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Prostate cancer (PCa) is the most common malignancy among men worldwide. However,
its complex heterogeneity makes treatment challenging. In this study, we aimed to identify
PCa subtypes and a gene signature associated with PCa prognosis. In particular, nine
PCa-related pathways were evaluated in patients with PCa by a single-sample gene set
enrichment analysis (ssGSEA) and an unsupervised clustering analysis (i.e., consensus
clustering). We identified three subtypes with differences in prognosis (Risk_H, Risk_M,
and Risk_L). Differences in the proliferation status, frequencies of known subtypes, tumor
purity, immune cell composition, and genomic and transcriptomic profiles among the three
subtypes were explored based on The Cancer Genome Atlas database. Our results clearly
revealed that the Risk_H subtype was associated with the worst prognosis. By a weighted
correlation network analysis of genes related to the Risk_H subtype and least absolute
shrinkage and selection operator, we developed a 12-gene risk-predicting model. We
further validated its accuracy using three public datasets. Effective drugs for high-risk
patients identified using the model were predicted. The novel PCa subtypes and
prognostic model developed in this study may improve clinical decision-making.
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INTRODUCTION

Prostate cancer (PCa) is highly intractable and incurable after metastasis. It is the leading type of
noncutaneous cancer in males globally (Lee et al., 2017; Wang et al., 2018). Conventional therapeutic
strategies for PCa are insufficient owing to tumor heterogeneity and complex molecular mechanisms
of metastasis, leading to wide variation in outcomes (Wang et al., 2018). The clinical management of
PCa includes surgery, androgen-deprivation therapy, ablative therapies, chemotherapy, radiation
therapy, and immune therapy (Evans, 2018). Despite progress in therapeutic strategies, the treatment
efficacy for advanced PCa is still low (Vlachostergios et al., 2017). In the context of precision
medicine, the classification of PCa according to molecular features and prognosis will undoubtedly
unlock effective targeted treatment strategies.

The mechanism underlying PCa heterogeneity and metastasis is highly complex; even within the
same tumor, distinct phenotypes and characteristics exist (Meacham and Morrison, 2013). Multiple
genomic changes contribute to PCa progression at the early stage and could define molecular
subtypes. In our previous study (Zhang et al., 2020), we identified four subtypes of PCa based on
immune-related gene sets. Labrecque et al., 2019 defined four novel subtypes of metastatic castration-
resistant prostate cancer based on a 26-gene signature as well as distinct features of androgen
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receptor responses and NEUROI and NEUROII gene expression
levels (Labrecque et al., 2019). Multiple molecular mechanisms
work together to influence the development, progression, and
outcome of PCa and thus precise molecular characterization can
improve the accuracy of clinical decision-making.

For patients with PCa, an elevated hypoxic status is related to a
more aggressive and advanced disease; hypoxia reduction could
increase immunity and the response to specific immunotherapies
(Jayaprakash et al., 2018). Additionally, prostate is an androgen-
dependent organ, and androgen interactions with androgen
receptors play a key role in the progression of PCa. Endocrine
therapy in PCa is aimed at lowering serum androgen levels and
inhibiting androgen receptor; when this approach fails, PCa
advances to a hormone-resistant state (Heinlein and Chang,
2004; Shafi et al., 2013). The PI3K-AKT-mTOR pathway
interacts with multiple cellular cascades, further promoting
PCa progression and aggression, and drugs targeting this
pathway are employed in clinical settings (Shorning et al.,
2020). E2F and MYC synergistically contribute to cell cycle
regulation and are involved in tumorigenesis (Liu et al., 2015).
Metabolic adaptation is pivotal for malignancy given the high
energy demand, and glycolytic, fatty acid biosynthesis, and
oxidative phosphorylation contribute to proliferation and
worse outcomes in PCa (Schöpf et al., 2016; Xiao et al., 2018;
Balusamy et al., 2020). Machine learning has become increasingly
advantageous in cancer research in the era of big data, enhancing
disease prediction and prognosis (Kourou et al., 2015; Qiu et al.,
2020a; Qiu et al., 2020b). We classified samples into three
subtypes with different patterns of pathway enrichment. We
hypothesized that a multi-pathway approach could enable the
subclassification of PCa with different phenotypes, functions, and
clinical characteristics. Here, we exploited nine pivotal PCa-
related pathways based on a literature review to divide PCa
samples into three subtypes, Risk_H, Risk_M, and Risk_L,
with high, middle, and low risks, respectively. Next, we
explored the characteristics of subtypes with respect to the
tumor microenvironment, proliferation, single nucleotide
variation, and copy number variation. Then, we explored the
factors contributing to the observed differences in prognosis. We
constructed a risk-predicting model based on genes associated
with the high-risk subtype to make the prognosis calculable.
Finally, we validated the efficacy of the risk model in an internal
and three external validation cohorts and predicted drugs with
high sensitivity in patients with PCa classified as high risk.

MATERIALS AND METHODS

The Cancer Genome Atlas Data Processing
RNA sequencing (RNA-seq) data (Workflow type: HTSeq-
Counts), single nucleotide variants (SNV) (Workflow type:
MuSE Variant Aggregation and Masking), copy number
variants (CNV) (Data type: Masked Copy Number Segment),
and clinical phenotypes for patients with PCa in TCGA were
downloaded. RNA-seq data were normalized using the DESeq2 R
package (Love et al., 2014). Tumor mutational burden (TMB) for
each patient was determined from SNV data using the maftools R

package. Patients with incomplete survival data or a follow-up
duration of less than 30°days were excluded. In total, 484 patients
were retained for the clustering analysis. The progression-free
interval (PFI) was obtained from an integrated TCGA pan-cancer
Clinical Data Resource (Liu et al., 2018). The clinical phenotypes
of 484 patients are shown in Table 1. Survival outcomes are
shown in Supplementary Table S1. The proliferation scores for
patients in TCGA were obtained from Thorsson et al. (Thorsson
et al., 2018). For the identification of a prognostic model, patients
in TCGA were randomly divided into a training group and
internal validation group using the caret R package (Kuhn,

TABLE 1 | The disease-related clinical information of patients with PCa included in
the study.

