], and the new ones added in this study, by macroarea.

Study Gene Africa Eurasia America Papunesia Total

original [9] both 15 (14) 37 (35) 5 (5) 2 (2) 59 (56)

new to this study ASPM 12 (12) 90 (63) 5 (5) 4 (4) 111 (84)

new to this study MCPH1 12 (12) 86 (64) 5 (5) 4 (4) 107 (85)

https://doi.org/10.1371/journal.pone.0253546.t003
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many cases, with 139 samples (80%) being uniquely matched to a single language (e.g., the

samples of the “Adygei” [PO000017I] population were uniquely matched to the Adyghe lan-

guage, Glottocode adyg1241, ISO-639–3 ady), and 23 samples to 2 languages each (e.g., the

“Bakola Pygmy” were mapped to either/both Gyele [gyel1242, gyi] and Kwasio
[kwas1243, nmg]), there were also more ambiguous mappings: 4 samples mapped to 3 lan-

guages each, 4 to 3, 1 each to 5, 6, 7 and 9 languages, 1 to 23 languages (the ALFRED/HGDP
sample SA001501H “Papuan”, where the best I could do was to map it to a whole set of

potential Sepik, Ndu, Ap Ma, and Lower Speik-Ramu languages), and 1 mapping to no less

than 144 languages (this “monster” is the SA004382R “Micronesians” sample, which I could

only map to a whole subset of the Austronesian family).

As this ambiguous mapping may introduce an extra level of uncertainty, for an extra analy-

sis, I removed all the genetic samples that do not uniquely map to a single language. Please

note that this procedure is very conservative, given that several “ambiguous” mappings are in

fact concordant for tone, as is the case, for example, for Church Slavic [chur1257, chu] and

Russian [russ1263, rus] which correspond to sample SA004603N, or for Modern Hebrew
[hebr1245, heb], South Levantine Arabic [sout3123, ajp] and Standard Arabic
[stan1318, arb], which correspond to SA004371P. The full results are reported in the

HTML analysis report, but they are very similar to those obtained using the whole set of genetic

samples, suggesting that using all the available information is worth the cost of added noise.

Data sources. I collected data from five sources (see Table 4). I used the 2014 version of

the WALS Online [34], which gives tone as a 3-way classification (“Feature 13A”) in a

machine-readable format (CSV). I manually collected the tone data from the LAPSyD website

in early 2020, noting, for each language, the 5-way classification and the given number of

tones. The binary classification of tone (present/absent) used in [9] is available in Annex 6 of

my PhD thesis [58]; it was manually curated from several primary and secondary sources (see

[9, 58] for details). For PHOIBLE [35], I downloaded the 2.0.1 version of the database and I

extracted only the symbols used for tone (SegmentClass = “tone”), manually removing

some symbols that appear only very rarely (see Fig 2). Unfortunately, the data of The World
Phonotactics Database ([67]; WPHON) was not accessible as of April 2020, so I used instead

the last available snapshot from the Internet Archive/the WayBackMachine from 8 June 2019,

Table 4. Data sources for linguistic tone with the number of languages (the “#” column).

Source URL Content #

WALS Online
[34]

https://wals.info/feature/13A 3-way classification: “No tones”, “Simple tone system” & “Complex tone system” 513

LAPSyD http://www.lapsyd.ddl.cnrs.fr/lapsyd/index.php 5-way classification: “None”, “Marginal”, “Simple”, “Moderately complex” &

“Complex”, as well as the actual number of tones

569

DL2007 [9] [58, Annex 6, p. 373–386]; https://doi.org/10.5281/zenodo.

4252896

Binary classification: “No” vs “Yes” 60

PHOIBLE [35] https://phoible.org Actual tone symbols (https://phoible.org/parameters) 2030

WPHON [67] https://web.archive.org/web/20190608215845/http://

phonotactics.anu.edu.au/features.php

Number of tones 3160

https://doi.org/10.1371/journal.pone.0253546.t004

Fig 2. The tone symbols in PHOIBLE that were removed because they appeared too rarely in the database (with the number of occurrences in

parentheses).

https://doi.org/10.1371/journal.pone.0253546.g002
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available at https://web.archive.org/web/20190608215845/http://phonotactics.anu.edu.au/

features.php, marked as “Updated: 4 May 2017”, which I converted to CSV by adapting the

Python script phonotactics.py available from https://gist.github.com/xflr6/

800401204fe15a6d1b9289149725b790 (download_and_convert_WPD.py); this data-

base gives the actual number of “tonal contrasts” in a language.

I also used the Glottolog [68] version 4.1 for the genealogical classification of languages in

language families, and in macroareas.
Tone classifications. Given these sources, I decided to compile information about tone in

three formats (codings):

1. a binary coding, opposing languages that do not use any tone system to those that do (i.e.,

absence vs. presence): “No”/“Yes”

2. a 3-way ordered coding of tone system complexity: “None” < “Simple” < “Complex”, and

3. a count of the number of tones (or tone symbols) used to describe a language, ranging from

0 (no tone) to a maximum dependent on the data source.

The rules for obtaining these coding for each data source are given in Table 5. Please note

that the counts were rebased, in the sense that those few languages reported as having 1 tone/

symbol were recoded as having 2 (the fact that they are very few, 6 for LAPSyD, 4 for PHO-
IBLE, and 3 for WPHON, coupled with a case-by-case analysis, suggested that they can be

safely collapsed with the languages with 2, all being considered as having simple tone systems),

followed by the subtraction of 1 for all languages with at least 2 tones/symbols (i.e., the lan-

guages with 0 tones/symbols stay at 0, but all languages with n� 2 tones/symbols are recoded

as having n − 1 tones/symbols)—in this way, we have a continuum of counts from 0 up to the

original maximum—1.

Reconciliation of the sources. While the agreement between these five sources is very

good (see S1 Fig), there are some languages for which they disagree (e.g., Angaataha
[anga1290, agm] is coded as “Moderately complex” in LAPSyD, but as “Simple” in WALS).

Moreover, few languages are coded in all sources. Therefore, it would be preferable to arrive at

an agreement coding of tone that (a) reconciles any existing conflicts and (b) can retain as

many languages as possible. To this end, I implemented the following algorithm.

For the categorical classifications (binary and 3-way). I implemented a set of rules based

on a hierarchy of the sources and the pattern of agreements and disagreements between them;

while still subjective, this is fully replicable, transparent and can be easily modified. I preferred

to use manually-curated categorical classifications over the count-level sources, resulting in

Table 5. How I coded tone for each data source. The given rules are of the form original value(s) 7! coded value; �
means “all other original value(s)”; “as is” means the value as given by the data source without change; “rebase” applies

only to the counts (see text for details); “–” means that the data source did not contribute to the coding (does not con-

tain useful information).

Source Binary 3-way Count

WALS “None” 7! “No”; � 7!

“Yes”

as is –

LAPSyD “None” 7! “No”; � 7!

“Yes”

“None” 7! “None”; “Marginal” & “Simple” 7! “Simple”; � 7!

“Complex”

rebase

DL2007 as is – –

PHOIBLE 0 7! “No”; � 7! “Yes” 0 7! “None”;�27! “Simple”; � 7! “Complex” rebase

WPHON 0 7! “No”; � 7! “Yes” 0 7! “None”;�37! “Simple”; � 7! “Complex” rebase

https://doi.org/10.1371/journal.pone.0253546.t005
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the following (rough) ordering in terms of precedence: LAPSyD�WALS� DL2007�
WPHON� PHOIBLE. The actual rules are coded as patterns of information about a given lan-

guage in the available sources and the actions to be taken (e.g., if a language has information in

LAPSyD, then this is used no matter what other information is available); in this way, the cod-

ing conflicts are implicitly solved by picking the “highest” available source.

For the counts. I used a similar approach, in that the sources are ordered as LAPSyD�
WPHON� PHOIBLE, with the added twist that for the last two (WPHON and PHOIBLE) I do

not pick the “raw” value as given by the database itself, but instead a “corrected” value. More

exactly, given that I consider the tone counts in LAPSyD as the “gold standard”, I performed

first the quadratic regression of the LAPSyD counts on the WPHON counts and, separately, on

the PHOIBLE counts, and used the (rounded) value predicted by these regression models from

the “raw” value in the corresponding database. These regressions are:

L ¼ 0:08ð�0:04Þ þ 0:92ð�0:06ÞW � 0:04ð�0:01ÞW2 ð2Þ

L ¼ 0:39ð�0:05Þ þ 0:68ð�0:09ÞP � 0:04ð�0:02ÞP2; ð3Þ

where L is the predicted LAPSyD count from the “raw” WPHON (W) or PHOIBLE (P) count.

This procedure attempts to “align” and “scale” the counts (also allowing a non-linear quadratic

term) so that they better map between sources. (Please note that the distribution of the

unrounded predicted counts is extremely similar to that of their rounded values overall and

within macroareas, as is their relationship with the frequency of the two “derived” alleles; how-

ever, as most of the statistical techniques used here for the counts, Poisson regression in partic-

ular, need integers, I did not conduct any further statistical analyses on these unrounded

predicted values).

The agreement classification. With these, I obtained three agreement classifications (one

binary, one 3-way, and one count), that agree very well with the original sources. These have

the following distributions (see also Fig 3):

• binary (321): “No” (251), and “Yes” (70).

• 3-way (314): “None” (248), “Simple” (39), and “Complex” (27).

• counts (314): “0” (249), “1” (26), “2” (23), “3” (6), “4” (5), “5” (3), and “6” (2).

There are different numbers of languages with binary (321) versus 3-way and count (314)

data because of the different patterns of missing data in the five original sources used, the type

of coding they contain, and the possibility of deducing “coarser” codings from more “fine-

grained” ones (e.g., binary from 3-way and count, and 3-way from count) but not the other

way around (e.g., 3-way from binary); 314 languages have data for all three codings.

While arguably justified, the hierarchy of the sources used to derive this agreement classifi-

cation is only one of the many possible, and to check if it unduly biases the results I compared

it to an alternative hierarchy of sources (please see the HTML analysis report for full details).

This alternative can also be justified by the nature and coverage of the sources, and is, for

binary and 3-way: WALS�WPHON� LAPSyD� DL2007� PHOIBLE, and for counts:
WPHON� LaPSyD� PHOIBLE. However, on the full dataset, these two agreement codings

are very similar (only 27 out of 3798 languages disagree for the binary coding, 51 of 3785 for

3-way, and 59 of 3785 differ by more than 1 symbol for tone counts), and on the reduced data-

sets that also include the “derived” alleles they are virtually identical (2 of 181 differ for tone1, 4

of 180 for tone2, and 6 of 183 by more than 1 for counts).
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For the purposes of the analyses reported here, I considered the following variables refer-

ring to tone:

• tone1: this is a shorter name for the binary coding of tone as “No” (251) vs “Yes” (70).

• tone2: this is a binary variable derived from the 3-way coding of tone by opposing “Complex”

tone systems (coded as “Yes”, 27 languages) vs “None” and “Simple” collapsed together

(coded as “No”, in 287 languages).

• tone counts: the unchanged tone counts from above.

While tone1 is the direct equivalent of the binary presence/absence coding of tone used in

the original paper [9], and allows the re-testing of the negative bias against the presence of

tone due to high frequencies of the the “derived” alleles formulated there, tone2 and counts are

new codings introduced here, potentially reflecting refinements of the original hypotheses, or

even new ones. As such, it is possible that the “derived” alleles may (also) have an effect on the

Fig 3. The distribution of the agreement tone. Each circle on the maps represents a unique language, and its colour represents is value. The insets

show the overall distributions across all the languages. Top-left: binary tone (inset horizontal axis: “N” = “No”, “Y” = “Yes”); top-right: 3-way

classification (inset horizontal axis: “N” = “None”, “S” = “Simple”, “C” = “Complex”); bottom-left: tone counts. The maps were generated with the R
package maps which uses public domain data from the Natural Earth project https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pone.0253546.g003
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complexity of the tone system, in the sense that they may influence the probability that a lan-

guage has a “complex” tone system or not; the variable tone2 captures precisely this new

hypothesis, and its analysis should be seen as complementing and partially overlapping that of

tone1. Moreover, it is possible that the “derived” alleles influence not just the presence/absence

of tone or of “complex” tone, but, more generally, the actual number of tone distinctions

(potentially in a non-linear manner): this justifies the inclusion of the counts variable. In fact,

the recent experimental evidence that ASPM-D influences tone perception in speakers of Can-
tonese (a complex tone language) [26], seems to suggest that the effects of the “derived” alleles

(in particular, ASPM-D’s) on tone may go beyond “blocking” or “allowing” the emergence of

tone in the first place, and may also affect the internal structure and complexity of tone systems

(e.g., their “simplification” or “complexification”).

Putting tone and genes together

Combining the tone and genetic data inevitably results in a loss of a few observations due to

missing data, especially in what concerns the frequency of the “derived” alleles. As a reminder,

we have three main units of analysis: the actual genetic sample, representing a particular group

of people for which allele frequency data is available (e.g., using the example given above,

SA001509P). The (meta)population, which may contain more than one sample (e.g., “Ady-

gei” [PO000017I], containing not only SA001509P but also SA004373R and

SA004585W), but one sample belongs to a single (meta)populations. And the “language”, or,

more precisely, the Glottocode (e.g. the Adyghe language with Glottocode adyg1241 and

ISO-639–3 code ady): one sample/(meta)populations might speak more than one “language”

(in reality or due to ambiguities in mapping), and one “language” can be spoken by more than

one sample/(meta)population.

With these, there are in total 175 unique samples in 129 unique (meta)populations speaking

321 unique Glottocodes with data for at least one of the three tone codings and one of the two

“derived” alleles; I will denote such counts as 175:129:321. Of these, 175:129:321 (i.e., all) have

data for tone binary, and 170:124:314 for tone 3-way and counts (5 genetic samples from the 5

(meta)populations “Burunge”, “Hazara”, “Mozabite”, “Oroqen” and “Xibe” speaking 7 “lan-

guages” buru1320, efee1239, gyel1242, haza1239, oroq1238, tumz1238 and

xibe1242 do not have this info). 170:127:319 have info for ASPM-D (5 samples FINRISK,

GenDan, GenNed5, KRGDB and Qatari, 2 (meta)populations “Dutch” and “Qatari” and 2

Glottocodes dutc1256 and gulf1241 lack it), 166:128:320 have info for MCPH1-D (9

samples, 1 (meta)populations “Bulgarian” and 1 “language” bulg1262 lack it), and

161:126:318 have info for both ASPM-D and MCPH1-D (14 samples, 3 (meta)populations

“Bulgarian”, “Dutch”, “Qatari” and 3 Glottocodes bulg1262, dutc1256, gulf1241 lack

this info).

Requiring also information for tone binary does not change this (161:126:318), while for

3-way and counts it drops to 156:121:311 (19 samples, 8 (meta)populations “Bulgarian”, “Bur-

unge”, “Dutch”, “Hazara”, “Mozabite”, “Oroqen”, “Qatari” and “Xibe” and 10 Glottocodes

bulg1262, buru1320, dutc1256, efee1239, gulf1241, gyel1242, haza1239,

oroq1238, tumz1238, xibe1242 are lost).

However, as some of these samples map to more than one Glottocode, for each such sample

I only retain the corresponding Glottocodes that have different tone values. Moreover, one

(meta)population might have more than one sample, and for each such (meta)population I

only retain those with different frequencies for ASPM-D and MCPH1-D. While this procedure

can be criticised, it is conservative in that it gives more weight to divergent signals. With this,

the final dataset on which the analyses were conducted contained a total of 181 observations
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representing 161:126:119 samples:(meta)populations:Glottocodes for tone binary, 180 obser-

vations for 156:121:118 for 3-way and, 184 observations for 156:121:121 for counts.
Thus, this drop in the number of observations (understood as number of samples, (meta)

populations or Glottocodes), from 175:129:321 to 161:126:119 for binary, from 170:124:314 to

156:121:118 for 3-way, and from 170:124:314 to 156:121:121 for counts is in large part due to

real missing genetic data, but also to the sometimes ambiguous mapping between genetic sam-

ples and linguistic varieties, some with the same value for tone. An extreme case is sample

SA004382R (“Micronesians”) mapped to no less than 144 Glottocodes, all Austronesian lan-

guages, the vast majority of which (137) do not use tone—arguably, reducing these to a single

“No” observation does not represent a loss of actual information. On the other hand, the loss

of populations without genetic information for one of the “derived” alleles (5:2:2 for ASPM-D,

9:1:1 for MCPH1-D and 14:3:3 for both) is a real loss of information, but (a) it is arguably

rather small, and (b) I decided against using various missing data imputation techniques as

not to introduce biases in the data. (Moreover, my using of “proxy” SNPs for the “derived”

alleles already is a form of very specific missing data imputation, informed by genetic theory

and data).

