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Objectives: As part of an active MRSA surveillance programme in our neonatal ICU, we identified nares
surveillance cultures from two infants that displayed heterogeneity in methicillin resistance between isolated
subclones that lacked mecA and mecC.

Methods: The underlying mechanism for the modified Staphylococcus aureus (MODSA) methicillin-resistance
phenotype was investigated by WGS.

Results: Comparison of finished-quality genomes of four MODSA and four MSSA subclones demonstrated
that the resistance changes were associated with unique truncating mutations in the gene encoding the cyclic
diadenosine monophosphate phosphodiesterase enzyme GdpP or a non-synonymous substitution in the gene
encoding PBP2.

Conclusions: These two cases highlight the difficulty in identifying non-mecA, non-mecC-mediated MRSA iso-
lates in the clinical microbiology laboratory, which leads to difficulties in implementing appropriate therapy and
infection control measures.

Introduction

Expression of mecA or mecC is the most commonly recognized
mechanism for MRSA.1 Non-mecA and non-mecC-mediated re-
sistance through other mechanisms has also been described.1,2

When these involve isolates with mutations to native genes,
such as those encoding penicillin-binding proteins (PBPs),3–6

GdpP1,2,4,7,8 or the cation multidrug efflux transporter AcrB,4

the isolates are generally referred to as modified Staphylococcus
aureus (MODSA). Alternatively, resistance caused by overproduc-
tion of b-lactamases is typically classified as borderline resistant
S. aureus (BORSA).1 Methods of detection for MODSA or BORSA are
limited. Here we describe the use of WGS to determine the
mechanisms of methicillin resistance for two patients with het-
erogeneous MSSA/MODSA surveillance cultures, highlighting the
challenges of identifying these organisms in a routine clinical
microbiology laboratory (CML).

Materials and methods

Ethics statement

The study protocol was reviewed and approved by the Mount Sinai School of
Medicine Institutional Review Board for the collection and bacterial genome
sequencing of discarded clinical specimens by the Pathogen Surveillance
Program (protocol HS# 13–00981), as defined by DHHS regulations. A waiver
of authorization for use and disclosure of protected health information (PHI)
and a waiver of informed consent was approved based on the criteria that
the use or disclosure of PHI involved no more than minimal risk to the privacy
of individuals and because the research could not practically be conducted
without the waiver and without access to and use of the PHI. The research
conformed to the principles of the Helsinki Declaration.

Phenotypic testing
Isolates were processed per the CML Standard Operating Procedure for
screening for MRSA. Swabs were plated on chromIDVR MRSA agar (CA)

VC The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

2774

J Antimicrob Chemother 2021; 76: 2774–2777
doi:10.1093/jac/dkab266 Advance Access publication 9 August 2021

https://orcid.org/0000-0002-6960-0763
https://orcid.org/0000-0003-1948-3834
https://orcid.org/0000-0002-1376-6916
https://academic.oup.com/


(bioMérieux, Marcy-l’Étoile, France) and on trypticase soy agar supple-
mented with 5% sheep blood (SBA) (BD Diagnostics, Sparks, MD, USA) and
incubated at 37�C for 24 h. b-Haemolytic colonies on SBA were identified
via conventional biochemical testing and subcultured for storage on BBL
Nutrient Agar slants (BD Diagnostics). Isolates that were catalase- and
coagulase-positive were confirmed and tested for antimicrobial susceptibil-
ity by automated broth microdilution assays on the MicroScan WalkAway
Plus system, PM34 (Siemens, Sacramento, CA, USA).

Following collection of residual CML isolates from the original SBA plates,
subcultures were prepared for whole-genome analysis for research pur-
poses and plated on CA for MRSA confirmation testing prior to DNA isolation
and sequencing.

Additional testing of MSSA/MODSA subcultures derived from the original
agar slants for isolates with discrepant results between clinical and re-
search assays was done using latex agglutination (StaphaurexTM, Thermo
Fisher Scientific, Switzerland), mannitol salt agar (BD Diagnostics) and
Cepheid XpertVR SA Nasal Complete (Cepheid, Sunnyvale, CA, USA).
Phenotypic testing of subcultures was performed using the VitekVR GP 2 ID
panel or the Gram-Positive Susceptibility PM34 panel on the MicroScan plat-
form (Beckman Coulter, CA, USA), as well as cefoxitin disc (cefoxitin 30lg;
BD Sensi-Disc, Becton Dickinson, Germany) and oxacillin Etest (bioMérieux)
using Mueller–Hinton agar supplemented with 2% NaCl (BD Diagnostics) as
per CLSI performance standards.9

DNA preparation and sequencing
For genome sequencing, selected subclones were cultured on SBA (Thermo
Fisher Scientific) under non-selective conditions. The Qiagen DNeasy Blood
& Tissue Kit (Qiagen, Hilden, Germany) was used for DNA extraction, as
previously described.10 Following quality control, DNA extraction and
library preparation, long-read sequencing was performed on the Pacific
Biosciences RS-II platform to a depth of >200%. Additional Illumina short-
read sequencing was performed to aid final assembly polishing. Briefly,
libraries were prepared for DNA isolated from the same subclones using the
Nextera DNA Flex Library Prep Kit (Illumina) and sequenced in a paired-end
format (2%150 nt) on the NextSeq platform to a minimum depth of
86-fold.