Characteristics Value

Patients (n) 484
Age (year), median (IQR) 62.0 (56.0–66.0)
PSA (ng/ml), median (IQR) 7.5 (5.1–11.3)
Pathological Gleason score, n (%)
≤6 43 (9.0%)
7 (3+4) 143 (30.0%)
7 (4+3) 100 (21.0%)
8 56 (11.7%)
9–10 135 (28.3%)

Prior malignancy, n (%)
No 450 (94.3%)
Yes 27 (5.7%)

Race, n (%)
Asian 12 (2.5%)
Whit, American Indian or Alaska native 398 (83.4%)
Black or African American 55 (11.6%)
NA 12 (2.5%)

Residual tumor, n (%)
R0 301 (63.1%)
R1 15 (3.1%)
R2 142 (29.8%)
Rx 5 (1.0%)
NA 14 (3.0%)

Clinical M, n (%)
M0 437 (91.6%)
M1a or M1c 2 (0.4%)
NA 38 (8.0%)

Pathological T, n (%)
T1c 2 (0.4%)
T2a 13 (2.7%)
T2b 10 (2.1%)
T2c 160 (33.5%)
T3a 151 (31.7%)
T3b 129 (27.0%)
T4 9 (1.9%)
NA 3 (0.7%)

Pathological N, n (%)
N0 329 (69.0%)
N1 78 (16.4%)
NA 70 (14.6%)

Diagnostic CT or MRI, n (%)
No evidence of extraprostatic extension 196 (41.1%)
Equivocal 6 (1.3%)
Extraprostatic extension localized 22 (4.6%)
Extraprostatic extension 9 (1.9%)
NA 244 (51.1%)

DFS, Disease-free survival; IQR, interquantile range; NA, not analyzed; PCa, prostate
cancer; PSA, Prostate-specific antigen.
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2008). Furthermore, the AR activity scores and TMPRSS2−ERG
fusion status of patients with PCa were obtained from cBioPortal
(https://www.cbioportal.org/) and The Tumor Fusion Gene Data
Portal (https://www.tumorfusions.org/) (Cerami et al., 2012; Gao
et al., 2013; Yoshihara et al., 2015).

Validation Data Set Processing
Data sets from Gene Expression Omnibus (GEO) and cBioPortal
for Cancer Genomics were used to validate the accuracy of the
prognostic model (Barrett et al., 2009; Cerami et al., 2012; Gao
et al., 2013). GSE70769 was obtained using the GEOquery R
package from the GEO database (Davis and Meltzer, 2007; Ross-
Adams et al., 2015). The datasets DKF2018 and MSKCC2010
were downloaded from the cBioPortal database. Patients with
incomplete survival data or a follow-up duration of less than
30°days were excluded.

Single-Sample Gene Set Enrichment
Analysis
Based on a literature review, nine gene sets associated with PCa
were selected (Gann et al., 1994; Heinlein and Chang, 2004; Kaseb
et al., 2007; Koh et al., 2010; Milosevic et al., 2012; Edlind and
Hsieh, 2014; Ippolito et al., 2016; Xiao et al., 2018).
HALLMARK_ANDROGEN_RESPONSE,
HALLMARK_E2F_TARGETS,
HALLMARK_FATTY_ACID_METABOLISM,
’HALLMARK_GLYCOLYSIS, HALLMARK_HYPOXIA,
HALLMARK_MYC_TARGETS_V1,
HALLMARK_MYC_TARGETS_V2,
HALLMARK_OXIDATIVE_PHOSPHORYLATION, and
HALLMARK_PI3K_AKT_MTOR_SIGNALING gene sets were
downloaded from the Molecular Signatures Database v7.2
(Liberzon et al., 2015). ssGSEA based on these nine gene sets
was performed using the GSVA R package (Hänzelmann et al.,
2013). The parameter settings were as follows: method � “ssgsea,”
kcdf � “Gaussian,” abs.ranking � TRUE. Patients from TCGA
(n � 484) were evaluated using the ssGSEA algorithm and
enrichment scores were obtained for each gene set.

Consensus Clustering
Consensus clustering was performed with the ssGSEA scores for
patients (TCGA, n � 484) using the ConsensusClusterPlus R
package (Wilkerson and Hayes, 2010). The number of
subsamples was 100, proportion of items per sample was 0.8,
and proportion of features per sample was 1. Hierarchical
clustering was used. The adjacency distance matrix was
determined as (1-Pearson correlation coefficient). Default
settings were used for other parameters.

Principal Coordinate Analysis
RNA-seq data in Counts were normalized using the DESeq2 R
package (Love et al., 2014) and used in a principal coordinate
analysis (PCA). The normalized Counts matrix was transformed
into a Bray–Curtis dissimilarity matrix using the vegan R package.
Then, PCA was conducted using the ape R package. Owing to the
large sample size, means and standard errors of principal

coordinate values were used to display the separation among
subtypes, as described previously (Wu et al., 2020). Finally,
PERMANOVA with 10,000 permutations was performed to
determine the statistical significance of the separation in PCA.