Methods

I analysed separately the three variables related to tone, namely tone1, tone2 and tone counts.
For each variable, I selected only the entries with non-missing data for it as well as for the two

“derived” alleles; if, for a given sample, there is more than one possible tone or allele frequency

values (i.e., corresponding to more than one language with different tone coding or genetic

samples with different allele frequency data), I only kept those entries that have different tone

and/or allele information. This procedure maintains the uncertainty in the data, and, while it

might be seen as giving too much voice to the “exceptions”, it avoids giving too much voice to

entries that happen to be similar due to close genealogical relatedness. With these, there are

181 observations among 119 unique Glottolog codes in 35 families for tone1, 165 observations

among 108 unique Glottolog codes in 35 families for tone2, and 184 observations among 121

unique Glottolog codes in 35 families for tone counts.

Modelling (meta)populations, macroareas and families

As detailed below, I used several non-Bayesian and Bayesian statistical methods for the analysis

of the data.

The (meta)populations are fully included in the language families, and most have just a few

samples: of the 129 unique (meta)populations, 100 have only 1 sample, 17 have 2 samples, 8

have 3, 3 (“Finns”, “Jews_Ashkenazi” and “Russians”) have 4, and there is only 1 (“Han”) with

5 samples. Therefore, I did not explicitly model them in the non-Bayesian approaches, as they

add too little information to the samples and the language families (and, in very few cases,

cause convergence issues), but I did include them explicitly, as embedded within the language

families, in the Bayesian mixed-effects regressions.

However, the families do need to be considered (even if most have only one or a few lan-

guages: of all the 39 unique families, 16 are represented by a single language, 6 by 2, 5 by 3, 3

by 5, 2 by 7, 3 by 10, and 1 each by 16 (“Afro-Asiatic”), 26 (“Indo-European”), 31 (“Atlantic-

Congo”) and 146 (“Austronesian”) languages, respectively), as it is essential to properly model

the genealogical non-independence between related languages (and, arguably, genetic sam-

ples): therefore, I modelled them as random effects (in the now standard approach; e.g. [27]).

Macroareas, on the other hand, need special consideration for several reasons:
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• there is a very skewed geographical sampling (e.g, there is nothing from Australia, and very

few data points from the Americas), the dataset being dominated by Eurasia and Africa;

• despite the obvious fact that geography strongly influences language contact and results in

geographic clustering, this is far from a simple phenomenon captured by a limited number

of clear-cut “areas”; therefore, there are several proposals of such areas that are arguably

independent of each other for the purposes of language contact (e.g., [69–71]), the one used

here (based on the macroareas defined in the Glottolog) being relatively widely used but still

open to criticism (e.g, “Africa” and “Eurasia” are treated as unitary, while PNG and Oceania

are placed together within “Papunesia”);

• the distribution of the two “derived” alleles is also highly skewed geographically, being

almost completely absent from Africa.

Therefore,

• as “North America” and “South America” each have very few data points, I collapsed them

into a single macroarea, “America”;

• in order to control for the influence of the macroareas, I modelled them as fixed effects in the

non-Bayesian approaches, as random effects (crossed with the families and (meta)popula-

tions) in a set of Bayesian mixed-effects regressions, and as a 2-dimensional Gaussian Process
(with the families sand (meta)populations) in a different set of Bayesian mixed-effects

regressions;

• because the genetic data suggests that the major split is between “Africa” and the rest of the

world, coupled with the fact that some methods cannot gracefully handle multi-valued fac-

tors, made me dichotomise, for some analyses, macroarea in into “Africa” vs “non-Africa”.

Operationalization of the hypotheses

Following [9, 10], and the direct experimental tests in [25, 26], I am testing here the following

hypotheses:

• there is a weak negative influence of the population frequency of ASPM-D on tone1 above

and beyond the effects of shared ancestry (language family) and contact (macroarea);

• there should be no effect of MCPH1-D on tone1 independent of language family and macro-
area, or it should be much smaller.

There are no clear predictions concerning the complexity of tone systems (tone2 and tone

counts), but we might expect a negative effect of ASPM-D:

• there might be a weak negative influence of ASPM-D on tone2 above and beyond language
family and macroarea;

• there might be a weak negative influence of ASPM-D on tone counts above and beyond lan-
guage family and macroarea;

• there is no particular influence of MCPH1-D on tone2 independent of language family and

macroarea;

• there is no particular influence of MCPH1-D on tone counts independent of language fam-
ily and macroarea.
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Throwing the causal baby with the confounding bathwater?

However, the “above and beyond the effects of shared ancestry (language family) and contact

(macroarea)” are rather tricky in this particular case, and should be treated with care. These

are indeed potential confounds in any cross-linguistic/cross-cultural/cross-population statisti-

cal studies and usually result in artificially inflated (i.e., artificially statistically significant) asso-

ciations [27]. This is due to the fact that the languages/cultures/populations are not statistically

independent, but more similar than expected by chance due to “genealogical inertia” (“Gal-

ton’s problem”; [63]) and contact. In our case, tone seems to be both stable genealogically (i.e.,

the daughter languages have a strong tendency to conserve the tonal system of their proto-lan-

guage) and relatively easy to borrow between neighbouring languages [13, 19–21, 60]. Like-

wise, given that the two “derived” alleles, ASPM-D and MCPH1-D, are very probably evolving

neutrally [47], it is to be expected that their frequencies in any given population are shaped by

drift and admixture [46]. While in small isolated populations their frequency might fluctuate

widely across generations (possibly ending in fixation or complete loss), in larger ones they are

expected to be relatively stable. Moreover, genetic exchanges between populations (due to

inter-marriage, migrations. . .) lead to more similar frequencies, while various barriers (physi-

cal or cultural) might lead to increased differentiation [46, 72]. Thus, any apparent association

between tone and the frequency of the “derived” alleles in present-day populations might be

non-causal but spurious, due to a fortuitous accident through which it just so happened that a

few populations, some generations ago, had a high frequency of the “derived” alleles and no

tone, accident later amplified by language expansions, demographic processes and contact,

making the proper control for these non-independencies a must [15, 27].

On the other hand, if the hypothesis that the “derived” alleles induce a weak individual bias

that can be amplified by the repeated use and transmission of language across multiple genera-

tions [9–11] is true (as strongly suggested by the experimental evidence; [25, 26]), then the

cross-linguistic/cross-population effects of this causal link might look very similar to the very

confounds discussed above. This is so because in populations with a low frequency of the

“derived” alleles, tone is “free” to change (i.e., being innovated, complexified, simplified or

lost) under the influence of other processes (internally-motivated sound change, language con-

tact, or even climate; [3, 12, 13]), but in populations with a higher frequency of these alleles,

there is an extra (weak) force against tone (thus, either a “push” away from tone through

increased rates of tone simplification and loss, or a “pull” towards a lack of tone through a low

probability of tonogenesis). The effects of this “extra” force (the negative bias) would not be

instantaneous, but would presumably require several generations.

There are four important scenarios to consider: in the first, there is a significant increase in

the frequency of the “derived” alleles (due to drift or gene flow), in the second there is a stable
high frequency of the alleles, in the third, there is a significant decrease in this frequency, and

in the fourth, a stable low frequency of the alleles. However, please note that it is currently

unclear what a “significant” change in the frequency of the “derived” alleles should be, if this

change is independent or not of the frequency itself, if there are thresholds or more general

non-linearities, and if the frequency is modulated by the structure of the communicative net-

work itself [17, 18, 73]—all in need of specific computational and cross-linguistic work that go

beyond the scope of this paper; for my purposes here suffices that there are changes in allele

frequency that result in changes in the negative bias towards tone at the language level.

In the first scenario, when the frequency of the “derived” alleles increases sufficiently in a

population so that the negative bias becomes active, then we would expect that the original lan-

guage(s) of the population would start simplifying or losing tone (if they had it), or fail to

develop or complexify it (even if other conditions hold). If this process is on the same timescale
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as language differentiation or faster (a few generations/hundreds of years), it might retrospec-

tively look like a “regular” sound change (or, even much harder to ascertain, a failure to change

despite favouring conditions), followed (second scenario) by a period of relative stability (lack

of tone) across the history of the ensuing language family. Moreover, given that it is highly

improbable that such significant changes in allele frequency happen just in a single population

that is large enough to support a viable language, or that it would stay confined there, they

would likely affect (relatively simultaneously), or spread among, bigger groups of people

speaking multiple languages across larger areas; retrospectively, this might look like a period of

tone simplification or loss among several languages in contact which can be interpreted as con-

tact-induced, followed by a period of relative stable lack of tone (second scenario).

In contrast, in the third scenario, the frequency of the “derived” alleles decreases sufficiently

to remove the negative bias against tone, “allowing” the other forces to resume affecting tone,

effectively “opening” up tonogenesis and tone complexification as possible pathways of lan-

guage change, possibly followed by the fourth scenario, where the frequency of the “derived”

alleles is low and the negative bias inactive. Retrospectively, scenario three would be hard to

distinguish from the “usual” evolution of tone systems, except by being preceded by a period

characterised by a lack of tone in the history of the languages. Scenario four is that of language

change “as usual” in the absence of a genetic bias, where tone is gained and lost, complexified

and simplified as driven by other factors.

Given what we know about the two “derived” alleles, namely that they emerged relatively

recently (ASPM-D� 6,000 years ago, and MCPH1-D� 37,000 years ago) presumably some-

where in Eurasia, and have since spread and increased in frequency (presumably due to demo-

graphic processes of expansion, migration and inter-marriage) slowly and unequally around

the globe, it is probable that all scenarios are applicable in different circumstances (linguistic

families and geographic areas), but that scenario three is rather improbable.

Thus, because of the intrinsic population dynamics of these “derived” alleles, of the weak-

ness of the bias they produce, and of the complex multi-factorial nature of language change

(combining many types of influences and a good dose of serendipity), the causal effects of this

bias will largely overlap with those of genealogical inertia (because, just as tone, the allele fre-

quencies of the daughter populations are highly correlated between them and with those of the

mother population) and areal effects/language contact (because, just as tone, the “derived”

alleles are spread by people moving and interacting with each other). Fig 4 is a representation

of these relationships using Judea Pearl’s Directed Acyclic Graph (DAG) approach to causality

[30, 74, 75].

Statistical methods

Given the limitations of the data available (not only in terms of sample size, but also of geo-

graphic and linguistic representativeness, and sometimes ambiguous mapping), the complex-

ity of the causal model, and the roles of inheritance and contact discussed above, I used several

complementary methods to try to test these hypotheses.

I used both Bayesian and non-Bayesian methods, as each have advantages and disadvan-

tages and comparing them should allow a better estimation of the robustness of the results. On

the one hand, the Bayesian methods (as implemented here by the brms package [76] in R [77]

and Stan [78]) are more flexible and, in this case, allow the (meta)population to be included

among the random effects, and the macroarea to be modelled as a random effect or as a 2D

Gaussian Process, but are more computationally expensive. On the other, the “classic” imple-
mentations (as available through (g)lmer and glmmTMB in, respectively, the lme4 [79] and

glmmTMB [80] packages in R) have much lower computational costs, especially relevant for
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the randomisation and restricted sampling approaches. Nevertheless, it is important to point

out that the Bayesian and non-Bayesian methods produce largely convergent results.

For tone1 and tone2 (binary variables) I performed logistic regressions (as implemented, in

the “classic” approach, by glm and glmer when there is no random structure and where

there is one, respectively, and by brms in the Bayesian approach), for the tone counts I used

Poisson regression (glmer and brms, respectively), and for the population frequencies of the

“derived” alleles I used Beta regression (as implemented by glmmTMB and brms, respectively;

please note that, due to the restrictions of Beta regression on the dependent variable, I system-

atically replaced all 0.0 frequencies by 10−7 and all 1.0 frequencies by 1.0 − 10−7).

While such an approach would usually require some type of multiple testing correction, I

decided here against it because (a) at least for tone1 this is based on a pre-existing hypothesis,

and tone2 and tone counts are arguably related to this hypothesis, (b) the various methods and

approaches are interpreted together rather than independently, (c) as shown by the power anal-

ysis and the results themselves, the dataset is small and the effects weak enough for multiple

testing correction to effectively make the whole enterprise futile purely for statistical power

reasons, and (d) it is technically difficult to correct across such different methods, and espe-

cially across frequentist and Bayesian ones (for the latter, it is not entirely clear even if this is a

meaningful issue; e.g. [81]). However, when interpreting the results the fact that there is no

such correction should be kept in mind.

(Mixed-effects) regressions. This implements the largely current “standard” approach in

cross-linguistic studies, where the dependent variable (DV) is regressed on the independent

variable(s) (IVs), while the potential confounds are modelled as fixed or random effects [27,

28].

In the Bayesian approach, the DV is either tone1, tone2 or counts, and the IVs of interest are

the population frequencies of ASPM-D and MCPH1-D (and their interaction), while the con-

founds are macroarea, language family and (nested within family), the (meta)population. The

last two of these confounds (family and (meta)population) were modelled as random effects,

but I modelled macroarea either as yet another (crossed) random effect (in one set of regres-

sions) or as a bi-dimensional (2D) Gaussian Processes [82]. Here, I use a Gaussian Process to

model the effects of geographical space as implemented by the gp() function in package

Fig 4. Simplified model of the causal and spurious relationships between the frequency of the “derived” alleles

(the exposure) and tone (the outcome) using Directed Acyclic Graphs (DAGs). The arrows represent direct causal

effect; the grey nodes are unmeasured variables.

https://doi.org/10.1371/journal.pone.0253546.g004
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brms [76], using the longitude and the latitude of each sample grouped separately for each

macroarea; this allows the continuous modelling of the effects of geographic distance within

each macroarea (see, for example, [30] for such an application). However, I consider this

approach as “experimental” here as it seems to suffer from too few data for too many parame-

ters and results in very wide posterior distributions. The importance of the IVs of interest is

captured by, first, their posterior distribution (plotted and summarised by its mean and 89%

Highest Density Interval (HDI); [30]), second, by formal hypothesis testing of the one-sided

expected direction of the effect (here,< 0) and versus the point (i.e., two-sided) value 0 (these

tests produce both probabilities and evidence ratios; see function hypothesis in package

brms for details), third, through comparisons with the ROPE (the region of practical equiva-

lence, a small interval around 0.0, usually [-0.1, 0.1] but that can vary depending on the partic-

ular model) which produces the percent of the HDI within this interval and probabilities that

can be interpreted similar to frequentist p-values (see functions rope and p_rope in package

bayestestR and [81] for details), and, fourth, by the comparison of the model with the IV

and the nested model without it (using multiple criteria: the Bayes Factor, leave-one-out cross-

validation (LOO), the Widely Applicable Information Criterion (WAIC), and K-Fold Cross-

Validation; please see, for example, [30] for details).

In the “classic” approach, the DVs and the IVs of interest are the same as above, while the

confounds are macroarea (modelled as a fixed effect) and its interactions with ASPM-D and

MCPH1-D, and language family (as a random effect); the (meta)populations are not explicitly

modelled. I individually tested the significance of each fixed effect separately by performing a

likelihood ratio test and comparing the Akaike Information Criteria (AIC) between the model

with the fixed effect of interest and the model without it.

In all regression models that include the frequency of either or both “derived” alleles as IVs,

these frequencies are z-scored (i.e., transformed into a variable with mean 0.0 and standard

deviation 1.0 through
f � meanðf Þ

sdðf Þ ).

Only in the “classic” approach, for each DV:

All data. I first fitted the regression model on all the available data;

Randomization. followed by a permutation approach where I repeatedly (n = 1000) shuffle the

data and re-fit the regression model, resulting in a null distribution of model fits that can be

compared to the original fit to the unshuffled data. In fact, there are 18 different scenarios

resulting from combinations of three parameters that test slightly different null hypotheses

(see Tables 6 and 7);

Restricted sampling. finally, a popular approach in typology is represented by sampling only

one language from each genealogical and/or areal unit [69, 83, 84], which I implemented

here by repeatedly picking only one language from each family, fitting a regression model

(without any random effects structure, as each family now has exactly one member) while

controlling or not for macroarea, and analysing the distribution of the model fits (this time,

the comparison is done against the null hypothesis of no effect).

Please note that because permutations and restricted sampling involve randomness, the

results might differ slightly between runs.

Mediation and path analysis. Because macroarea, and especially its dichotomisation as

Africa vs the rest of the world, predicts both the distribution of tone and the frequency of the

two “derived” alleles, it confounds any potential causal effect that the alleles may have on tone.

Mediation analysis [85] allows the partitioning of the total effect (TE) of a variable of interest
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Table 6. The parameters of the randomisation approach, defining, on the one hand, what is permuted and within

what constraints, and what to control for in the regression models, on the other.

Parameter Meaning Possible values

permute what is permuted tone = permute the tone variable! destroys the patterning of tone

alleles-together = permute the two alleles together! destroys the patterning

of the two “derived” alleles but not the correlation between them

alleles-independent = permute the two alleles independently! destroys the

patterning of the two “derived” alleles and the correlation between them

within constraints on

permutations

unrestricted = all observations are freely permuted! destroys all structure

in the data

families = observations are permuted within their family! destroys the

within-family structure, but conserves the between-families variation, i.e.,

conserves the genealogical signal

macroareas = observations are permuted within their macroarea! destroys

the within-area structure, but conserves the between-areas variation, i.e.,

conserves the areal (contact) signal

macroarea is there control for

macroareas?

none = no control at all

fixef = yes, as fixed effect

https://doi.org/10.1371/journal.pone.0253546.t006

Table 7. The 18 randomisation scenarios. Parameter names and values (columns 2–3) are defined in Table 6, Name (1st column) is a 3-letter shorthand: 1st letter:

T = tone, L = alleles-together (“linked”) and I = alleles-independent (“independent”); 2nd letter: U = unrestricted, M = macroareas, F = families; 3rd letter: N = none,

F = fixef. –”– means as above.

Name Permute Within Macroarea Interpretation

TUN tone unrestricted none tone is permuted across the whole sample! destroys the family and macroarea structure of tone, but keeps it for

the alleles; macroarea is not included

LUN alleles-together unrestricted none the frequencies of the two “derived” alleles are permuted across the whole sample together! destroys the family

and macroarea structure of the two alleles (while preserving correlations between them), but keeps it for tone;

macroarea is not included

IUN alleles-
independent

unrestricted none the two alleles are permuted across the whole sample independently! destroys the family and macroarea

structure of the two alleles and the correlations between them, but keeps it for tone; macroarea is not included

TUF tone unrestricted fixef as TUN but controlling for macroarea

LUF alleles-together unrestricted fixef as LUN –”–

IUF alleles-
independent

unrestricted fixef as IUN –”–

TMN tone macroareas none as TUN but only data points from the same macroarea are permuted

LMN alleles-together macroareas none as LUN –”–

IMN alleles-
independent

macroareas none as IUN –”–

TMF tone macroareas fixef as TMN but controlling for macroarea

LMF alleles-together macroareas fixef as LMN –”–

IMF alleles-
independent

macroareas fixef as IMN –”–

TFN tone families none as TUN but only data points from the same family are permuted

LFN alleles-together families none as LUN –”–

IFN alleles-
independent

families none as IUN –”–

TFF tone families fixef as TFN but controlling for macroarea

LFF alleles-together families fixef as LFN –”–

IFF alleles-
independent

families fixef as IFN –”–

https://doi.org/10.1371/journal.pone.0253546.t007
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(here, dichotomised macroarea: Africa vs the rest of the world) on the outcome (here, tone)

into its direct effect (ADE) and its mediated (or indirect) effect (ACME), the latter being “chan-

nelled”, usually, through one mediator variable (here, ASPM-D or MCPH1-D)—see Fig 5.

Here, I performed mediation analysis both in a “classic” approach (using the R package

mediation [86], with logistic regressions for tone1 and tone2, linear regressions for the z-

scored frequencies of ASPM-D and MCPH1-D, and Poisson regression for tone counts, con-

trolling for language family indirectly, through restricted sampling), and in a Bayesian frame-

work (using the package brms and a custom-written extension of the mediation function

from package sjstats [87], with logistic regressions for tone1 and tone2, Beta regressions

for the actual, i.e., non-z-scored, frequencies of ASPM-D and MCPH1-D, and Poisson regres-

sion for tone counts, with language family and (meta)population as random effects). This

extension of the mediation function allows the simultaneous modelling of two or more

mediators, so that I could implement a model similar to the one discussed below for path anal-
ysis (Fig 6) while explicitly controlling for family and (meta)population as random effects, but

this should be considered as experimental.

Path analysis [88] is even more flexible, here allowing the simultaneous modelling of the

mediation effects of both “derived” alleles simultaneously besides the direct effect of macroarea
on tone, as shown in Fig 6 (but, as described above, I experimentally implemented this simul-

taneous mediation in a Bayesian framework). Again, the macroarea was dichotomised as

Africa vs the rest of the world, but due to the limitations of the lavaan package [89], the

binary IV (the dichotomised macroarea) and the binary DV (tone1 and tone2) were coded

either as numeric (0 vs 1; “rest of the world” = 0, “Africa” = 1, and “No” = 0, “Yes” = 1) or as

ordered categorical (“rest of the world” < “Africa”, and “No”< “Yes”), while tone counts were

considered numeric; here, the “derived” allele frequencies are z-scored.

Both the mediation (the “classic” approach) and path analyses have trouble modelling the

language family as a random effect, so, for each DV and type of model:

all data:. I first fitted the model on all the available data, where there is no control for family;

restricted sampling. I repeatedly fitted the model to a reduced dataset obtained by picking only

one language from each family, the resulting distribution of model fits controlling thus for

family.

(Please note that I do not need to control for macroarea, as it is explicitly modelled as the

IV).

Machine learning. For the two binary outcomes, tone1 and tone2, I also implemented two

classification techniques widely used in machine learning, decision trees and random forests.

Fig 5. Visual representation of the mediation model. IV is the independent variable (here, dichotomised macroarea:

inside vs outside Africa), DV is the outcome of interest (here, the various codings of tone, tone1, tone2 or tone counts),
and MV is the mediator (here, the population frequency of one of the “derived” alleles, ASPM-D or MCPH1-D). The

average direct effect ADE = c0, the average indirect effect ACME = a × b, and the total effect is their sum, TE = ADE +

ACME = c0 + a × b. The coefficients a, b and c0 are obtained from fitting two regression models simultaneously (in R
formula notation): DV* IV + MV and MV* IV. These path plots are generated using Graphviz (https://graphviz.

org/) as implemented by DiagrammeR::grViz in R.

https://doi.org/10.1371/journal.pone.0253546.g005
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Both are used to find the subset of predictors and rules that best predict the binary outcome,

and result not only in measures of how well the model fits/predict the data, but also in a set of

explicit rules (decision trees) and ranking of how important the predictors are (random

forests).

The measures of fit that I am using are accuracy, sensitivity (or recall), specificity and preci-
sion; given the observed (true) binary outcome and the model’s predictions (i.e., what the

model “thinks” or “labels as”), the relationship between the two is described by four measures:

• the number of true positives (TP): observation and prediction agree on “Yes”,

• the number of true negatives (TN): observation and prediction agree on “No”,

• the number of false positives (FP): observation is “No” but prediction is “Yes”,

• the number of false negatives (FN): observation is “Yes” but prediction is “No”.

With these, the total number of observations N = (TP + FP + FN + TN), and:

• accuracy = (TP + TN)/N, i.e., what proportion of observations were correctly labelled (= true

positives and true negatives) by the model?

• sensitivity = TP/(TP + FN), i.e., what proportion of the actual “Yes” observations (= true pos-

itives and false negatives) are labelled “Yes” (= true positives)?

• specificity = TN/(TN + FP), i.e., what proportion of the actual “No” observations (= true neg-

atives and false positives) are labelled “No” (= true negatives)?

• precision = TP/(TP + FP), i.e., what proportion of the observations labelled “Yes” (= true pos-

itives and false positives) are actually “Yes” (= true positives)?

Fig 6. Visual representation of the path model showing the IV (Africa vs the rest of the world), the DV (tone) and the two mediators MV1 and

MV2 (ASPM-D and MCPH1-D), as well as all the path coefficients (a1, a2, b1, b2 and c0). Please note that a similar model was also experimentally

implemented in a Bayesian framework as simultaneous multiple mediation which explicitly controls for family and (meta)population as random effects.

https://doi.org/10.1371/journal.pone.0253546.g006
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Ideally, these measures of fit should be close to 100%, but deviations point to different types

of failures and biases.

One important issue for such models is overfitting, where the model “overlearns” the data,

fitting it very well, but doing very poorly at predicting new, unseen observations generated by

the same processes. One popular technique to overcome this is to repeatedly split the original

dataset into two complementary subsets: a training and a testing one. While the training subset

is usually larger and is used to fit the model, the testing subset contains observations not yet

“seen” by the model, and is used to estimate the fit measures that capture the capacity of the

model to generalise to new situations. Here I used an 80%:20% split of the observations

between training and testing, stratified by macroarea (i.e., making sure that the distribution of

the observations in each subset reflects the distribution of the observations by macroareas in

the full dataset), repeated 100 times. Please note that because the random forests have an inter-

nal bootstrap mechanism, this repeated training/testing procedure was not applied to them.

The decision trees were implemented by ctree in R’s package partykit [90], while for

random forests I used randomForest in package randomForest [91] as well as the con-

ditional random forests implemented by cforest in package partykit. randomForest
provides two measures of relative variable importance: one is based on the mean decrease in

accuracy if the variable is permuted, while the second is based on the mean decrease in node

impurity (measured by the Gini index) when splitting on the variable; while the first captures

how much a variable helps in making accurate predictions, the second focuses on producing

more homogeneous splits. For cforest, I used the unconditional variable importance,

which is similar to the mean decrease in accuracy.

Finally, given the importance of the macroarea as a confound, I fitted these models with

and without macroarea as a predictor. (Please note that these models do not control for lan-

guage family at all).

Phylogenetic approaches. While these hypotheses seem naturally amenable to phyloge-

netic approaches, including regression while controlling for phylogeny (as implemented, for

example, in brms [76]) and correlated evolution (as implemented, for example, in phytools
[92] and RevBayes [93]), these data are not appropriate for such analyses. First, there are too

few language families with enough languages and phylogenetic structure; essentially, just 6

families have at least 5 languages: Turkic (10 languages), Atlantic-Congo (15), Indo-European
(20), Afro-Asiatic (9), Uralic (8) and Sino-Tibetan (7). Second, even these families show very

little internal variation in tone and in the frequencies of the two “derived” alleles. Third, most

phylogenetic methods also require branch lengths, which are notoriously controversial and

hard to obtain for language families [5, 94]. However, even collecting more data might still not

make such methods applicable, especially if the observation that families are internally very

homogeneous for tone and the two “derived” alleles is confirmed, in which case we will either

need to use highly controversial language trees above the level of the family [95–97] or exploit

tiny variations within very large families.

Results

The results are presented by outcome and method. While such structure makes this section

rather dense and relatively hard to follow, it has the advantage that it does not emphasize any

particular narrative thread, outcome or method. Instead, the reader is presented with all the

results, leaving the highlighting of the various narratives for the Discussion and conclusions at

the end. Each method has its own strength and limitations in relation to these data and ques-

tions, and they should be seen as complementary rather than in competition, and their results

should be interpreted together.
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While being, in certain ways, the fundamental type of approach used here, the individual

regressions do not correctly model the postulated flow of causality between tone, the “derived”

alleles, and other factors (including historical accidents) influencing the demographic and lin-

guistic processes. Among the multiple types of regression used here, the “classic” mixed-effects

models using glmer are probably the least reliable, with the Bayesian approach (brms)

modelling macroarea as a random effect the most informative, while using a 2D Gaussian pro-

cess should be seen as more “experimental” in nature. The randomization approach is very

flexible and allows the fine control of various confounds, the most informative for our pur-

poses here being: TUF (tone: unrestricted: macroareas; please see Table 7 for details) and IUF

(alleles-independent: unrestricted: macroareas), which check if the overall clustering of tone or

the alleles drives the observed association after controlling for macroareas; TMN (tone: macro-

areas: none) and IMN, which check if the association is due to their clustering specifically

within macroareas; and TFF (tone: family: macroareas) and IFF, which check if the assocation

is due to their clustering specifically within families after controlling for macroareas. The

restricted sampling implements a different way to control for family and macroareas.

Mediation and path analyses do a much better job at modelling the flow of causality, and

should therefore have more weight than the individual regressions, but mediation analysis

deals with each allele separately, while path analysis and the “experimental” simultaneous

mediation analysis treat them simultaneously. The Bayesian mediation analysis is the most

appropriate and allows the control for family and macroarea, followed by restricted sampling

(which also controls for these confounds), with the “classic” mediation using the full dataset

being seen as suggestive. The path analysis on the whole dataset should be seen as suggestive

(as it does not control for family and macroarea), but the restricted sampling does allow the

control for these confounds.

Finally, the machine learning techniques should be seen as “experimental” and suggestive,

complementing the others, as they do not control for the effect of family at all, but allow the

explicit modelling of the macroarea and the quantification of the predictive importance of the

“derived” alleles and of the macroarea.

Thus, the interpretation of the results is easy when various approaches “say the same thing”,

but when there are disagreements, it should be driven by the mediation and path analyses

(especially the Bayesian and restricted sampling), followed by the regressions (Bayesian,

restricted sampling, and the randomisation scenarios highlighted above), but still in the con-

text of all the results taken together.

The “derived” alleles are structured by macroarea and family

Before we analyse the relationships between the population frequencies of the “derived” alleles

and tone, it is important to understand how they are structured by macroarea (a proxy for con-

tact) and language family (a proxy for genealogy). To this end, I regressed ASPM-D and

MCPH1-D separately on macroarea (as fixed effect) using mixed-effects Beta regression with

family as random effect (in R’s notation: a* 1 + M + (1jF) and m* 1 + M + (1jF), where a is

the population frequency of ASPM-D and m of MCPH1-D, M is macroarea, F is family; * is

the regression operator linking the DV on the left to the fixed and random effects on the right;

1 represents the intercept, + adds new predictors; (1 j F) denotes the random effects structure,

here varying intercepts by family), and I found that their distribution is very strongly clustered

within families (the intra-class correlation coefficients are: ICC(ASPM-D) = 71.5% and ICC
(MCPH1-D) = 100.0%), and that macroarea predicts their distribution very well (for ASPM-D:

p = 3.4 � 10−16, R2 = 49.5%; for MCPH1-D: p = 3.1 � 10−12, R2 = 73.2%). As a reminder, the

intra-class correlation coefficient, ICC, represents the proportion of the variance explained by
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the grouping due to the random effects, and varies between 0% (the grouping contains no

information) to 100% (basically all individual observations in a given group are identical). The

adjusted ICC only considers the random effects, while the conditional ICC also considers the

fixed effects as well, and they are equal when there are no fixed effects (i.e., for the null models

DV* 1 + (1 j F)). Here, I report only the adjusted ICC computed on the null models, because

we are interested in the clustering of the variance due to the random effects.

Separating Africa from the rest of the world seems to drive most of this effect, due to the

overall lower frequencies of these alleles in Africa: for ASPM-D: p = 2.3 � 10−14, R2 = 34.5%; for

MCPH1-D: p = 3.2 � 10−9, R2 = 33.7%.

Thus, the population frequencies of the “derived” alleles are strongly confounded by macro-
area, and, in fact, seem mostly driven by the difference between Africa and the rest of the

world.

Is there tone? (tone1)

When selecting all unique observations with non-missing data for tone1, ASPM-D and

MCPH1-D, there are 181 observations, distributed among 119 unique Glottolog codes (lan-

guages) in 35 families (the number of languages per family ranges from 1 to 48, with mean 5.2

and median 2). There are 61 (33.7%) languages with tone (“Yes”) in the dataset (w2
1
¼ 19:2,

p = 1.2 � 10−5), and the distribution by macroarea is 36 (27 = 75% “Yes”) in Africa, 126

(26 = 20.6%) in Eurasia, 10 (6 = 60%) in America, and 9 (2 = 22.2%) in Papunesia (between

macroareas w2
3
¼ 40:7, p = 7.5 � 10−9); see Fig 7.