Deconvolution Algorithms
CIBERSORTx was used to analyze the immune composition in
the microenvironment of PCa tissues from TCGA (Steen et al.,
2020) assuming twomodules. RNA-seq data in TPM format were
uploaded as the mixture file. Impute Cell Fractions and LM22 (22
immune cell types) were selected for the signature matrix file.
Additionally, 100 permutations were performed for the statistical
analysis. Other parameters were set according to Tutorial 2 on the
CIBERSORTx website.

xCell is a web-tool for cell type enrichment analyses of gene
expression data for 64 immune and stroma cell types (Aran et al.,
2017). According to the recommended guidelines, RNA-seq data
were input in TPM format into xCell and “xCell (N � 64)” was
selected as the gene signature.

The ESTIMATE algorithm can estimate tumor purity by
calculating the ratio of stromal to immune cells based on gene
expression data (Yoshihara et al., 2013). The Estimate R package
was used to analyze. normalized RNA-seq data by this algorithm.

Weighted Correlation Network Analysis
A weighted correlation network analysis (WGCNA) can be used
find phenotype-associated gene modules (Langfelder and Horvath,
2008; Li et al., 2019). RNA-seq data in TPM format were used as
the input for a WGCNA. Twelve was set as the soft power
threshold to construct a network that simultaneously satisfied a
scale-free topology and high connectivity. Pearson correlation
coefficients for the relationships between ssGSEA scores and
gene modules were calculated. The correlations between the
gene significance value and module membership of genes in a
module were explored by a Pearson correlation analysis.

Least Absolute Shrinkage and Selection
Operator Regression
LASSO regression was performed on data for patients in training
group using the glmnet R package (Fonti and Belitser, 2017).
Genes most highly related to E2F and MYC ssGSEA scores were
used as inputs. During the selection of genes, the C-index after 10-
fold cross-validation indicated the effect of different screening
strategies. Genes with the maximal C-index values were included
in the prognostic model with the following parameter settings:
family � Cox, type.measure � C, parallel � TRUE, with default
settings for other parameters.

Time-Dependent Receiver Operating
Characteristic Curve Analysis
The accuracy of the prognostic model was determined by a
tdROC analysis using the survivalROC R package. The
endpoints were follow-up times of 1, 3, and 5°years. The area
under the curve in the tdROC analysis was used to quantify
accuracy. AUC values were obtained for the training group,
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FIGURE 1 | Identification of three subtypes with different prognosis. (A) The CDF curve under different values of k. The value of k represents the number of clusters
during the consensus cluster. When the optimal k value is reached, the area under the CDF curve will not significantly increase with the increase of k value. (B) Relative
change in area under CDF curve under different values of k. (C) The consensus matrix obtained when k � 3. Consistency values range from 0 to 1, 0 means never
clustering together (white), 1 means always clustering together (dark blue). (D) Survival curves for progression-free interval of patients in the different subtypes. (E)
Survival curves for disease-free survival of patients in the different subtypes. (F) PCA of Bray-Curtis dissimilarities obtained for the transcriptional profiles. The circles and
error bars indicate themean and standard errors of themean. PERMANOVA test with 10,000 permutations were performed to calculate p value. (G) The heatmap shows
ssGSEA scores levels among three subtypes. (H) The violin plot shows ssGSEA score of HALLMARK_E2F_TARGETS is significantly highest in Risk_H subtype. (I) The
violin plot shows ssGSEA score of HALLMARK_MYC_TARGETS_V1 is significantly highest in Risk_H subtype. (J) The violin plot shows ssGSEA score of
HALLMARK_MYC_TARGETS_V2 is significantly highest in Risk_H subtype. (PCa, prostate cancer; CDF, cumulative distribution function; PCA, principal coordinate
analysis. * means p < 0.05, ** means p < 0.01, *** means p < 0.001, ns means p > 0.05, and p < 0.05 is defined as statistically significant).
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internal validation group, and three external validation groups
(GSE70769, DKF 2018, and MSKCC 2010).

Survival Analysis
The log-rank test and Cox regression for survival analyses were
completed using the survival R package. The survival curve was
plotted using the survminer R package. DFS, PFI, and
biochemical recurrence-free survival were used as clinical
outcomes. Follow-up time was evaluated in units of years.
Finally, univariate and multivariate Cox regression analyses
were used to explore whether the prognostic model is an
independent predictor of prognosis.

Drug Target Prediction
Based on CTRP version 2 and PRISM databases, drug sensitivities
of high-risk patients identified using the model were predicted by

ridge regression based on gene expression levels. The analysis was
implemented in the pRRophetic R package (Geeleher et al., 2014).
Components with significantly lower areas under the
dose–response curve (dr-AUC) in high-risk patients were
selected first. Next, Spearman’s correlation coefficients for the
relationship between the dr-AUC and risk score were obtained.
Components with significantly negative rho (less than −0.3) were
retained.

Statistical Analysis
All statistical analyses were completed in R version 3.6.3. Chi-
squared tests and Fischer’s exact tests were used to compare
discrete variables between or among groups. Continuous
variables were compared using the Wilcoxon test (two groups)
and the Kruskal–Wallis test (three or more groups). p < 0.05 was
considered significant.