The relationship between tone1 and the population frequency of the two “derived” alleles is

shown in Fig 8. It can seen that, globally, there seems to be a difference between languages

with and without tone: while tone languages (tone1 == “Yes”) tend to be found when ASPM-D

has a low frequency, the others (tone1 == “No”) tend to be found at high frequencies of both

“derived” alleles. Zooming in on each macroarea shows different patterns: while there seems

to be a difference for ASPM-D in Eurasia (higher for “No”) and Papunesia (lower for “No”),

Fig 7. Distribution (as number of languages) of tone1 (no tone vs any type of tone system) across the full database (left) and by macroarea (right).

Please note that the vertical axes have different scales to avoid the macroareas with small sample sizes to be visually “squashed” by the whole database.

https://doi.org/10.1371/journal.pone.0253546.g007
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there seems to be no differences in Africa and America. However, such plots can be very mis-

leading because these points represent related languages and/or alternative genetic and linguis-

tics values for the same sample—actual statistical analyses are needed.

Regressions. I fitted a “classic” mixed-effects logistic regression model of tone1 on macro-
area, the z-scored population frequencies of the two “derived” alleles and their interaction as

fixed effects, and family as random effect to the whole data (building on the notations intro-

duced previously: t1 * 1 + a + m + M + a: m + (1 j F), where t1 is tone1, and: represents inter-

action). I performed hierarchical model comparisons to test each relevant predictor by

comparing the models with and without the predictor (including with the null model with no

fixed effects) producing p-values using an appropriate test as implemented by R’s anova()
function (here, for logistic regressions, a χ2 test); I also considered the quadratic effects of the

“derived” allele frequencies but while I will report here only on their linear effects these are in

the full HTML report document. First, as expected, tone1 is strongly clustered within families

(ICC(tone1) = 70.4%). Second, the interaction does not contribute (p(ASPM-D:MCPH-D) =

0.86) and was removed from the model. Third, as expected, macroarea predicts tone1 by itself

(p = 0.00082, R2 = 23.3%; for mixed-effects models, the proportion of variance explained by

the model is represented by Nakagawa’s R2, where the marginal estimate considers only the

fixed effects, while the conditional also considers the random effects as well. Here, I only show

Fig 8. Relationship between tone1 (colour & shape) and the population frequency of ASPM-D and MCPH1-D in the whole database and

separately by macroarea (columns). Top row: scatter plots of ASPM-D (horizontal axis) and MCPH1-D (vertical axis) versus tone1 (dot colour &

shape). Next two rows show the “derived” allele frequency (as actual jittered observations, violin plots and boxplots) versus tone1 values (color) for

ASPM-D (middle row) and MCPH1-D (bottom row); please note that the orientation of the axis showing the “derived” allele frequency is the same as in

the top row plots (i.e., x-axis for ASPM-D, and y-axis for MCPH1-D.

https://doi.org/10.1371/journal.pone.0253546.g008
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the marginal R2, as we are interested in the fixed effects). Fourth, when excluding macroarea
from the model, the two “derived” alleles together predict tone (p = 0.0049, R2 = 13.4%), with

each by itself having negative significant effects on tone1 (ASPM-D: β = −1.00±0.37,

p = 0.0041, R2 = 10.0%; MCPH1-D β = −1.04±0.39, p = 0.0064, R2 = 9.4%). However, adding

macroarea as a fixed effect makes the specific contributions of the two “derived” alleles not sig-

nificant (ASPM-D: β = −0.37 ± 0.45, p = 0.42; MCPH1-D: β = −0.39 ± 0.57, p = 0.50).

Permuting the observations (Fig 9 and Table 8), shows that ASPM-D has a negative effect

on tone1, detectable even when controlling for macroarea as a fixed effect, except when

restricting the permutations within families (which is due, on the one hand, to the many fami-

lies with few languages for which permuting the data does not change much, and, on the other,

to the strong within-family clustering of both ASPM-D and tone1). In contrast, for MCPH1-D,

there seems to be a negative effect only for unrestricted permutations when not controlling for

macroarea.

Repeated restricted sampling, where only one sample is randomly chosen per family, also

shows a clear negative effect of ASPM-D on tone1 even when controlling for macroarea and

MCPH1-D (�82% of the β’s< 0, with a mean �b � � 0:45), and a weaker but still discernible

one for MCPH1-D even when controlling for macroarea and ASPM-D (�68% of the β’s< 0,

with a mean �b � � 0:37); see Fig 10.

Fitting a Bayesian mixed-effects logistic regression model of tone1 on ASPM-D, MCPH1-D

and their interaction as fixed effects, and macroarea, family and (meta)population (nested

within family) as random effects, found that the interaction is not needed, but that each

“derived” allele seems to have a negative effect on tone. For ASPM-D: β = −0.69, 89%HDI =

[−1.59, 0.25], posterior probability p(β< 0) = 0.89, evidence ratio = 7.9, % HDI inside

Fig 9. Distribution of the effect size β (horizontal axis) of ASPM-D (left) and MCPH1-D (right) on tone1 in the permutation regressions without

restrictions (“unrestricted”), only within macroareas (“macroareas”), and only within families (“families”), without controlling for macroarea

(“none”) or when including macroarea as a fixed effect (“fixef”). Each individual plot shows the original β obtained on the unpermuted data (vertical

dashed black line), 0.0 (vertical dotted black thin line), and the distribution of the permuted β for the three variables to be permuted (the coloured

areas): tone by itself (red), the two “derived” alleles together as a unit (green), and the two “derived” alleles shuffled individually (blue). Please note that

the y-axes vary between plots, but the x-axes are fixed for comparability. If a distribution is centred on 0.0 (e.g., “ASPM”/“unrestricted”/“none” in the

top left) then the permuted data show no effect of the “derived” allele (here, ASPM-D) on tone (i.e., the regression slope β is 0.0). The less overlap is

between the observed β (dashed black line) and such a distribution, the more “special” the relationship between the “derived” allele and tone is relative

to the structure destroyed by that specific permutation; conversely, if the observed β is largely included in a distribution, the more such a value is

expected by chance given the constraints of the permutation.

https://doi.org/10.1371/journal.pone.0253546.g009

PLOS ONE Tone and genes: New cross-linguistic data and methods support the weak effect of ASPM but not of Microcephalin

PLOS ONE | https://doi.org/10.1371/journal.pone.0253546 June 30, 2021 29 / 60

https://doi.org/10.1371/journal.pone.0253546.g009
https://doi.org/10.1371/journal.pone.0253546


Table 8. The results of the regressions on the randomisation scenarios. The 3-letter scenario name as in 7. For each of tone1, tone2 and tone counts, I show the percent

of models fitted on permuted data that, compared to the model fitted on the original data, have a better AIC, a smaller (i.e., more negative) regression coefficient β for

ASPM-D, and a smaller β for MCPH1-D, respectively. The lower these percentages, the more “special” is the relationship on the original dataset relative to the structure

that is destroyed in each scenario. In bold are the values< 5%.

Name tone1 tone2 tone counts
AIC βASPM−D βMCPH1−D AIC βASPM−D βMCPH1−D AIC βASPM−D βMCPH1−D

TUN 0% 0% 0% 0% 1% 0% 0% 4% 2%

LUN 0% 0% 2% 31% 10% 6% 1% 0% 0%

IUN 1% 0% 1% 32% 9% 4% 1% 0% 0%

TUF 0% 8% 25% 0% 6% 23% 0% 33% 30%

LUF 68% 15% 23% 84% 17% 25% 81% 16% 12%

IUF 68% 16% 20% 83% 16% 21% 81% 13% 6%

TMN 0% 4% 28% 0% 1% 1% 0% 12% 7%

LMN 26% 7% 73% 40% 21% 42% 18% 6% 20%

IMN 32% 15% 78% 44% 28% 45% 20% 7% 19%

TMF 0% 11% 29% 0% 7% 22% 0% 33% 35%

LMF 65% 19% 35% 80% 28% 38% 79% 23% 26%

IMF 66% 20% 35% 80% 25% 37% 81% 24% 26%

TFN 2% 3% 36% 31% 28% 16% 24% 28% 8%

LFN 2% 5% 16% 20% 29% 15% 9% 32% 4%

IFN 2% 10% 24% 25% 22% 25% 10% 40% 8%

TFF 1% 16% 74% 45% 54% 43% 18% 63% 54%

LFF 66% 46% 16% 80% 43% 18% 83% 61% 5%

IFF 66% 37% 22% 80% 34% 24% 82% 59% 11%

https://doi.org/10.1371/journal.pone.0253546.t008

Fig 10. Distribution of the effect size β (horizontal axis) of ASPM-D (left) and MCPH1-D (right) on tone1 in the

restricted sampling regressions without controlling for macroareas (“by itself”, red areas), including macroarea as

a fixed effect (“ctrl macroarea”, green areas), and including both macroarea and the other “derived” allele as fixed

effects (“ctrl macroarea & the other allele”, blue areas). Each individual plot shows 0.0 (vertical dotted black thin

line) and the distribution of the β’s for the three “models” (the coloured areas). Please note that the y-axes vary between

plots, but the x-axes are fixed for comparability. The more to the left of 0.0 a distribution is, the clearer the negative

effect is.

https://doi.org/10.1371/journal.pone.0253546.g010
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ROPE = 13.3%, pROPE = 0.12; model comparisons to the “null” model (i.e., intercept and con-

founds-only) suggest that they are roughly equivalent (Bayes Factor = 3.83, LOO = 0.70

[SE = 1.43], WAIC = 0.92 [SE = 1.19], KFOLD = 4.48 [SE = 3.46]). For MCPH1-D: β = −0.63,

89%HDI = [−1.66, 0.46], posterior probability p(β< 0) = 0.83, evidence ratio = 5.0, % HDI

inside ROPE = 15.2%, pROPE = 0.14; model comparisons to “null” suggest rough equivalence

(Bayes Factor = 3.17, LOO = -0.01 [SE = 1.03], WAIC = 0.45 [SE = 0.77], KFOLD = 2.33

[SE = 2.31]). Please note that the posterior probability for the directional hypothesis p(β< 0)

should be as large as possible (this is the actual probability that the effect is negative) and the

associated evidence ratio as large as possible, the % HDI inside ROPE should be as small as

possible (a value of 0% meaning the HDI entirely falls outside the ROPE), and that pROPE
should also be as small as possible (a value of 0.0 meaning that the whole posterior distribution

falls entirely outside the ROPE) and can be interpreted somewhat like a frequentist p-value by

comparing it to a threshold of say, 0.05.

Modelling macroarea as a 2D Gaussian Processes in the Bayesian mixed-effects logistic

regression model found that the interaction is not needed, but that each “derived” allele seems

to have a negative effect on tone. For ASPM-D: β = −0.88, 89%HDI = [−1.63, −0.06], posterior

probability p(β< 0) = 0.96, evidence ratio = 25, % HDI inside ROPE = 3.5%, pROPE = 0.065;

model comparisons to the “null” model suggest that they are roughly equivalent (Bayes Fac-

tor = 1.3, LOO = -0.05 [SE = 2.69], WAIC = -0.69 [SE = 2.74], KFOLD = -1.21 [SE = 3.41]).

For MCPH1-D: β = −1.03, 89%HDI = [−1.63, −0.45], posterior probability p(β< 0) = 0.99, evi-

dence ratio = 170, % HDI inside ROPE = 0%, pROPE = 0.011; model comparisons to “null” sug-

gest moderate evidence for MCPH1-D (Bayes Factor = 0.3, LOO = -2.13 [SE = 1.73], WAIC =

-2.22 [SE = 1.73], KFOLD = -2.02 [SE = 2.70]).

Mediation analysis. I ran two main separate mediation analyses (see Fig 5) with the treat-

ment (IV) = dichotomised macroarea (Africa vs the rest of the world), the outcome (DV) =

tone1, and the mediator (MV) = either ASPM-D or MCPH1-D, respectively, as well as the

“experimental” Bayesian simultaneous bi-mediated model (see Fig 6) with both ASPM-D or

MCPH1-D as mediators.

Using the full dataset and the “classic” approach, both main models find a significant posi-

tive total effect (TE) of macroarea on tone (ASPM-D: 0.49, 95%CI (0.33, 0.63), p< 2 � 10−16;

MCPH1-D: 0.50, 95%CI (0.34, 0.65), p< 2 � 10−16), confirming that African languages tend to

be more tonal in our database than languages outside Africa, as well as a significant positive

average direct effect (ADE; coefficient c0 in Fig 5) of macroarea on tone1 (ASPM-D: 0.27, 95%

CI (0.08, 0.47), p = 0.008; MCPH1-D: 0.55, 95%CI (0.19, 0.75), p = 0.002). However, the aver-

age indirect effects (ACME), mediated by the “derived” allele frequencies, differ strongly

between them: for ASPM-D, the mediated effect is significant and positive (0.22, 95%CI (0.11,

0.34), p< 2 � 10−16), representing 44.9% of the total effect and resulting from a significant neg-

ative effect of being in Africa on ASPM-D (coefficient a; −1.25 ± 0.16, p = 7.7 � 10−13), and a

significant negative effect of ASPM-D on tone (coefficient b; −0.90 ± 0.24, p = 0.00015). For

MCPH1-D, the mediated effect is not significant (−0.05, 95%CI (− 0.22, 0.25), p = 0.49), com-

posed of a significant negative effect of being in Africa on MCPH1-D (coefficient a; −-

2.19 ± 0.09, p = 9.9 � 10−59), and a non-significant effect of MCPH1-D on tone (coefficient b;

0.20 ± 0.38, p = 0.6). Taken together, this shows that there’s a positive effect of being in Africa

on tone, but that about half of it is mediated by the negative effect of ASPM-D, but not by

MCPH1-D; moreover, the frequency of MCPH1-D is shaped much more by being in or out-

side Africa than that of ASPM-D.

Restricted sampling (repeated 1,000 times) finds the same pattern (see Fig 11 and Table 9),

with only ASPM-D mediating part of the influence of macroarea on tone, but not MCPH1-D;
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also, macroarea has a much stronger effect on the latter. This procedure does control for lan-

guage family, but, on the other hand, drastically reduces the sample size to only N = 35 unique

families, resulting in a low power of the individual mediation analyses, with relatively few

effect sizes being large enough for statistical significance, but even so, there are many more

Fig 11. Mediation analysis for 1,000 restricted samples for tone1. The leftmost two panels show the distribution of point estimates (coloured areas) of

the Total Effect (TE), the Direct Effect (ADE) and the Indirect Effect (ACME) for ASPM-D and MCPH1-D; the middle two panels show the distribution

of the p-values (coloured areas) for the same effects, while the two rightmost panels (on white background) show the distribution of the regression

slopes (β) for the two alleles (top: for the regression of the allele frequency on being within or outside Africa, and bottom: for the regression of tone on

the allele while controlling for being within or outside Africa). The black vertical lines are: 0.0 (solid), 0.05 (dashed) and 0.10 (dotted). Please note that

the y-axes vary between plots, but the x-axes of the four left panels (but not of the two right panels) are fixed for comparability. Mediation estimates

(leftmost panels): ACME (blue) should be away from 0 for a sizeable mediation through the “derived” allele. Mediation p-values (mid panels): ACME
(blue) should be below 0.05 (or 0.10) for a statistically significant mediation through the “derived” allele. (Partial) regression slopes β (rightmost panels):

should be different from 0. See Table 9 for the numeric summaries.

https://doi.org/10.1371/journal.pone.0253546.g011

Table 9. Summaries of the mediation analysis for 1,000 restricted samples for tone1. For each “derived” allele the table shows the three types of effects (total, direct and

mediated) and the two (partial) regression coefficients. For each, it gives the mean, median and the results of the relevant comparison with 0.0 (smaller or bigger) in terms

of the percent of the estimates smaller (or bigger) than 0.0 and the one-sided t-test (df = 999); the direction of the comparison is based on a priori expectancies: positive

effects but negative βs.