TABLE 2 | The association between subtypes and clinicopathologic variables of prostate cancer.

clinicopathologic variables Subtype P

Risk_L (n = 51) Risk_M (n = 199) Risk_H (n = 234)

Age (year), median (IQR) 61.0 (56.0–67.5) 61.0 (56.0–66.0) 62.0 (57.0–66.0) 0.307a

PSA (ng/ml), median (IQR) 6.1 (4.2–10.0) 7.2 (5.0–10.8) 7.8 (5.2–12.8) 0.017a

Pathological Gleason score, n (%) < 0.001b

≤6 8 (15.7%) 16 (8.0%) 19 (8.1%)
7 (3+4) 18 (35.3%) 75 (37.7%) 49 (20.9%)
7 (4+3) 10 (19.6%) 44 (22.1%) 47 (20.1%)
8 3 (5.9%) 28 (14.1%) 30 (12.8%)
9–10 12 (23.5%) 36 (18.1%) 89 (38.0%)
Prior malignancy, n (%) 0.562c

No 50 (98.0%) 187 (94.0%) 219 (93.6%)
Yes 1 (2.0%) 12 (6.0%) 15 (6.4%)
Race, n (%) 0.804c

Asian 1 (2.0%) 3 (1.5%) 8 (3.4%)
Whit, American Indian or Alaska native 43 (84.3%) 169 (84.9%) 192 (82.1%)
Black or African American 5 (9.9%) 22 (11.1%) 27 (11.5%)
NA 2 (3.8%) 5 (2.5%) 7 (3.0%)
Residual tumor, n (%)
R0 31 (60.8%) 138 (69.3%) 139 (59.4%) 0.035b

Rx/R1/R2 19 (37.3%) 53 (26.6%) 91 (38.9%)
NA 1 (1.9%) 8 (4.1%) 4 (1.7%)
Clinical M, n (%) 1.000c

M0 49 (96.1%) 182 (91.5%) 213 (91.0%)
M1a or M1c 0 (0.0%) 1 (0.5%) 1 (0.4%)
NA 2 (3.9%) 16 (8.0%) 20 (8.6%)
Pathological T, n (%) 0.027c

T1c 0 (0.0%) 2 (1.0%) 0 (0.0%)
T2a 2 (3.9%) 4 (2.0%) 7 (3.0%)
T2b 2 (3.9%) 3 (1.5%) 5 (2.1%)
T2c 18 (35.3%) 84 (42.2%) 59 (25.2%)
T3a 16 (31.4%) 60 (30.2%) 81 (34.6%)
T3b 12 (23.5%) 63 (21.6%) 75 (32.1%)
T4 1 (2.0%) 2 (1.0%) 6 (2.6%)
NA 0 (0.0%) 1 (0.5%) 1 (0.4%)
Pathological N, n (%) 0.141b

N0 31 (60.8%) 149 (74.9%) 155 (66.2%)
N1 7 (13.7%) 26 (13.1%) 46 (19.7%)
NA 13 (25.5%) 24 (12.0%) 33 (14.1%)

Outcome, n (%)
DFS 1 (2.0%) 15 (7.5%) 41 (17.5%) <0.001b
Disease free 50 (98.0%) 184 (92.5%) 193 (82.5.0%)

p values were calculated by the Kruskal test (a), Chi-square test (b) or Fisher’s exact test (c). DFS, Disease-free survival; IQR, interquartile range; NA, not analyzed; PCa, prostate cancer;
PSA, Prostate-specific antigen.
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RESULTS

Identification of Three Subtypes With
Different Risk Levels
Based on ssGSEA scores for nine PCa-associated gene sets, a
consensus clustering analysis was performed for subtype

identification. The cumulative distribution function (CDF) and
relative change in the area under the CDF curve are shown in
Figures 1A,B, respectively. According to Monti et al. (Qiu et al.,
2020b), the optimal k-value is determined by a number of factors;
one criterion is that when the optimal k-value is reached, the area
under the CDF curve will not increase significantly with increases

FIGURE 2 | Risk_H subtype shows high proliferation status. (A) The scatter plot shows ssGSEA score of HALLMARK_E2F_TARGETS is positively correlated with
proliferation score (Spearman rho � 0.88, p < 0.01). (B) The scatter plot shows ssGSEA score of HALLMARK_MYC_TARGETS_V1 is positively correlated with
proliferation score (Spearman rho � 0.49, p < 0.01). (C) The scatter plot shows ssGSEA score of HALLMARK_MYC_TARGETS_V2 is positively correlated with
proliferation score (Spearman rho � 0.35, p < 0.01). (D) The scatter plot shows ssGSEA score of HALLMARK_E2F_TARGETS is positively correlated with
expression of MKI67 (Spearman rho � 0.74, p < 0.01). (E) The scatter plot shows ssGSEA score of HALLMARK_MYC_TARGETS_V1 is positively correlated with
expression of MKI67 (Spearman rho � 0.29, p < 0.01). (F) The scatter plot shows ssGSEA score of HALLMARK_MYC_TARGETS_V2 is positively correlated with
expression of MKI67 (Spearman rho � 0.21, p < 0.01). (G) The boxplot shows the proliferation score is the highest in Risk_H subtype. (H) The boxplot shows the
expression ofMKI67 is the highest in Risk_H subtype. (PCa, prostate cancer. * means p < 0.05, ** means p < 0.01, *** means p < 0.001, nsmeans p > 0.05, and p < 0.05
is defined as statistically significant).
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in k. We first set k � 4, indicating that the cohort could be divided
into up to four subtypes. However, one cluster consisted of only a
single patient when k � 4. Additionally, the cluster-consensus value
for each cluster was not large enough under k � 4 (Supplementary
Figure S1). Therefore, we focused on k � 3, dividing patients into
three clusters (Figure 1C). In particular, according to prognostic
features shown in Figures 1D,E, the clusters were defined as a high-
risk subtype (Risk_H), moderate-risk subtype (Risk_M), and low-
risk subtype (Risk_L). In a PCA, there was significant separation
among the three subtypes (Figure 1F, PERMANOVA p < 0.05).
Since these subtypes were identified based on ssGSEA scores, the
levels of nine PCa-associated gene sets in the three subtypes were
displayed in a heatmap in Figure 1G. We found that
HALLMARK_HYPOXIA, HALLMARK_ANDROGEN_RESPONSE,
and HALLMARK_PI3K_AKT_MTOR_SIGNALING were enriched

in Risk_M. HALLMARK_E2F_TARGETS, HALLMARK_MYC_
TARGETS_V1, and HALLMARK_MYC_TARGETS_V2 were
enriched in Risk_H. HALLMARK_GLYCOLYSIS, HALLMARK_
FATTY_ACID_METABOLISM, andHALLMARK_OXIDATIVE_
PHOSPHORYLATION were enriched in Risk_L. As shown in
Figures 1H–J, the ssGSEA scores for HALLMARK_E2F_TARGETS,
HALLMARK_MYC_TARGETS_V1, and HALLMARK_MYC_
TARGETS_V2 were significantly higher in Risk_H than in
Risk_L and Risk_M (Wilcoxon test p < 0.001). Furthermore,
the PSA, Gleason score, residual tumor, pathological T, and
survival outcome were associated with the subtype status
(Table 2). Collectively, these data indicated that PCa could
be divided into three subtypes based on the degree of
enrichment of factors related to the androgen response,
hypoxia, PI3K/AKT/MTOR signaling, E2F activity, MYC

FIGURE 3 | The distribution of other TCGA subtypes in subtypes of this research. (A) The distribution of TCGA subtypes in Risk_H subtype. (B) The
distribution of TCGA subtypes in Risk_M subtype. (C) The distribution of TCGA subtypes in Risk_L subtype. (D) The distribution of immune subtypes in Risk_H
subtype. (E) The distribution of immune subtypes in Risk_M subtype. (F) The distribution of immune subtypes in Risk_L subtype. (G) The distribution of DNA
methylation subtypes in Risk_H subtype. (H) The distribution of DNA methylation subtypes in Risk_M subtype. (I) The distribution of DNA methylation
subtypes in Risk_L subtype.
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activity, glycolysis, fatty acid metabolism, and oxidative
phosphorylation. The Risk_H subtype, with enrichment for
E2F and MYC activity, showed a worse prognosis.

Risk_H Subtype is Associated With a Highly
Proliferative State
We found that the ssGSEA scores for the E2F and MYC gene sets
were positively correlated with proliferation scores (E2F score:
rho � 0.88, p < 0.01; MYC_V1 score: rho � 0.49, p < 0.01;
MYC_V2 score: rho � 0.35, p < 0.01), as shown in Figures 2A–C.
Owing to the close relationship between KI67 expression and
proliferation, the correlation between the expression of MKI67
and ssGSEA scores was also explored. The levels of MKI67 were
positively correlated with ssGSEA scores for the E2F and MYC
gene sets (E2F score: rho � 0.74, p < 0.01; MYC_V1 score: rho �
0.29, p < 0.01; MYC_V2 score: rho � 0.21, p < 0.01), as shown in
Figures 2D–F. Finally, the proliferation scores and MKI67 levels
were highest in Risk_H among the three subtypes
(Kruskal–Wallis test p < 0.001), as shown in Figures 2G,H.
Taken together, tumors classified as Risk_H had higher levels
of proliferation.

Known Subtypes Associated With a Poor
Prognosis Were Overrepresented in the
Risk_H Subtype
Seven subtypes were previously defined based on ETS fusions or
mutations in SPOP, FOXA1, and IDH1 (Abeshouse et al., 2015).
We found that SPOP mutations were overrepresented in the
Risk_H subtype (chi-square test p < 0.05, Figures 3A–C).
Furthermore, we found that the Risk_L subtype had lower
heterogeneity than other subtypes, including only four
subtypes (Figure 3C). Furthermore, based on previously
established immune-based subtypes, we found that the Risk_H
subtype was mainly composed of the C1 subtype (Zhang et al.,
2020), which is associated with a poor prognosis; however,
Risk_M and Risk_L subtypes were mainly composed of the C3
subtype, associated with a relatively favorable prognosis (Figures
3D–F). In addition, based on subtypes differing in methylation
patterns (Zhang et al., 2021), we found that the Risk_H subtype
was mainly composed of the Methylation_H subtype, associated
with a poor prognosis; however, Risk_M and Risk_L subtypes
were mainly composed of the Methylation_L subtype, associated
with a better prognosis (Figures 3G–I). Taken together, SPOP
mutations, which are associated with a poor prognosis in PCa,