Allele Estimate Mean Median Compared to 0

ASPM-D TE 0.38 0.38 > 0: 100.0%, t = 134.2, p< 2.2 � 10−16

ADE 0.28 0.28 > 0: 99.6%, t = 87.2, p< 2.2 � 10−16

ACME 0.094 0.091 > 0: 99.5%, t = 61.4, p< 2.2 � 10−16

β(Africa! allele) -0.86 -0.87 <0: 100.0%, t = −211.9, p< 2.2 � 10−16

β(allele! tone j Africa) -0.61 -0.60 <0: 99.1%, t = −60.0, p< 2.2 � 10−16

MCPH1-D TE 0.38 0.39 > 0: 100.0%, t = 133.1, p< 2.2 � 10−16

ADE 0.41 0.44 > 0: 96.9%, t = 74.0, p< 2.2 � 10−16

ACME -0.029 -0.052 > 0: 35.7%, t = −6.2, p = 1

β(Africa! allele) -2.5 -2.5 <0: 100.0%, t = −884.5, p< 2.2 � 10−16

β(allele! tone j Africa) 0.42 0.42 <0: 25.5%, t = 21.4, p = 1

https://doi.org/10.1371/journal.pone.0253546.t009
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significant indirect effects for ASPM-D (10.2% at α-level 0.05, and 27.7% at α-level 0.10) than

for MCPH1-D (0.2% and 1.5%, respectively).

The Bayesian approach is more flexible and allows Beta regressions for the (non z-scored)

“derived” allele frequencies as well as the modelling of language family and (meta)population
as random effects. It also found a positive TE (ASPM-D: 12.04, 89%HDI [1.36, 24.40], pROPE =

0.0005; MCPH1-D: 6.10, 89%HDI [−4.57, 16.89], pROPE = 0.0075), and a positive ADE (ASPM-

D: 4.57, 89%HDI [1.36, 8.52], pROPE = 0.0015; MCPH1-D: 5.46, 89%HDI [1.26, 10.13], pROPE =

0.00075). However, while there seems to be a positive ACME for ASPM-D (7.44, 89%HDI

[−4.55, 19.85], pROPE = 0.0048) resulting from a negative effect of being in Africa on ASPM-D

(−2.08, 89%HDI [−2.71, −1.42], pROPE = 0.0) and a negative effect of ASPM-D on tone (−3.75,

89%HDI [−9.43, 1.96], pROPE = 0.00925), this is arguably absent for MCPH1-D (ACME: 0.69,

89%HDI [−10.63, 13.93], pROPE = 0.013; negative effect of being in Africa on MCPH1-D:

−2.45, 89%HDI [−3.10, −1.78], pROPE = 0.0; null effect of MCPH1-D on tone: −0.30, 89%HDI

[−5.02, 4.76], pROPE = 0.028). Simultaneously modelling the mediation of both “derived” alleles

produces similar results (Fig 12): positive TE (11.61, 89%HDI [−2.54, 26.06], pROPE = 0.0038)

and ADE (5.29, 89%HDI [1.15, 10.42], pROPE = 0.004), with an arguably positive ACME for

ASPM-D (8.01, 89%HDI [−4.47, 21.47], pROPE = 0.0047), resulting from a negative effect of

being in Africa on ASPM-D (−2.08, 89%HDI [−2.71, −1.43], pROPE = 0.0) and a negative effect

of ASPM-D on tone (−4.02, 89%HDI [−9.75, 2.44], pROPE = 0.0097), but much less convincing

evidence of an ACME for MCPH1-D (−1.69, 89%HDI [−15.49, 10.09], pROPE = 0.011) resulting

from a negative effect of being in Africa on MCPH1-D (−2.46, 89%HDI [−3.07, −1.71],

pROPE = 0.0) and no effect of MCPH1-D on tone (0.72, 89%HDI [−4.21, 6.16], pROPE = 0.026).

Path analysis. I ran path analyses (see Fig 6) with the treatment (IV) = dichotomised
macroarea (Africa vs the rest of the world), the outcome (DV) = tone1, and the mediators
MV1 = ASPM-D and MV2 = MCPH1-D, separately for the binary and the ordered codings of

the IV and the DV (but given that the results are extremely similar, I only report here the

numeric coding).

Using the full dataset, the model fits the data very well (w2
1
¼ 0:22, p = 0.64; CFI = 1.00,

TLI = 1.01, NNFI = 1.01 and RFI = 1.00), and, as shown in Fig 13, being in Africa has a signifi-

cant positive direct effect on tone1, a significant negative effect on ASPM-D which has a nega-

tive significant effect on tone1, but while it has a stronger significant negative effect on

MCPH1-D this has no effect on tone1. Please note that, for path analyses/SEM models, we

Fig 12. The simultaneous mediation model for tone1 through both “derived” alleles. Each edge shows the posterior mean and 89%HDI of the partial

regressions, and their pROPE-values; solid thick coloured = effect clearly present, solid thin coloured = effect probably present, gray dashed = probably

no effect; red = positive and blue = negative effect. Please note that this controls for family and (meta)populations as random effects, and that the

populations frequencies of the “derived” alleles are not z-scored.

https://doi.org/10.1371/journal.pone.0253546.g012
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want the χ2 goodness-of-fit test to be not significant, meaning that there is no reason to reject

the hypothesis that the model fits the data; this is a binary decision. On the other hand, there

are several fit indices (I only show a few: CFI, TLI, NNFI and RFI), which are continuous, the

closer to 1.00, the better the model fits to the data.

As for the mediation analysis above, restricted sampling finds a similar pattern (see Fig 14

and Table 10).

Decision trees. If, besides ASPM-D and MCPH1-D, macroarea is also included, the deci-

sion tree fits the full dataset well (accuracy = 77.3%, sensitivity = 71.7%, specificity = 79.3%,

precision = 54.1%, and recall = 71.7%), and generalises across 100 training/testing sets

(mean ± sd: accuracy = 77.1% ±6.6%, sensitivity = 71.6% ±15.2%, specificity = 79.3% ±6.8%,

precision = 52.9% ±12.4%, recall = 71.6% ±15.2%), and suggests that within Eurasia and Papu-

nesia, the frequency of ASPM-D is a good predictor of tone1 (with p = 0.003). When macroarea
is not included, then the fit for the whole dataset drops a bit (accuracy = 75.1%, sensitiv-

ity = 75.0%, specificity = 75.2%, precision = 39.3%, and recall = 75.0%) and generalises slightly

less well (accuracy = 70.1% ±7.6%, sensitivity = 61.3% ±19.1%, specificity = 76.2% ±8.7%, pre-

cision = 44.0% ±23.0%, recall = 61.3% ±19.1%); now, ASPM-D is predictive overall

(p< 0.001), and MCPH1-D is relevant (p = 0.004) only for low frequencies of ASPM-D (see

Fig 15).

Random forests. If macroarea is included as a predictor, the random forests fit the data

well (accuracy = 77.7% ±0.8%, sensitivity = 68.9% ±1.9%, specificity = 81.6% ±0.4%,

Fig 13. The path model for tone1 (numeric coding) fitted on all the data. Each edge shows the standardized path coefficients and

their p-values; gray dotted = not significant, red = significant positive, and blue = significant negative.

https://doi.org/10.1371/journal.pone.0253546.g013

Fig 14. Summary of the 1,000 path models for tone1 fitted to restricted samples. Each edge shows the means of the

standardized path coefficients and ± their standard deviation; conventions as in Fig 13.

https://doi.org/10.1371/journal.pone.0253546.g014
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precision = 62.0% ±1.0%, recall = 68.9% ±1.9%), and the conditional random forests are even

better (accuracy = 84.3% ±0.7%, sensitivity = 78.8% ±0.5%, specificity = 86.8% ±0.9%, preci-

sion = 73.0% ±2.0%, recall = 78.8% ±0.5%). Of the 3 measures of variable importance, the

mean decrease in accuracy for the random forests finds that macroarea> ASPM-D >

MCPH1-D, the mean decrease in node impurity for the random forests finds that ASPM-D >

MCPH1-D>macroarea, and the unconditional importance for the conditional random for-

ests finds that ASPM-D >macroarea>MCPH1-D.

Leaving macroarea out slightly reduces the fit (random forests: accuracy = 70.7% ±1.0%,

sensitivity = 56.3% ±1.4%, specificity = 78.6% ±0.8%, precision = 59.0% ±1.8%, recall = 56.3%

±1.4%; conditional random forests: accuracy = 82.1% ±0.5%, sensitivity = 81.8% ±0.7%, speci-

ficity = 82.3% ±0.6%, precision = 60.5% ±1.6%, recall = 81.8% ±0.7%), but now all three crite-

ria agree that ASPM-D>MCPH1-D.

Summary. Thus, tone1, capturing the presence of any type of tone system, is negatively

influenced by each of the two “derived” alleles by themselves (i.e., when not controlling for

shared inheritance and contact), while controlling for these confounds still finds these negative

influences but they are now much weaker. (Interestingly, when contact is modelled in a con-

tinuous manner, using a 2D Gaussian Process, then these effects are stronger than when

modelling it as a standard random effect). The strengths of the effects of the two “derived”

alleles are comparable and are affected in similar ways by controlling for the confounds. How-

ever, when properly modelling the difference between Africa and the rest of the world in allele

frequencies and tone I found that only ASPM-D has a negative effect on tone above and

beyond that due to macroarea and language family, suggesting that the frequency of ASPM-D

partially mediates the influence of macroarea on tone. Thus, there seems to be a weak negative

effect of ASPM-D on the presence/absence of tone above and beyond the confounding effects

of contact and shared inheritance, but less convincingly for MCPH1-D.

Is there complex tone? (tone2)

While the original hypothesis in [9] concerns strictly the presence of tone, here I capitalise on

the availability of data allowing the comparison of languages with a complex tone system ver-

sus those without tone or with a simple system—this is embodied in the tone2 variable, where

“Yes” represents complex tone systems.

When selecting all unique observations with non-missing data for tone2, ASPM-D and

MCPH1-D, there are 180 observations, distributed among 118 unique Glottolog codes (lan-

guages) in 35 families (the number of languages per family ranges from 1 to 47, with mean 5.1

Table 10. Summaries of the path analysis for 1,000 restricted samples for tone1. Similar conventions as for Table 9.

Type Estimate Mean (SD) Median (IQR) Compared to 0

Fit χ2 test 94.7% n.s. - -

CFI 0.99 (0.01) 1.00 (0.02) -

TLI 0.97 (0.10) 0.99 (0.16) -

NNFI 0.97 (0.10) 0.99 (0.16) -

RFI 0.90 (0.09) 0.92 (0.14) -

Path Africa! tone1 0.43 (0.32) 0.44 (0.46) 89.5% > 0

Africa! ASPM-D −0.87 (0.12) −0.89 (0.17) 100.0% < 0

ASPM-D! tone1 −0.11 (0.06) −0.11 (0.09) 98.6% < 0

Africa!MCPH1-D −2.5 (0.09) −2.5 (0.12) 100.0% < 0

MCPH1-D! tone1 0.04 (0.11) 0.04 (0.17) 36.7% < 0

https://doi.org/10.1371/journal.pone.0253546.t010
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Fig 15. Decision trees for tone1 including macroarea as a predictor (top) or not (bottom). Please note that in these

decision tree plots “ASPM.D” and “MCPH1.D” stand for ASPM-D and MCPH1-D, respectively. Each split is a binary

decision based on the values or conditions on the branches (with the p-value in parentheses). The bars at the bottom of

the plots show the distribution of “No” (light gray’) and “Yes” (dark gray) values and the number of observations for

that case (e.g., n = 69 in the top panel’s rightmost bar, means that 69 observations are in Eurasia and Papunesia with

the population frequency of ASPM-D> 0.28, and for those only a minority of�6% have tone). It can be seen that in

the bottom panel, a low frequency of MCPH1-D seems to be a proxy for Africa.

https://doi.org/10.1371/journal.pone.0253546.g015
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and median 2). There are 29 (16.1%) languages with complex tone (“Yes”) in the dataset

(w2
1
¼ 82:7, p< 2.2 � 10−16), and the distribution by macroarea is 37 (9 = 24.3% “Yes”) in

Africa, 123 (18 = 14.6%) in Eurasia, 10 (1 = 10%) in America, and 10 (1 = 10%) in Papunesia

(between macroareas w2
3
¼ 2:6, p = 0.46); see Fig 16.

The relationship between tone2 and the population frequency of the two “derived” alleles is

shown in Fig 17. It can seen that, globally, it seems that languages with complex tone tend to

be found when ASPM-D has a low frequency, which seems to be the case also in Eurasia.

Regressions. On the whole data and using the “classic” approach, tone2 is almost

completely clustered within families (ICC(tone2) = 95.6%). The interaction between ASPM-D

and MCPH-D does not contribute (p = 0.76), macroarea does not predict tone2 (p = 0.50, R2 =

2.0%), and neither do the two “derived” alleles individually (ASPM-D: β = −0.87 ± 0.69,

p = 0.19, R2 = 1.3%; MCPH1-D β = −1.01 ± 0.73, p = 0.16, R2 = 1.5%).

Permuting the observations (Fig 18 and Table 8), shows that ASPM-D has a negative effect

on tone2 in all conditions, less clear when restricting the permutations within families, but

MCPH1-D seems to have a negative effect only for unrestricted permutations when not con-

trolling for macroarea.

Repeated restricted sampling also shows a clear negative effect of ASPM-D on tone2 even

when controlling for macroarea and MCPH1-D (99.9% of the β’s<0, with a mean

�b ¼ � 0:96), and arguably no effect for MCPH1-D (35.1% of the β’s<0, with a mean

�b ¼ 0:67); see Fig 19.

Fitting a Bayesian mixed-effects logistic regression model of tone2 on ASPM-D, MCPH1-D

and their interaction as fixed effects, and macroarea, family and (meta)population (nested

within family) as random effects, found that the interaction is not needed, but that each

“derived” allele seems to have a negative effect on tone. For ASPM-D: β = −1.27, 89%HDI =

[−2.73, 0.17], posterior probability p(β< 0) = 0.93, evidence ratio = 14, % HDI inside

ROPE = 6.1%, pROPE = 0.055; model comparisons to the “null” model suggest that they are

roughly equivalent (Bayes Factor = 1.46, LOO = 1.84 [SE = 1.14], WAIC = 0.10 [SE = 1.16],

Fig 16. Distribution (as counts) of tone2 (no and simple tone vs complex tone) across the full database (left) and by macroarea (right). Same

conventions as in Fig 7.

https://doi.org/10.1371/journal.pone.0253546.g016

PLOS ONE Tone and genes: New cross-linguistic data and methods support the weak effect of ASPM but not of Microcephalin

PLOS ONE | https://doi.org/10.1371/journal.pone.0253546 June 30, 2021 37 / 60

https://doi.org/10.1371/journal.pone.0253546.g016
https://doi.org/10.1371/journal.pone.0253546


Fig 17. Relationship between tone2 and the population frequency of ASPM-D and MCPH1-D in the whole database and separately by macroarea.

Same conventions as in Fig 8.

https://doi.org/10.1371/journal.pone.0253546.g017

Fig 18. Distribution of the permutation regressions for tone2. Same conventions as in Fig 9.

https://doi.org/10.1371/journal.pone.0253546.g018

PLOS ONE Tone and genes: New cross-linguistic data and methods support the weak effect of ASPM but not of Microcephalin

PLOS ONE | https://doi.org/10.1371/journal.pone.0253546 June 30, 2021 38 / 60

https://doi.org/10.1371/journal.pone.0253546.g017
https://doi.org/10.1371/journal.pone.0253546.g018
https://doi.org/10.1371/journal.pone.0253546


KFOLD = -0.80 [SE = 2.10]). For MCPH1-D: β = −0.91, 89%HDI = [−2.38, 0.58], posterior

probability p(β< 0) = 0.85, evidence ratio = 5.5, % HDI inside ROPE = 10.9%, pROPE = 0.097;

model comparisons to “null” suggest rough equivalence (Bayes Factor = 1.63, LOO = 0.25

[SE = 0.64], WAIC = -0.36 [SE = 0.73], KFOLD = -2.43 [SE = 1.67]). Modelling macroarea as a

2D Gaussian Processes in the Bayesian mixed-effects logistic regression model found that the

interaction is not needed, but that each “derived” allele seems to have a negative effect on tone.