FIGURE 4 | The difference of tumormicroenvironment among three subtypes. (A) The violin plot shows immune score is the lowest in Risk_H subtype. (B) The violin
plot shows stromal score is the lowest in Risk_H subtype. (C) The violin plot shows ESTIMATE score is the lowest in Risk_H subtype. (D) The violin plot shows tumor
purity is the highest in Risk_H subtype. (E) The violin plot shows content of NK cells activated is the lowest in Risk_H subtype. (F) The violin plot shows content of Treg
cells is the lowest in Risk_H subtype. (G) The violin plot shows content of NK T cells is the lowest in Risk_H subtype. (H) The violin plot shows content of Treg cells is
not significantly different among subtypes. (p < 0.05 is defined as statistically significant).
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FIGURE 5 | The genomic differences among three subtypes. (A) The map of waterfall for the Risk_H subtype. (B) The map of waterfall for the Risk_M subtype. (C)
The map of waterfall for the Risk_L subtype. (D) The frequency of CNV in RHOBTB2 in Risk_H subtype is significantly higher than that in other subtype. (E) The
expression level of RHOBTB2 is significantly correlated with its CNV, and the expression level of RHOBTB2 is decreased with single deletion. (F) The expression level of
RHOBTB2 is the lowest in Risk_H subtype. (G) The frequency of CNV in TNFRSF10C in Risk_H subtype is significantly higher than that in other subtype. (H) The
expression level of TNFRSF10C is significantly correlated with its CNV, and the expression level of TNFRSF10C is decreased with single deletion. (I) The expression level
of TNFRSF10C is the lowest in Risk_H subtype. (J) The violin plot shows TMB values of patients are the highest in Risk_H subtype. Wilcoxon p values were calculated.
(K) The bar graph shows TMPRSS2−ERG fusion status among three subtypes. (L) The violin plot shows AR scores of patients are the higher in Risk_H and Risk_M
subtypes. Wilcoxon p values were calculated. (PCa, prostate cancer; CNV, copy number variation; AR, androgen receptor. And p < 0.05 is defined as statistically
significant).
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FIGURE 6 |WGCNA to find the genes for the development of themodel. (A) The relationship of soft threshold and TOM-based dissimilarity (left). The relationship of
soft threshold and mean connectivity (right). (B) After the dynamic of cut andmerged, a total of 11 gene modules were finally generated. (C)Heat map for the correlation
of genemodules and phenotypes. (D) The scatter plot shows the gene significance for E2F ssGSEA score is correlated withmodule membership in midnightblue module
(Pearson rho � 0.98, p < 0.01). (E) The scatter plot shows the gene significance for MYC_V2 ssGSEA score is correlated with module membership in midnightblue
module (Pearson rho � 0.35, p < 0.01). (WGCNA, weighted correlation network analysis; TOM, topological overlap matrix. And p < 0.05 is defined as statistically
significant).
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were positively correlated with the Risk_H subtype; the SPOP
mutation frequency in our subtypes decreased in the following
order: Risk_H > Risk_M > Risk_L. Our previous studies all
support the poor prognostic characteristics of the Risk_H
subtype.

Risk_H Subtype Shows Greater Tumor
Purity and Less Immune Cell Infiltration
According to the ESTIMATE algorithm, the Risk_H subtype had
lower immune, stromal, and ESTIMATE scores (Figures 4A,B)
and a higher tumor purity (Figure 4D). Based on the

CIBERSORTx algorithm, which predicts the immune cell
composition in the tumor microenvironment based on gene
expression data for 22 kinds of immune cells, we found that
activated NK cells and regulatory T cells (Tregs) were
significantly less frequent in the Risk_H type than in the other
types (Kruskal–Wallis test p < 0.05, Figures 4E,F). According to
the xCell algorithm, we found that NK T cells were also
significantly less frequent in the Risk_H type than in the other
types (Kruskal–Wallis test p < 0.05, Figure 4G). However, we
found that the frequency of Tregs did not differ significantly
among subtypes (Kruskal–Wallis test p > 0.05, Figure 4H).
Collectively, these findings indicated that the Risk_H subtype

FIGURE 7 | Build the risk model by LASSO. (A) Cross validation based on C-index to determine the best choice of genes in the model. (B) Genes in the different
combinations and their corresponding coefficients. (C) Patients of training set are arranged in the same ascending order of the risk score. (D) Patients of internal
validation set are arranged in the same ascending order of the risk score. (E) Patients of MSKCC2010 data set are arranged in the same ascending order of the risk score.
(F) Patients of DKF2018 data set are arranged in the same ascending order of the risk score. (G) Patients of GSE70769 data set are arranged in the same
ascending order of the risk score. (C–G) Patients are divided into different risk levels according to themedian of the risk scores in their respective data sets (upward). The
relationship between the survival outcome and risk levels of patients. Low-risk patients are shown on the left side of the dotted line and high-risk patients are shown on
the right side (downward). (H–L) Heatmaps show the expression levels of genes in the model, and indicate the model is robust in these data sets. (LASSO, least
absolute shrinkage and selection operator. And p < 0.05 is defined as statistically significant).
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had greater tumor purity and a smaller immune cell component.
With respect to immune cell infiltration, activated NK cells and
Tregs were reduced in the Risk_H type.

Mutational Landscape Across the Newly
Established Risk Subtypes
As shown in Figures 5A–C, we found that the frequencies of SNVs
in SPOP were higher in Risk_H and Risk_M than in Risk_L (chi-
squared test p < 0.05). More single-copy deletion events were
observed in the Risk_H subtype for RHOBTB2 and TNFRSF10C
(chi-squared test p < 0.05). As shown in Figures 5E,H, the single
deletions of RHOBTB2 and TNFRSF10C were associated with lower
expression levels (Kruskal–Wallis test p < 0.05). Consistent with
these findings, lower expression levels of RHOBTB2 and
TNFRSF10C were detected in the Risk_H subtype
(Kruskal–Wallis test p < 0.001, Figures 5F,I). Furthermore, as
shown in Figure 5J, TMB values for patients were highest in the
Risk_H subtype. Although the frequency of the TMPRSS2-ERG
fusion did not differ significantly among subtypes, it was highest in
the Risk_H subtype (Figure 5K). Additionally, AR scores for
patients were higher in the Risk_H and Risk_M subtypes than in
the Risk-L subtype (Figure 5L, Wilcoxon p < 0.001). These data
suggest that SNVs in SPOP and CNVs in RHOBTB2 and
TNFRSF10C are more common in the Risk_H subtype than in
other subtypes. Low expression levels ofRHOBTB2 andTNFRSF10C
in Risk_H could be associated with single deletion CNV events.

Identification of a Single Gene Interaction
Network by WGCNA Associated With the
Risk_H Subtype
As shown in Figure 6A, the soft threshold value was set to 8.
Eleven gene interaction networks were finally defined
(Figure 6B). The midnight blue network shown in Figure 6C
was mostly correlated with ssGSEA scores for E2F and MYC,
indicating that this gene network best represents the Risk_H
subtype. As shown in Figures 6D–F, values for gene significance
and module membership were significantly associated (E2F: rho
� 0.98, p < 0.001; MYC_V1: rho � 0.52, p < 0.001; MYC_V2: rho
� 0.35, p � 0.0011). Taken together, we identified a single group of
genes that effectively reflects the Risk_H subtype.

Construction of a Prognostic Model
Consisting of 12 Genes
Since the Risk_H subtype was associated with a poor prognosis, the
midnight gene network was chosen to train a prognostic model via
LASSO. In the training group, one 12-gene combination had the
highest cross-validated C-index (Figure 7A). Changes in gene
coefficients during the selection procedure are shown in
Figure 7B. Risk scores were obtained for patients as follows:

Risk score � ∑
12

n�1
(coefficientn × expression of genen). The coefficients

for each gene are given in Table 3. Subsequently, patients in the
training group, internal validation group, and three external
validation groups (GSE70769, DKF 2018, and MSKCC 2010) were
ranked in ascending order based on risk scores.Due to the batch effect
across platforms, the median risk score in each group was selected as
the cut-off value to divide patients into high-risk and low-risk groups
(Figures 7C–G). We found that patients identified as high risk had a
poorer prognosis than patients identified as low risk. The global
expression levels of the 12 genes are shown in Figures 7H–L.
Collectively, we developed a 12-gene prognostic model with robust
global expression levels across all data sets.

Validation of the Model Accuracy
To validate the accuracy of the model, a tdROC analysis was
performed. In the training group, 1°year AUC � 0.733, 3°year
AUC � 0.713, and 5°year AUC � 0.714 (Figure 8A). In the
internal validation group, 1°year AUC � 0.788, 3°year AUC �
0.778, 5°year AUC � 0.778 (Figure 8B); in the MSKCC2010 data
set, 1°year AUC � 0.829, 3°year AUC � 0.748, 5°year AUC � 0.747
(Figure 8C); in the DKF2018 data set, 1°year AUC � 0.834, 3°year
AUC � 0.698, 5°year AUC � 0.687 (Figure 8D); in the GSE70769
data set, 1°year AUC � 0.723, 3°year AUC � 0.788, 5°year AUC �
0.740 (Figure 8E). Subsequently, we found that the high-risk
patients identified by this model had worse survival in the
training group (log-rank test p � 0.006, Cox test p < 0.001),
internal validation group (log-rank test p � 0.005, Cox test p �
0.001), MSKCC2010 data set (log-rank test p � 0.024, Cox test p <
0.001), DKF2018 data set (log-rank test p � 0.019, Cox test p <
0.001), and GSE70769 data set (log-rank test p < 0.001, Cox test
p < 0.001), as shown in Figures 8F–J. Furthermore, we found that
patients who died or experienced recurrence had higher risk
scores in the training group (Wilcoxon test p < 0.001), internal
validation group (Wilcoxon test p < 0.001), MSKCC2010 data set
(Wilcoxon test p < 0.001), DKF2018 data set (Wilcoxon test p <
0.05), and GSE70769 data set (Wilcoxon test p < 0.001).
According to univariate and multivariate Cox regression
analyses (Table 4), this model and the Gleason grade were
independent predictors of prognosis. Taken together, the
prognostic model had high accuracy.

Target Drug Prediction for High-Risk
Patients
Using compounds from the CTRP and PRISM databases, we
predicted drug sensitivity for patients with high risk scores. As
shown in Figure 9A, 3-CI-AHPC, CD-437, CR-1-31B,

TABLE 3 | LASSO coefficients of genes in model.

Gene name Model coefficient

CIT 0.172
IQGAP3 0.045
TACC3 0.185
CDCA5 0.007
CDC20 0.24
PTTG1 0.193
CBX2 0.177
CDKN2C 0.017
SPC24 0.009
DTL −0.026
CDC6 −0.022
CENPM −0.451
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FIGURE 8 | Verification of the effectiveness of the model. (A–E) The ROC curves of 1-year, 3-year, and 5-year follow-up time. (F–J) Kaplan-Meier curves for
survival analysis. (K–O) The boxplots show the difference of risk score between survival outcomes. (A,F,K) The results in the training set. (B,G,L) The results in the
internal validation set. (C,H,M) The results in MSKCC 2010. (D,I,N) The results in DKFZ 2018. (E,J,O) The results in GSE70769. (AUC, area under curve. * means
p < 0.05, ** means p < 0.01, *** means p < 0.001, ns means p > 0.05, and p < 0.05 is defined as statistically significant. And p < 0.05 is defined as statistically
significant).
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TABLE 4 | Results of univariate and multivariate Cox regression.

Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Race 0.787 (0.305–2.03) 0.62
Age 0.998 (0.945–1.053) 0.931
Pathological N 1.366 (0.643–2.903) 0.417
Pathological T 4.279 (1.364–13.426) 0.013 1.113 (0.308–4.018) 0.87
Gleason grade 2.143 (1.42–3.235) <0.001 1.792 (1.129–2.844) 0.013
Prior malignancy 0.767 (0.104–5.638) 0.794
Diagnostic CT or MRI 1.38 (0.954–1.996) 0.087
Residual tumor 1.272 (0.897–1.806) 0.177
PSA 1.012 (0.991–1.034) 0.255
Risk score 3.423 (1.862–6.293) <0.001 2.099 (1.043–4.224) 0.038

PSA, prostate-specific antigen; and p < 0.05 is defined as statistically significant.