For ASPM-D: β = −1.15, 89%HDI = [−2.12, −0.16], posterior probability p(β< 0) = 0.97, evi-

dence ratio = 33, % HDI inside ROPE = 0.6%, pROPE = 0.044; model comparisons to the “null”

model suggest anecdotal evidence for ASPM-D (Bayes Factor = 0.77, LOO = -0.34 [SE = 1.58],

WAIC = -0.34 [SE = 1.59], KFOLD = -0.07 [SE = 1.64]). For MCPH1-D: β = −0.63, 89%HDI =

[−1.27, −0.04], posterior probability p(β< 0) = 0.95, evidence ratio = 19, % HDI inside

ROPE = 6.5%, pROPE = 0.099; model comparisons to “null” suggest that they are roughly equiv-

alent (Bayes Factor = 2.14, LOO = 0.06 [SE = 1.58], WAIC = 0.19 [SE = 1.58], KFOLD = 0.88

[SE = 1.88]).

Mediation analysis. Using the full dataset and the “classic” approach, only for ASPM-D

there is a hint of a total effect (TE) of macroarea on tone (0.14, 95%CI (−0.01, 0.30), p = 0.078),

but not for MCPH1-D (0.11, 95%CI (−0.02, 0.27), p = 0.12). This positive TE for ASPM-D is

decomposed non-significant ADE of macroarea on tone2 (−0.05, 95%CI (−0.20, 0.10),

p = 0.43) and a positive ACME (0.19, 95%CI (0.08, 0.31), p = 0.004), resulting from a significant

negative effect of being in Africa on ASPM-D (−1.34 ± 0.16, p = 3.7 � 10−15) and a significant

negative effect of ASPM-D on tone (−1.03 ± 0.31, p = 0.0011).

Restricted sampling (Fig 20 and Table 11), finds that while for both “derived” alleles there

are positive and comparably strong total (TE) and direct (ADE) effects, only ASPM-D shows a

positive indirect effect (ACME), but pretty much none of these effects are individually

significant.

The Bayesian approach found a possible positive TE for ASPM-D (17.36, 89%HDI [−5.13,

44.06], pROPE = 0.0023) and less clear for MCPH1-D (6.72, 89%HDI [−11.75, 26.79], pROPE =

0.006), but arguably no ADE’s (ASPM-D: 1.86, 89%HDI [−2.03, 6.53], pROPE = 0.027; MCPH1-

D: 2.37, 89%HDI [−3.92, 8.28], pROPE = 0.021). However, while there seem to be a positive

ACME for ASPM-D (15.46, 89%HDI [−9.45, 42.77], pROPE = 0.0023) resulting from a negative

effect of being in Africa on ASPM-D (−2.54, 89%HDI [−3.29, −1.87], pROPE = 0.0) and a

Fig 19. Distribution of the restricted sampling regressions for tone2. Same conventions as in Fig 10.

https://doi.org/10.1371/journal.pone.0253546.g019

PLOS ONE Tone and genes: New cross-linguistic data and methods support the weak effect of ASPM but not of Microcephalin

PLOS ONE | https://doi.org/10.1371/journal.pone.0253546 June 30, 2021 39 / 60

https://doi.org/10.1371/journal.pone.0253546.g019
https://doi.org/10.1371/journal.pone.0253546


negative effect of ASPM-D on tone (−6.25, 89%HDI [−16.86, 3.41], pROPE = 0.008), this is argu-

ably absent for MCPH1-D (ACME: 4.56, 89%HDI [−18.69, 28.28], pROPE = 0.006; negative

effect of being in Africa on MCPH1-D: −2.75, 89%HDI [−3.41, −2.09], pROPE = 0.0; null effect

of MCPH1-D on tone: −1.70, 89%HDI [−10.10, 6.58], pROPE = 0.016). Simultaneously model-

ling the mediation of both “derived” alleles produces similar results (Fig 21): positive TE
(21.02, 89%HDI [−9.08, 56.84], pROPE = 0.0027) and ADE (1.60, 89%HDI [−5.28, 9.23],

pROPE = 0.017), with an arguably positive ACME for ASPM-D (17.13, 89%HDI [−11.56, 46.58],

pROPE = 0.0023), resulting from a negative effect of being in Africa on ASPM-D (−2.53, 89%

HDI [−3.21, −1.81], pROPE = 0.0) and a negative effect of ASPM-D on tone (−6.88, 89%HDI

[−18.01, 4.70], pROPE = 0.006), but much less convincing evidence of an ACME for MCPH1-D

(2.51, 89%HDI [−23.45, 28.80], pROPE = 0.006) resulting from a negative effect of being in

Fig 20. Mediation analysis for 1,000 restricted samples for tone2. Same conventions as in Fig 11. See Table 11 for the numeric summaries.

https://doi.org/10.1371/journal.pone.0253546.g020

Table 11. Summaries of the mediation analysis for 1,000 restricted samples for tone2. Same conventions as in Table 9.

Allele Estimate Mean Median Compared to 0

ASPM-D TE 0.11 0.12 > 0: 89.6%, t = 39.7, p< 2.2 � 10−16

ADE 0.04 0.039 > 0: 67.3%, t = 16.0, p< 2.2 � 10−16

ACME 0.072 0.07 > 0: 100.0%, t = 78.5, p< 2.2 � 10−16

β(Africa! allele) -0.88 -0.89 <0: 100.0%, t = −249.8, p< 2.2 � 10−16

β(allele! tone j Africa) -0.58 -0.57 <0: 100.0%, t = −79.8, p< 2.2 � 10−16

MCPH1-D TE 0.11 0.11 > 0: 82.1%, t = 37.1, p< 2.2 � 10−16

ADE 0.13 0.14 > 0: 75.0%, t = 24.8, p< 2.2 � 10−16

ACME -0.028 -0.034 > 0: 43.0%, t = −5.4, p = 1

β(Africa! allele) -2.4 -2.4 <0: 100.0%, t = −927.9, p< 2.2 � 10−16

β(allele! tone j Africa) 0.26 0.21 <0: 38.0%, t = 11.3, p = 1

https://doi.org/10.1371/journal.pone.0253546.t011
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Africa on MCPH1-D (−2.75, 89%HDI [−3.41, −2.05], pROPE = 0.0) and no effect of MCPH1-D

on tone (−0.93, 89%HDI [−10.63, 8.35], pROPE = 0.017).

Path analysis. As above, I only report here the numeric coding. On the full dataset, the

model fits the data very well (w2
1
¼ 0:36, p = 0.55; CFI = 1.00, TLI = 1.01, NNFI = 1.01 and

RFI = 0.99). As shown in Fig 22, being in Africa has no direct effect on complex tone, but has a

significant negative effect on ASPM-D which has a negative significant effect on complex tone;

however, while it has a stronger significant negative effect on MCPH1-D, this has no effect on

complex tone. The same pattern is also found by restricted sampling, except that here there is

also a hint of a negative effect of MCPH1-D on complex tone (see Fig 23 and Table 12).

Decision trees. The decision trees including or excluding macroarea are the same and

trivial in that they uniformly predict just the majority value “No” and have only one split

depending on the frequency of ASPM-D (� or >� 0.27, p< 0.001).

Random forests. If macroarea is included as a predictor, the random forests fit the data

well (accuracy = 84.2% ±0.5%, sensitivity = 58.4% ±11.2%, specificity = 84.9% ±0.4%, preci-

sion = 8.8% ±2.6%, recall = 58.4% ±11.2%), and the conditional random forests are even better

(accuracy = 87.2% ±0.7%, sensitivity = 97.5% ±4.8%, specificity = 86.9% ±0.7%, preci-

sion = 21.2% ±5.2%, recall = 97.5% ±4.8%), and two measures of variable importance (mean

decrease in accuracy and mean decrease in the Gini index) find that ASPM-D >MCPH1-D>

macroarea, while the third (unconditional importance) finds that ASPM-D>macroarea>
MCPH1-D.

Fig 21. The simultaneous mediation model for tone2 through both “derived” alleles. Same conventions as in Fig 12.

https://doi.org/10.1371/journal.pone.0253546.g021

Fig 22. The path model for tone2 fitted on all the data. Same conventions as in Fig 13.

https://doi.org/10.1371/journal.pone.0253546.g022

PLOS ONE Tone and genes: New cross-linguistic data and methods support the weak effect of ASPM but not of Microcephalin

PLOS ONE | https://doi.org/10.1371/journal.pone.0253546 June 30, 2021 41 / 60

https://doi.org/10.1371/journal.pone.0253546.g021
https://doi.org/10.1371/journal.pone.0253546.g022
https://doi.org/10.1371/journal.pone.0253546


Leaving macroarea out has very little effect on the fit (random forests: accuracy = 82.2%

±1.0%, sensitivity = 42.8% ±4.4%, specificity = 87.3% ±0.6%, precision = 30.3% ±3.5%,

recall = 42.8% ±4.4%; conditional random forests: accuracy = 87.3% ±0.2%, sensitivity = 81.2%

±3.1%, specificity = 87.7% ±0.0%, precision = 27.6% ±0.0%, recall = 81.2% ±3.1%), and all

three criteria agree that ASPM-D>MCPH1-D.

Summary. Complex tone is much rarer than no tone and simple tone, so that the distribu-

tion of tone2 is very skewed, and the results much less clear-cut than for tone1, but it seems

that there is also a negative effect of ASPM-D on complex tone (while for MCPH1-D the evi-

dence is much more ambiguous).

Tone counts
There are 184 unique observations with non-missing data for tone counts, ASPM-D and

MCPH1-D, distributed among 121 unique Glottolog codes (languages) in 35 families (the

number of languages per family ranges from 1 to 47, with mean 5.3 and median 2); see Fig 24.

The relationship between the tone counts and the population frequency of the two “derived”

alleles is shown in Fig 25. It can seen that, globally, languages with higher tone counts tend to

be found when ASPM-D has a low frequency, but this does not seem to be a linear

relationship.

Fig 23. Summary of the 1,000 path models for tone2 fitted to restricted samples. Same conventions as in Fig 14.

https://doi.org/10.1371/journal.pone.0253546.g023

Table 12. Summaries of the path analysis for 1,000 restricted samples for tone2. Similar conventions as for Table 9.

Type Estimate Mean (SD) Median (IQR) Compared to 0

Fit χ2 test 97.6% n.s. - -

CFI 0.99 (0.01) 1.00 (0.01) -

TLI 0.98 (0.10) 0.99 (0.15) -

NNFI 0.98 (0.10) 0.99 (0.15) -

RFI 0.90 (0.09) 0.92 (0.13) -

Path Africa! tone2 0.04 (0.26) 0.02 (0.37) 53.6% > 0

Africa! ASPM-D −0.89 (0.11) −0.90 (0.15) 100.0% < 0

ASPM-D! tone2 −0.07 (0.03) −0.07 (0.04) 99.8% < 0

Africa!MCPH1-D −2.40 (0.08) −2.40 (0.11) 100.0% < 0

MCPH1-D! tone2 −0.0002 (0.10) −0.0016 (0.14) 50.8% < 0

https://doi.org/10.1371/journal.pone.0253546.t012
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Regressions. On the whole data and using the “classic” approach, the tone counts are

strongly clustered within families (ICC(tone2) = 65.3%). The macroarea predicts the tone

counts (p = 0.013, R2 = 23.8%), and while ASPM-D has no significant effect by itself

(−0.37 ± 0.19, p = 0.061, R2 = 7.6%), MCPH1-D seemingly does (−0.46 ± 0.19, p = 0.016, R2 =

9.9%), but this seems to fully overlap with that of macroarea.

Fig 24. Distribution of tone counts across the full database (left-most panel) and by macroarea (the following 4 panels). Same conventions as in Fig

7.

https://doi.org/10.1371/journal.pone.0253546.g024

Fig 25. Relationship between tone counts and the population frequency of ASPM-D and MCPH1-D in the whole database and separately by

macroarea. Same conventions as in Fig 8.

https://doi.org/10.1371/journal.pone.0253546.g025

PLOS ONE Tone and genes: New cross-linguistic data and methods support the weak effect of ASPM but not of Microcephalin

PLOS ONE | https://doi.org/10.1371/journal.pone.0253546 June 30, 2021 43 / 60

https://doi.org/10.1371/journal.pone.0253546.g024
https://doi.org/10.1371/journal.pone.0253546.g025
https://doi.org/10.1371/journal.pone.0253546


Permuting the observations (Fig 26 and Table 8), shows similar patterns for both alleles,

with a negative effect on tone counts only when not controlling for macroarea and family.

Repeated restricted sampling shows a clear negative effect of ASPM-D on tone counts even

when controlling for macroarea and MCPH1-D (96.7% of the β’s<0, with a mean

�b ¼ � 0:48), and arguably no effect for MCPH1-D (38.2% of the β’s<0, with a mean

�b ¼ 0:05); see Fig 27.

Fitting a Bayesian mixed-effects Poisson regression model of tone counts on ASPM-D,

MCPH1-D and their interaction as fixed effects, and macroarea, family and (meta)population
(nested within family) as random effects, found that the interaction is not needed, but that

there might be a negative effect on tone for each “derived” allele. For ASPM-D: β = −0.25, 89%

HDI = [−0.64, 0.17], posterior probability p(β< 0) = 0.93, evidence ratio = 5.2, % HDI inside

ROPE = 21%, pROPE = 0.19; model comparisons to the “null” model suggest that they are

Fig 26. Distribution of the permutation regressions for tone counts. Same conventions as in Fig 9.

https://doi.org/10.1371/journal.pone.0253546.g026

Fig 27. Distribution of the restricted sampling regressions for tone counts. Same conventions as in Fig 10.

https://doi.org/10.1371/journal.pone.0253546.g027
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roughly equivalent (Bayes Factor = 4.35, LOO = 1.00 [SE = 1.31], WAIC = 0.89 [SE = 0.89],

KFOLD = 4.18 [SE = 3.39]). For MCPH1-D: β = −0.24, 89%HDI = [−0.65, 0.25], posterior

probability p(β< 0) = 0.80, evidence ratio = 4, % HDI inside ROPE = 20.4%, pROPE = 0.18;

model comparisons to “null” suggest rough equivalence (Bayes Factor = 6.59, LOO = 1.00

[SE = 0.83], WAIC = 0.63 [SE = 0.61], KFOLD = 1.49 [SE = 1.40]). Modelling macroarea as a

2D Gaussian Processes in the Bayesian mixed-effects logistic regression model found that the

interaction is not needed, but that there might be a negative effect on tone for each “derived”

allele, more convincing for MCPH1-D. For ASPM-D: β = −0.22, 89%HDI = [−0.66, 0.24], pos-

terior probability p(β< 0) = 0.78, evidence ratio = 3.5, % HDI inside ROPE = 23.7%, pROPE =

0.21; model comparisons to the “null” model suggest rough equivalence (Bayes Factor = 9.37,

LOO = 2.40 [SE = 1.07], WAIC = 2.20 [SE = 1.01], KFOLD = 1.54 [SE = 1.62]). For MCPH1-

D: β = −0.41, 89%HDI = [−0.77, −0.08], posterior probability p(β< 0) = 0.95, evidence

ratio = 21, % HDI inside ROPE = 1.2%, pROPE = 0.058; model comparisons to “null” suggest

that they are roughly equivalent (Bayes Factor = 3.35, LOO = 2.30 [SE = 1.36], WAIC = 2.53

[SE = 1.30], KFOLD = 1.72 [SE = 1.79]).

Mediation analysis. Using the full dataset and the “classic” approach, both models find a

significant positive TE of macroarea on tone counts (ASPM-D: 0.94, 95%CI (0.40, 1.72), p< 2 �

10−16; MCPH1-D: 0.69, 95%CI (0.32, 1.13), p< 2 � 10−16), confirming that African languages

tend to be have higher tone counts in our database than languages outside Africa, a non-signif-

icant ADE of macroarea on tone counts (ASPM-D: replaced−0.16−0.17, 95%CI (−0.69, 0.30),

p = 0.48; MCPH1-D: 0.44, 95%CI (−0.44, 1.38), p = 0.32). However, the ACMEs differ strongly

between the two alleles: for ASPM-D, the mediated effect is significant and positive (1.11, 95%

CI (0.63, 1.79), p< 2 � 10−16), representing 100.0% of the total effect and resulting from a sig-

nificant negative effect of being in Africa on ASPM-D (−1.34 ± 0.15, p = 1.6 � 10−15), and a sig-

nificant negative effect of ASPM-D on tone counts (−0.73 ± 0.12, p = 4.2 � 10−10); however, for

MCPH1-D, the mediated effect is not significant (0.25, 95%CI (−0.57, 1.06), p = 0.53). Taken

together, this shows that there’s a positive effect of being in Africa on tone counts, but that this

is fully mediated by the negative effect of ASPM-D, but not by MCPH1-D.

Restricted sampling (Fig 28 and Table 13), finds that while for both “derived” alleles there

are positive total (TE) and direct (ADE) effects, only ASPM-D shows a positive indirect effect

(ACME), but very few of these effects are individually significant.

The Bayesian approach found a possible positive TE for ASPM-D (4.89, 89%HDI [−1.29,

10.21], pROPE = 0.0063) and less clear for MCPH1-D (1.93, 89%HDI [−2.40, 6.14], pROPE =

0.026), clear positive ADE’s (ASPM-D: 1.69, 89%HDI [0.52, 2.97], pROPE = 0.007; MCPH1-D:

2.06, 89%HDI [0.59, 3.69], pROPE = 0.0058). However, while there seem to be a positive ACME
for ASPM-D (3.19, 89%HDI [−2.98, 9.26], pROPE = 0.017) resulting from a negative effect of

being in Africa on ASPM-D (−2.52, 89%HDI [−3.21, −1.79], pROPE = 0.0) and a possible nega-

tive effect of ASPM-D on tone (−1.29, 89%HDI [[−3.73, 1.04], pROPE = 0.036), this is arguably

absent for MCPH1-D (ACME: −0.22, 89%HDI [−5.53, 4.78], pROPE = 0.02; negative effect of

being in Africa on MCPH1-D: −2.75, 89%HDI [−3.37, −2.02], pROPE = 0.0; null effect of

MCPH1-D on tone: 0.09, 89%HDI [−1.82, 1.89], pROPE = 0.062). Simultaneously modelling the

mediation of both “derived” alleles produces similar results (Fig 29): positive TE (4.86, 89%

HDI [−2.21, 11.80], pROPE = 0.012) and ADE (1.78, 89%HDI [0.15, 3.47], pROPE = 0.016), with

an arguably positive ACME for ASPM-D (3.17, 89%HDI [−2.92, 9.28], pROPE = 0.013), result-

ing from a negative effect of being in Africa on ASPM-D (−2.52, 89%HDI [−3.28, −1.86],

pROPE = 0.0) and a possible negative effect of ASPM-D on tone (−1.30, 89%HDI [−3.77, 1.00],

pROPE = 0.038), but much less convincing evidence of an ACME for MCPH1-D (−0.18, 89%

HDI [−5.49, 4.94], pROPE = 0.024) resulting from a negative effect of being in Africa on
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MCPH1-D (−2.76, 89%HDI [−3.46, −2.10], pROPE = 0.0) and no effect of MCPH1-D on tone

(0.07, 89%HDI [−1.76, 1.98], pROPE = 0.063).

Path analysis. On the full dataset, the model fits the data very well (w2
1
¼ 0:29, p = 0.59;

CFI = 1.00, TLI = 1.01, NNFI = 1.01 and RFI = 1.00), and, as shown in Fig 30, being in Africa

has no direct effect on tone counts, but has a significant negative effect on ASPM-D which has

a negative significant effect on tone counts, but while it has a stronger significant negative

effect on MCPH1-D this has no effect on tone counts. The same pattern is also found by

restricted sampling, except that here there is also a hint of a negative effect of MCPH1-D on

complex tone (see Fig 31 and Table 14).

Summary. The actual number of tones/tone symbols has a skewed distribution, and the

results are less clear, but it seems that there is a negative effect of ASPM-D on tone counts

Table 13. Summaries of the mediation analysis for 1,000 restricted samples for tone counts. Same conventions as in Table 9.

Allele Estimate Mean Median Compared to 0

ASPM-D TE 1.3 1.3 > 0: 100.0%, t = 79.3, p< 2.2 � 10−16

ADE 0.73 0.74 > 0: 97.4%, t = 58.4, p< 2.2 � 10−16

ACME 0.54 0.50 > 0: 98.4%, t = 53.7, p< 2.2 � 10−16

β(Africa! allele) -0.89 -0.90 <0: 100.0%, t = −237.7, p< 2.2 � 10−16

β(allele! tone j Africa) -0.38 -0.36 <0: 98.2%, t = −66.8, p< 2.2 � 10−16

MCPH1-D TE 1.1 1.1 > 0: 100.0%, t = 83.9, p< 2.2 � 10−16

ADE 3.9 2.0 > 0: 83.2%, t = 17.2, p< 2.2 � 10−16

ACME -2.8 -0.89 > 0: 35.%, t = −12.3, p = 1

β(Africa! allele) -2.4 -2.4 <0: 100.0%, t = −915.3, p< 2.2 � 10−16

β(allele! tone j Africa) 0.13 0.10 <0: 40.439.8%, t = 10.3, p = 1

https://doi.org/10.1371/journal.pone.0253546.t013

Fig 28. Mediation analysis for 1,000 restricted samples for tone counts. Same conventions as in Fig 11. See Table 11 for the numeric summaries.

https://doi.org/10.1371/journal.pone.0253546.g028
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Fig 29. The simultaneous mediation model for tone counts through both “derived” alleles. Same conventions as in Fig 12.

https://doi.org/10.1371/journal.pone.0253546.g029

Fig 30. The path model for tone counts fitted on all the data. Same conventions as in Fig 13.

https://doi.org/10.1371/journal.pone.0253546.g030

Fig 31. Summary of the 1,000 path models for tone counts fitted to restricted samples. Same conventions as in Fig 14.

https://doi.org/10.1371/journal.pone.0253546.g031
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above and beyond the confounding effects of macroarea and family, but not so for MCPH1-D

(except when using a Gaussian Process to model contact).

Bayesian regressions: Sensitivity to priors

Given the importance of the Bayesian models in this analysis, I checked if the Bayesian regres-

sions of tone1, tone2 and tone counts on the z-scored population frequency of each “derived”

allele separately while controlling for family, (meta)population and macroarea as random

effects (i.e., the models used above) are sensitive to the particular choice of prior distributions

used. This is a standard technique in Bayesian data analysis (e.g., [30]) that, first, makes sure

that the chosen prior distribution does not unduly affects the results (in effect, creating arte-

facts) and, second, is a different way of getting a “feeling” of how much information there is in

the data. In the analyses presented above I systematically used a student’s t(df = 3, μ = 0, σ = 3)

prior for the intercept α and the slopes β, where μ is the location parameter (the median) and σ
is the scale parameter, resulting in a relatively wide spread around 0 for z-scored predictors

(see also the prior recommendations for Stan at https://github.com/stan-dev/stan/wiki/

Prior-Choice-Recommendations). To this, I compared a set of 13 other priors explicitly chosen

for their properties and relevance (see Table 15) by fitting the exact same regression model to

the exact same data (varying only the intercept and slope prior) separately for the z-scored

population frequency of ASPM-D and of MCPH1-D, respectively. For each such model I

focused on the slope β of the predictor, and I collected the point estimate with its 89%HDI (see

Table 16; for full results please see Appendix II in the S1 File). First, it can be seen that the esti-

mates are negative for all priors, including for the extreme positive one (except for MCPH1-D

! tone2), suggesting that indeed, the “derived” alleles probably have a negative effect on tone

after controlling for family and macroarea. Second, the “default”, the “flat” and the “default

normal” priors produce similar estimates for tone1 and tone counts (for both alleles) and

slightly less so for tone2, suggesting that the “default” prior does not bias the results too much.

Thus, there is enough information in the data to override even the extreme priors (and clearly

the “default” prior used), and this information consistently points to a negative effect of the

“derived” alleles on the three codings of tone.

Power analysis

I used a simulation approach (as implemented by the simr package [98]) to conduct a post-

hoc power analysis of the effect of ASPM-D on tone1. More precisely, I fitted a “classic”

Table 14. Summaries of the path analysis for 1,000 restricted samples for tone counts. Similar conventions as for Table 9.

Type Estimate Mean (SD) Median (IQR) Compared to 0

Fit χ2 test 97.9% n.s. - –

CFI 0.99 (0.01) 1.00 (0.01) -

TLI 0.99 (0.09) 1.01 (0.15) -

NNFI 0.99 (0.09) 1.01 (0.15) -

RFI 0.91 (0.08) 0.93 (0.13) -

Path Africa! counts 0.77 (1.10) 0.93 (1.60) 74.9% > 0

Africa! ASPM-D −0.88 (0.12) −0.89 (0.16) 100.0% < 0

ASPM-D! counts −0.32 (0.16) −0.31 (0.22) 98.7% < 0

Africa!MCPH1-D −2.40 (0.08) −2.40 (0.12) 100.0% < 0

MCPH1-D! counts 0.02 (0.45) 0.03 (0.65) 47.4% < 0

https://doi.org/10.1371/journal.pone.0253546.t014
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maximum-likelihood mixed-effects logistic regression of tone1 on z-scored ASPM-D while

controlling for language family (as random effect) and macroarea (as fixed effect) using all the

available data (n = 181 observations across 35 families), resulting in a non-significant observed

effect of ASPM-D β = −0.4 with p = 0.41, and an (adjusted) intra-class correlation

ICC = 68.4%. The achieved (observed) power for the α-level 0.05 is 1 − β = 15.1%, 95%CI =

(12.9%, 17.5%), much lower than the usual 80%, showing that, indeed, with these data and

method, there is a very low chance of detecting such a weak effect of ASPM-D if it were true.

When counterfactually changing the number of languages per family (while keeping every-

thing else constant) suggests that the 80% power threshold would be achieved only if there

were at least�700 languages per family, while changing the number of families (while keep

everything else constant) suggests that we reach 80% power only at�350 families! Indepen-

dently changing the number of families and languages suggests that the region with> 80%

power needs either many languages per family or many families, with the best trade-off

reached for�100 to�200 families with�250 to�100 languages each.

For comparison, currently there are�150 families in the Ethnologue and�420 in Glotto-

log, the latter listing a maximum of�1400 languages per family (Atlantic-Congo), with a

mean of�20, and a median of 2 or of 5 (when excluding isolates). Of course, this analysis

must be taken as only an indication of the rough order of magnitude but, given the distribution

of linguistic diversity, it suggests that using such a model would require an almost exhaustive

sampling and even then its success would not be guaranteed. Interestingly, for the rather dif-

ferent question of absolute universals (i.e., the non-existence of logically possible feature val-

ues), the bootstrapping and Bayesian analyses in [99] similarly suggest that at least hundreds of

statistically independent languages might be required.

Treating macroareas independently

The fact that the population frequencies of the two “derived” alleles is so different between

Africa and the rest of the world, on the one hand, while being relatively uniform within each of

these two geographic regions (particularly strong for MCPH1-D, raises the question of per-

forming the analysis (a) excluding Africa, and (b) within each of the four macroareas

Table 15. The priors used for the sensitivity analyses of the Bayesian regressions. The student’s t(df, μ, σ) distribution has parameters df = degrees of freedom, μ = loca-

tion (the median) and σ = scale, while the normal(μ, σ) has parameters μ = mean and σ = standard deviation. Remember that these distributions refer to the intercept and

slope of a z-scored predictor (i.e., one with mean 0 and standard deviation 1) that is expected to have a weak and possibly negative effect.

Name Distribution Description

default t(3, 0, 3) the distribution used in the analyses reported above; relatively wide spread around 0 following recommendations

flat normal(0, 10) very wide around 0 (i.e., “uninformative”)

default normal normal(0, 5) very similar to the “default” but using the normal distribution instead of student’s t
narrow zero t(3, 0, 1) relatively narrow around 0 (i.e., assuming the parameter is 0)

very narrow zero t(3, 0, 0.1) very narrow around 0 (i.e., strongly assuming the parameter is 0)

default negative t(3, −1, 3) wide around -1 (i.e., weakly assuming the parameter is negative)

narrow negative t(3, −1, 1) relatively narrow around -1 (i.e., assuming the parameter is negative)

default very negative t(3, −3, 3) wide around -3 (i.e., weakly assuming the parameter is very negative)

narrow very negative t(3, −3, 1) relatively narrow around -3 (i.e., assuming the parameter is very negative)

default positive t(3, 1, 3) wide around 1 (i.e., weakly assuming the parameter is positive)

narrow positive t(3, 1, 1) relatively narrow around 1 (i.e., assuming the parameter is positive)

default very positive t(3, 3, 3) wide around 3 (i.e., weakly assuming the parameter is very positive)

narrow very positive t(3, 3, 1) relatively narrow around 3 (i.e., assuming the parameter is very positive)

informative t(3, x, 3) relatively wide centred around the estimate x derived from the actual results using the default prior

https://doi.org/10.1371/journal.pone.0253546.t015
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separately. The full results can be found in the Appendix IV: Macroareas as units of analysis of

the S1 File analysis report, but, briefly, as America and Papunesia have very few unique obser-

vations (each 10 in 6 families, respectively), they cannot be analysed independently, resulting

in three analyses: (a) Eurasia + America + Papunesia (i.e., excluding Africa), (b1) just Africa,

and (b2) just Eurasia. For these analyses, I did only the regression analyses (no Gaussian Pro-

cess Bayesian regressions). In all these analyses, there is no detectable effect of the “derived”

alleles on tone (except for restricted sampling and Bayesian repressions, which seems to find a

negative effect of ASPM-D in certain cases). While these essentially null results at the level of

the macroareas and when excluding Africa can be taken to show that the effect of ASPM-D on

tone obtained using the full dataset are an artefact of the differences between the macroareas,

and between Africa and non-Africa in particular (akin to Simpson’s paradox [30, 74]), I do not

think that this interpretation is warranted. Instead, not finding a relationship within the indi-

vidual macroareas and when excluding Africa is rather unsurprising given the small expected

effect size, coupled with the very uniform population frequency of the “derived” alleles, and

the small number of observations and their high clustering within families. Therefore, we

should instead use all the data while modelling the family and macroarea structure, in

Table 16. The results of the prior sensitivity analysis. Showing the point estimate and 89% HDI of the slope β for each of the three DVs (tone1, tone2 and tone counts)
and two IVs (z-scored population frequency of ASPM-D and MCHP1-D). See Table 15 for prior acronyms.

Prior Allele tone1 tone2 tone counts

default ASPM-D -0.70 [-1.52, 0.33] -1.30 [-2.72, 0.17] -0.24 [-0.65, 0.16]

flat ASPM-D -0.74 [-1.63, 0.24] -1.76 [-3.44, 0.22] -0.25 [-0.67, 0.16]

default normal ASPM-D -0.70 [-1.60, 0.24] -1.50 [-3.04, 0.22] -0.24 [-0.66, 0.16]

narrow zero ASPM-D -0.55 [-1.32, 0.23] -0.67 [-1.73, 0.40] -0.22 [-0.63, 0.18]

very narrow zero ASPM-D -0.05 [-0.28, 0.16] -0.03 [-0.23, 0.20] -0.04 [-0.22, 0.14]

default negative ASPM-D -0.75 [-1.71, 0.13] -1.42 [-2.85, 0.07] -0.26 [-0.69, 0.15]

narrow negative ASPM-D -0.82 [-1.60, -0.06] -1.05 [-1.98, 0.02] -0.32 [-0.74, 0.07]

default very negative ASPM-D -0.87 [-1.83, 0.10] -1.76 [-3.33, -0.17] -0.28 [-0.69, 0.14]

narrow very negative ASPM-D -1.33 [-2.44, -0.21] -1.89 [-3.12, -0.61] -0.34 [-0.77, 0.09]

default positive ASPM-D -0.62 [-1.52, 0.28] -1.21 [-2.58, 0.36] -0.23 [-0.67, 0.16]

narrow positive ASPM-D -0.34 [-1.13, 0.52] -0.45 [-1.81, 0.77] -0.15 [-0.55, 0.27]

default very positive ASPM-D -0.55 [-1.39, 0.44] -1.14 [-2.60, 0.44] -0.22 [-0.62, 0.21]

narrow very positive ASPM-D -0.23 [-1.12, 0.78] -0.40 [-1.94, 1.51] -0.14 [-0.57, 0.27]

informative ASPM-D -0.72 [-1.64, 0.21] -1.48 [-2.94, 0.10] -0.26 [-0.66, 0.14]

default MCPH1-D -0.65 [-1.69, 0.47] -0.93 [-2.41, 0.53] -0.23 [-0.70, 0.20]

flat MCPH1-D -0.68 [-1.76, 0.48] -1.23 [-3.11, 0.51] -0.24 [-0.66, 0.24]

default normal MCPH1-D -0.67 [-1.76, 0.47] -1.07 [-2.60, 0.66] -0.24 [-0.68, 0.24]

narrow zero MCPH1-D -0.49 [-1.35, 0.46] -0.47 [-1.61, 0.68] -0.21 [-0.65, 0.21]

very narrow zero MCPH1-D -0.04 [-0.25, 0.17] -0.01 [-0.25, 0.19] -0.04 [-0.22, 0.16]

default negative MCPH1-D -0.73 [-1.79, 0.35] -1.05 [-2.58, 0.45] -0.24 [-0.69, 0.22]

narrow negative MCPH1-D -0.80 [-1.74, 0.03] -0.89 [-1.98, 0.15] -0.30 [-0.73, 0.11]

default very negative MCPH1-D -0.85 [-1.93, 0.27] -1.31 [-2.88, 0.30] -0.25 [-0.71, 0.19]

narrow very negative MCPH1-D -1.31 [-2.51, -0.09] -1.73 [-3.11, -0.32] -0.34 [-0.77, 0.09]

default positive MCPH1-D -0.61 [-1.64, 0.52] -0.81 [-2.25, 0.84] -0.22 [-0.66, 0.23]

narrow positive MCPH1-D -0.22 [-1.26, 0.80] -0.08 [-1.36, 1.31] -0.13 [-0.59, 0.32]

default very positive MCPH1-D -0.47 [-1.56, 0.59] -0.67 [-2.30, 0.85] -0.20 [-0.65, 0.25]

narrow very positive MCPH1-D -0.06 [-1.39, 1.16] 0.40 [-1.51, 2.62] -0.12 [-0.59, 0.37]

informative MCPH1-D -0.66 [-1.83, 0.42] -1.01 [-2.44, 0.46] -0.24 [-0.71, 0.17]

https://doi.org/10.1371/journal.pone.0253546.t016
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particular that between Africa and non-Africa, as I have done in the regression, mediation and

path analysis approaches.