FIGURE 9 | Identification of candidate agents with higher drug sensitivity in patients with high risk score. (A) The results of Spearman’s correlation analysis and
differential drug response analysis of six CTRP-derived compounds. (B) The results of Spearman’s correlation analysis and differential drug response analysis of six
PRISM-derived compounds. Note that lower values on the y-axis of boxplots imply greater drug sensitivity. (* means p < 0.05, ** means p < 0.01, *** means p < 0.001, ns
means p > 0.05, and p < 0.05 is defined as statistically significant. And p < 0.05 is defined as statistically significant).
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leptomycin B, SR-II-138A, and YM-155 sensitivities were high for
patients with high risk scores (Spearman correlation rho < −0.3,
Spearman correlation test p < 0.001, andWilcoxon test p < 0.001).
As shown in Figure 9B, elesclomol, LY2606368, obatoclax,
topotecan, VE-822, and vincristine sensitivities were high for
patients with high risk scores (Spearman correlation test rho <
−0.3, Spearman correlation test p < 0.001, and Wilcoxon test p <
0.001). Collectively, we identified ten target drugs predicted to be
effective for high-risk patients, and leptomycin B, LY2606368,
and vincristine showed particularly high effectiveness.

DISCUSSION

The mechanism underlying PCa progression is complex and
cannot be explained by a single pathway. Accordingly, in this
study, we used gene expression information for eight PCa-related
pathways (i.e., hypoxia, androgen response, PI3K-AKT-mTOR
signaling, E2F targets, MYC targets V1, MYC targets V2,
glycolysis, fatty acid metabolism, and oxidative
phosphorylation pathways) extracted from Molecular
Signatures Database v7.2 and data for PCa cohorts from
multiple platforms (TCGA, GSE70769, DKF 2018, and
MSKCC 2010) to identify three PCa subtypes (Risk_H,
Risk_M and Risk_L). These subtypes were then used to
construct a risk-predicting model and drug sensitivity
prediction was performed for the high-risk group.

For patients with PCa, an elevated hypoxic status is related to
a more aggressive and advanced disease; hypoxia reduction
could increase immunity and the response to specific
immunotherapies (Jayaprakash et al., 2018). Additionally,
prostate is an androgen-dependent organ, and androgen
interactions with androgen receptors play a key role in the
progression of PCa. Endocrine therapy in PCa is aimed at
lowering serum androgen levels and inhibiting androgen
receptor; when this approach fails, PCa advances to a
hormone-resistant state (Heinlein and Chang, 2004; Shafi
et al., 2013). The PI3K-AKT-mTOR pathway interacts with
multiple cellular cascades, further promoting PCa progression
and aggression, and drugs targeting this pathway are employed
in clinical settings (Shorning et al., 2020). E2F and MYC
synergistically contribute to cell cycle regulation and are
involved in tumorigenesis (Liu et al., 2015). Metabolic
adaptation is pivotal for malignancy given the high energy
demand, and glycolytic, fatty acid biosynthesis, and oxidative
phosphorylation contribute to proliferation and worse
outcomes in PCa (Schöpf et al., 2016; Xiao et al., 2018;
Balusamy et al., 2020). We classified samples into three
subtypes with different patterns of pathway enrichment.

Among the three subtypes, the cluster with enrichment for
the E2F and MYC pathways was identified as high-risk group
(Risk_H), which was associated with the worst clinical
outcomes. Further analyses of the proliferation scores and
MKI67 gene expression level support the highly proliferative
feature of the Risk_H cohort. Additionally, the proportions of
immune and stromal cells were highest in the Risk_L cohort. NK
cells, which possesses important anti-cancer functions (Abel

et al., 2018), were most abundant in the Risk_L group. Thus, the
poor prognosis in the Risk_H group can be explained from the
perspective of immune activity. Additionally, RhoBTB2, a
candidate tumor suppressor, has been implicated in various
cancers, such as breast cancer and lung cancer (McKinnon et al.,
2008). However, little is known about its role in PCa. We found
that the single copy deletion of RhoBTB2 was most frequent in
the Risk_H group, while its overall expression was highest in the
Risk_L group. This finding may provide an entry point for
future PCa research. The TNFRSF10C gene, also known as
TRAIL-R3, is a decoy receptor for tumor necrosis factor-
related apoptosis-inducing ligand, inducing tumor apoptosis
in multiple malignancies (Almodóvar et al., 2004). We detected
copy number variation distinguishing the Risk_H and Risk_L
subtypes, and this may further explain the poor prognosis in the
Risk_H group.

After establishing the prognostic value and properties of the
subtypes, we constructed a twelve gene-based risk-prediction
model. This model could supplement current strategies for
clinical decision-making and prognostic predictions. Finally,
we filtered twelve drugs expected to show high sensitivity in
high-risk patients with PCa, 3-CI-HPC, CD-437, CR-1-31B,
leptomycin B, SR-II-138A, YM-155, elesclomol, LY2606368,
obatoclax, topotecan, VE-822, and vincristine.

As a complex and heterogeneous disease, PCa is difficult to
manage by a universal treatment approach. In this study, we
divided PCa into three clusters based on eight pivotal
pathways, allowing for more innovative and objective
results than those obtained by analyses of single pathways.
Moreover, we translated the results into a clinically useful tool
and identified potentially effective drugs for high-risk patients,
providing direct guidance for clinical strategies aimed at
precision medicine. However, our study had limitations.
First, the results are based on retrospective investigations of
cohorts from multiple platforms; prospective explorations are
needed to validate our results. Further clinical studies of the
drug candidates are needed. Despite these drawbacks, our
results provide novel ideas for PCa management.
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