Summary of results

The three types of mixed-effects regression models using the full dataset, (a) the “classic” (max-

imum likelihood, considering family as a random effect but macroarea as a fixed effect), (b)

the Bayesian (which models family, (meta)population and macroarea as random effects), and

(c) the “experimental” Bayesian with Gaussian Process (which models family and (meta)popu-

lation as random effects but contact as a continuous Gaussian Process split by macroarea),

find effects of relatively similar sizes and of the same sign for the influence of each of the two

“derived” alleles on each of the three measures of tone, but with different probabilities of being

“significant” (for (a) they are uniformly n.s. when controlling for macroarea, for (b) the poste-

rior probability p(β< 0) of a strictly negative effect is> 80%, the % HDI inside ROPE <21%

and pROPE< 0.2, while for (c) p(β< 0) > 78%, the % HDI inside ROPE <24% and pROPE< 0.2

across both alleles and the three measures of tone). Thus, while all three suggest weak negative

effects on tone of both “derived” alleles, the Bayesian approaches seem more powerful at

detecting these effects above and beyond the confounds (especially macroarea); moreover,

overall there seems to be a stronger effect of ASPM-D relative to MCPH1-D. Moreover, the

Bayesian regression models not only are not very sensitive to the prior (including extremely

biased ones), suggesting that there is enough signal in the data, but their results consistently

point to a negative effect of the “derived” alleles on tone. Performing maximum likelihood

mixed-effects regressions with family as a random effect on repeatedly permuted data (under

various constraints) suggests that there is a weak negative effect of ASPM-D on tone1 and

tone2 that is not entirely due to macroarea, but that there is strong similarity within language

families (both confirming the high intra-class correlations for family and suggesting that a

stratified sampling of one language per family is sufficiently appropriate). However, MCPH1-

D has no “special” effect on neither of the three tone variables, nor does ASPM-D on tone

counts, except when all structure is destroyed through unrestricted permutations (i.e., when

each sample is considered as statistically independent of all the others). Likewise, repeatedly

fitting maximum likelihood regressions on restricted samples (where only one language is ran-

domly picked per family) while controlling for macroarea and the other “derived” allele as

fixed effects, shows that there is a weak negative effect of ASPM-D on all three measures of

tone, and possibly of MCPH1-D on tone1, but arguably not on tone2 or tone counts.
Mediation analysis looks at the total influence of being an African language or not (split jus-

tified by the marked differences in the frequencies of the two “derived” alleles for populations

within and outside Africa) on the three measures of tone mediated separately by the frequency

of the two “derived” alleles. On the full dataset, I used both a “classic” maximum likelihood

approach (which does not control for language families directly and are more restricted in

terms of regression models available) and a Bayesian one (where family is modelled as a ran-

dom effect and allows the use of more appropriate regression models, as well as the “experi-

mental” mediation through both “derived” alleles simultaneously), and the two agree except in

one case, where the Bayesian approach is more powerful at detecting a mediation. For tone1,

both find a positive mediation through ASPM-D (composed of a negative effect of being in

Africa on ASPM-D, and a negative effect of ASPM-D on tone1), and both fail to find mediation

through MCPH1-D. For tone2, both fail to find mediation through MCPH1-D, but they dis-

agree for ASPM-D: while the maximum-likelihood approach fails to find a significant media-

tion (even if both its components are each significant), the Bayesian one does find a positive

one (composed of a two negative effects, as above). For tone counts, both find a positive
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mediation through ASPM-D (composed of a two negative effects, as above), and both fail to

find mediation through MCPH1-D. Repeatedly conducting “classic” maximum likelihood

mediation analyses when extracting only one language per family at random (restricted sam-

pling, implementing a control for family), paints a very similar picture: there is a clear positive

mediation effect of ASPM-D on all three measures of tone (composed of negative partial effects

of being an African language on ASPM-D, and a negative effect of ASPM-D on tone), but

much less so for MCPH1-D.

Path analysis has the added advantage that it models the mediation of the effect of within

versus outside Africa on tone through both “derived” alleles simultaneously, but at the cost of

less flexibility in the types of models that can be used, and of not directly controlling for lan-

guage families (the “experimental” simultaneous mediation technique can satisfy both desider-

ata but it is not, at the moment, sufficiently well tested to be considered otherwise). On the full

dataset and on repeated restricted samples of a single language per family, the results are very

similar, in that there is a clear mediation through ASPM-D for all three measures of tone, com-

posed of a negative effect of being in Africa on ASPM-D, and a negative effect of ASPM-D on

tone, but not for MCPH1-D.

The decision trees and random forests suggest that ASPM-D and, to a lesser extent,

MCPH1-D, contain information with regard to tone1 and tone2 above that provided by macro-

area (but there is no control for language family at all).

The post-hoc power analysis of the results obtained from the maximum-likelihood mixed-

effects regression of tone1 on ASPM-D with family as a random effect and macroarea as a fixed

effect suggest that this method would require too much data to be feasible.

Finally, the separate analyses of each macroarea independently and when excluding Africa,

suggest that our interpretation should be based on the whole dataset at hand but modeling

appropriately the areal and family structure of the data, as done in the mixed-effects regression,

mediation and path analyses.

Discussion and conclusions

Using updated data and methods relative to the original paper [9], I found, first, that the popu-

lation frequencies of the two “derived” alleles (denoted ASPM-D and MCPH1-D), as well as

the distribution of tone, coded as the presence/absence of any type of tone system (denoted

tone1), of complex tone systems (tone2), or as the actual number of tones/tone symbols (tone

counts), are strongly clustered within language families and macroareas. This is not surprising

given that they are all shaped by similar processes, with a strong vertical transmission compo-

nent (inheritance) coupled with various degrees of horizontal transmission (contact). How-

ever, this is a very important result, as it confirms the need to properly disentangle the

confounding effects of inheritance (here, depending on the method, using the language fami-

lies and the (meta)populations as proxies) and contact (also depending on the method, using

the macroareas and the geographic distances within them as proxies), from the proposed

causal effects of the two “derived” alleles on tone. On the other hand, we need to exercise care

because we may risk “throwing the baby with the bathwater” in the sense that this type of

causal effect is expected to act on comparable timescales to the processes affecting languages

and the genetic structure of populations and, thus, to be similar to the confounding effects of

inheritance and contact.

Therefore, I used multiple methods of controlling for these confounding effects, including

the “standard” mixed-effects regression approach of modelling family as a random effect, and

macroarea as a fixed effect, as a random effect, or through a bi-dimensional Gaussian Process

of the geographic coordinates of the samples, but also by permuting the language and genetic
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data according to multiple types of constraints (none, within families, and within macroareas),

and by repeatedly sampling only one data point from each family. Moreover, besides the

regression approach which quantifies the “extra” effect of the alleles on tone left after removing

the effects of macroarea and family, I also used mediation and path analysis, which allow the

explicit modelling of the interplay between macroarea, tone and the alleles, as well as decision

trees and random forests, which quantify the capacity and relative importance of macroarea

and the two alleles for predicting tone.

With these, it is interesting to note that the results are largely consistent between the meth-

ods, and that, despite their differences, when considered together, they do paint a rather coher-

ent picture. This overall picture is one of a weak negative effect of the population frequency of

ASPM-D on tone above and beyond the effects of contact and inheritance, but these effects are

largely overlapping in the sense that, on the one hand, samples from the same language family

tend to be very similar to each other genetically and linguistically, while, on the other, being a

sample from Africa or from outside Africa has a major effect on ASPM-D and (much less so)

on tone. This “extra” weak negative effect of ASPM-D on tone means that languages spoken by

populations with a high frequency of ASPM-D have, overall, a slight tendency to not use tone,

and, if they do, to have a simpler tone system. It is interesting to note that the distribution of

tone languages is clearly skewed relative to the high frequencies of ASPM-D, and that there

seems to be a qualitative change around 25% from Abau (glottocode abau1245, Sepik; sim-

ple system; 57.5% ASPM-D), Swedish (swed1254, Indo-European; simple “pitch accent”; two

samples with 49.5% and 43.8%), Western Balochi (west2368, Indo-European; simple;

32.0%), Eastern Panjabi (panj1256, Indo-European; simple system; 30.7%), Burushaski
(buru1296, Burushaski; probably not?; 28.0%), Awngi (awng1244, Afro-Asiatic; simple;

27.4%), and a set of 7 Austronesian languages (cemu1238, fwai1237, kara1486,

labu1248, kuma1276, xara1244 and yabe1254) ambiguously matching the “Microne-

sians” (ALFRED SA004382R) genetic sample with 27.3% ASPM-D with simple tone systems,

to Lü and Tai Nüa (luuu1242 and tain1252, Tai-Kadai; complex tone systems; 25.0%),

Sichuan Yi (sich1238, Sino-Tibetan; simple; 25.0%), She (shee1238, Hmong-Mien; com-

plex; 23.4%) and Mandarin Chinese and Yue Chinese (mand1415 and yuec1235, Sino-

Tibetan; complex; 23.1%). At the other extreme, a low frequency of ASPM-D clearly does not

require the presence of tone. Concerning MCPH1-D, while it apparently also has a negative

effect on tone on its own, this effect seems to be in large part driven by its very skewed distribu-

tion within versus outside Africa, and does not survive most of the correction techniques used

here.

However, there are differences between methods that might give hints about the nature of

the effects and confounding factors. One of the most important concerns the mixed-effects

regressions on the full dataset, as they implement one of the currently de facto standard meth-

ods of controlling for the confounding effects of inheritance and contact [27, 28]. While the

“classic” maximum-likelihood approach, with family as a random effect and macroarea as a

fixed effect, fails to find any significant effect of ASPM-D on tone at the standard α-level of

0.05, the Bayesian ones, with family and (meta)population as random effects, and macroarea

as random effect or as modelled by a bi-dimensional Gaussian Process, do find some evidence

for a weak negative effect of both ASPM-D and MCPH1-D on all three measures of tone, but

this evidence is far from overwhelming on its own. As the randomisation, restricted sampling,

and the mediation and path analyses show, this failure very probably emerges, in large part,

from, on the one hand, the very high similarity of the languages and of the genetic samples

from the same family and macroarea (especially, for the genetic samples, Africa versus the rest

of the world), and, on the other, from the inadequate modelling of the relationship between

macroarea and the frequency of the two “derived” alleles. To end, the fact that modelling
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contact through a set of continuous 2D Gaussian Processes (one per macroarea) over the geo-

graphic coordinates of the samples, finds a stronger negative effect of MCPH1-D on tone1 and

tone counts, and comparable on tone2, than ASPM-D, suggests that the story might be even

more complex, with either an actual effect of MCPH-D on tone in certain circumstances or

pointing to issues with using a Gaussian Processes to control for contact in such a way.

Thus, the more (and, in some cases, more refined) data that became available since 2007

concerning both the population frequency of the two “derived” alleles (either directly, or

inferred through proxies in high linkage disequilibrium that seem to induce minimal noise)

and tone, and the newer methods that became popular since, support a weak negative effect of
ASPM-D but probably not of MCPH1-D after removing the effects of contact and inheritance,

modelled as macroareas and language families, respectively. Nevertheless, the work presented

here shows the main limiting factor remains the availability of good quality genetic data with

good geographic and linguistic coverage (hopefully, such data will become available from

more populations across the globe, and maybe even from past groups using ancient DNA tech-

niques), coupled with appropriate methods of analysis. For example, there are only 10 data

points from the Americas and 10 from Papunesia, and none from Australia, the latter being a

particularly interesting case [54]. If, indeed, ASPM-D has a weak negative effect on tone, and if

ASPM-D has a low frequency among the Aboriginal Australian populations (as could be rea-

sonably expected given the age of the allele and the apparently long genetic isolation of Austra-

lia [40, 100]), then we would expect to find at least some tone languages among its Aboriginal

languages, but this is clearly not the case [34, 35]. However, there are at least two solutions to

this (potential) paradox [54]: first, the small negative bias of ASPM-D on tone is inherently

probabilistic and, moreover, does not place constraints on language change and evolution at

(very) low frequencies of this allele, so that it is not entirely inconceivable that accidents of his-

tory and linguistic expansions and extinctions have resulted in a linguistic Australian land-

scape that does not include tone at this moment. The second is based on the suggested long-

term effects of a high incidence of Chronic Otits Media (COM) among the Aborigine popula-

tions on the phonetics and phonology of Australian languages [101], in particular the loss of

sensitivity in the low frequency range which, naturally, should explain the absence of tone dis-

tinctions (just as it explains a lack of voicing contrasts).

Interestingly, while the original data and analyses in [9] did not find anything that would

suggest a qualitative difference between ASPM-D and MCPH1-D in how they affect tone, the

results reported here do, with the effect of MCPH1-D apparently confounded, in large part, by

its skewed distribution inside versus outside Africa. This is consonant with the experimental

findings of [25] and [26], which supported a (negative) effect of ASPM-D on tone perception

and/or processing, but failed to find any effect of MCPH1-D.

Supporting information

S1 Fig. The agreement between the 5 sources for tone. Each panel shows a pair of sources

(e.g., the top-left panel shows LAPSyD on the vertical axis and DL2007 on the horizontal axis);

please note that the pairs are symmetric, so that the DL2007 vs LAPSyD panel is not shown;

likewise, the identity panels (e.g., LAPSyD vs LAPSyD) on the diagonal are also not shown.

Each panel shows the number of languages with each possible combination of values from the

two sources (e.g., for “None” vs “No”, there are 12 languages, but there’s no language for

“None” vs “Yes”). The shade of blue varies between white (the lowest count) to light blue

(highest count). A high agreement between two sources results in little discrepancy between

corresponding values (e.g., all “None” in LAPSyD map to “No” in DL2007 and vice-versa,
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while “Marginal”, “Simple”, “Moderately complex” and “Complex” map to “Yes”).

(TIF)

S2 Fig. The agreement binary classification of tone versus the original sources WALS, LAP-
SyD and DL2007. The same conventions as for S1 Fig.

(TIF)

S3 Fig. The agreement 3-way classification of tone versus the original sources WALS, LAP-
SyD and DL2007. The same conventions as for S1 Fig.

(TIF)

S4 Fig. The agreement for tone counts versus the original sources LAPSyD, PHOIBLE and

WPHON. The same conventions as for S1 Fig.

(TIF)

S1 File.
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