Genome assembly, annotation and comparison
PacBio long-read sequencing data were processed using a custom genome
assembly pipeline, as previously described.10 Complete and circularized
genome assemblies were then polished using the arrow algorithm based
on minimap2-aligned PacBio raw subreads.11,12 Next, Illumina paired-end
reads were aligned to PacBio assemblies using BWA-MEM followed by a se-
cond round of assembly polishing with Pilon.13,14 Finally, high-quality cura-
ted genomes were annotated for genes using PROKKA, MLST ST using
PubMLST and staphylococcal protein A (spa) and staphylococcal chromo-
somal cassette mec (SCCmec) types using custom scripts.15,16 Pairwise
comparisons between the genomes of susceptible and resistant samples
were performed using NucDiff to identify genomic variants that correlated
with sample phenotypes and the functional effect of these genomic
variants was annotated using ANNOVAR.17,18

Sequence data
Complete genome sequences are available in GenBank, with accession
numbers CP075570 to CP075582 (see also the Supplementary data avail-
able at JAC Online).

Results

During neonatal ICU surveillance for MRSA colonization of the
nares in late 2018, isolates from two infants (i1 and i2) yielded

green colonies on CA plates. Automated broth microdilution test-
ing confirmed both isolates to be MRSA. However, when the same
isolates were independently subcultured and sequenced for re-
search purposes, both subcultures (named i1-SC0 and i2-SC0)
were identified as MSSA on CA plates and the resulting finished-
quality genome sequences did not contain SCCmec elements. The
genome obtained from i2 also differed by no more than four single
nucleotide variants (SNVs) from genomes obtained from three ear-
lier isolates and one later isolate from the same infant that were
typed as MSSA (Figure 1a), indicating that the sequential isolates
were clonally related. Each infant carried a different strain, based
on molecular typing of the genomes from i1 (MLST ST8, spa type
t024) and i2 (MLST ST72, spa type t4359).

To investigate the cause of the discrepancy between the clinical
and research assays, we performed additional evaluation of the
original surveillance cultures. Agar slants made from the original
clinical isolates were plated again on SBA and CA, and incubated at
37�C. After 24 h, plates were reviewed and two colonies from the
CA and three colonies from the SBA were selected from different
morphotypes and subcultured on CA and SBA, for a total of five
subcultures per infant (SC1–5). All subcultures, including the origin-
al subcultures (SC0) obtained for research purposes, were then
tested using StaphaurexTM, mannitol salt agar and the Cepheid
Xpert MRSA assay. All subcultures from both infants were con-
firmed to be S. aureus and tested negative by the Cepheid Xpert
MRSA assay for mecA, mecC and SCCmec. Repeat phenotypic test-
ing was performed for all 12 isolates using the VitekVR GP 2 panel or
the PM34 MicroScan panel, as well as cefoxitin disc and oxacillin
Etest using Mueller–Hinton agar supplemented with 2% NaCl
as per CLSI methods. For i1, three of six subcultures tested consist-
ently as MRSA and three as MSSA (Table 1). For i2, only one of six
subcultures tested as MRSA based on cefoxitin disc and oxacillin
Etest, although not by automated oxacillin testing (Table 1).

The finding of susceptible and resistant subclones within iso-
lates from the same individuals suggested the presence of genetic
heterogeneity. As such, we performed additional WGS and assem-
bly of finished-quality genomes for three resistant and one suscep-
tible subclone for i1, as well as one resistant and one susceptible
subclone of i2. All genomes matched the MLST and spa types of
the original SC0 i1 and i2 susceptible subclones. Comparison of
complete genomes with the SC0 reference identified only 8 muta-
tions for the i1 subclones and 10 mutations for the i2 subclones
(see the Supplementary data available at JAC Online), indicating
that they were clonally related. In i1, the only gene that was
mutated in a pattern consistent with the observed phenotypic
differences was gdpP. Each of the three resistant isolates had a
different gdpP mutation; namely a truncating frameshift deletion
(M613fs), a substitution (G291V) or a truncating frameshift inser-
tion (V371fs) (Figure 1b). For i2, the resistant isolate was found
to have a T552I substitution in the transpeptidase domain of PBP2,
as well as an A574T substitution in RpoB (Figure 1c).

Discussion

In this study we identified two S. aureus isolates of a mixed MODSA
MSSA phenotype that did not contain mecA or mecC. The resistant
isolates from i1 contained variants in the gene encoding GdpP.
It has been previously described that GdpP hydrolyses the second-
ary messenger cyclic diadenosine monophosphate (c-di-AMP),
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such that inactivation or deletion of gdpP leads to an increased
level of c-di-AMP, which produces a reduced susceptibility to b-lac-
tams.2,7,8 In a study by Ba et al.,1 an array of truncating mutations

of the gdpP gene was identified in 17 out of 20 mec-negative MRSA
isolates. Although diverse mutations in the gdpP gene have been
reported, the isolates from our patient i1 are unusual in that

(a)

(b)

(c)

Figure 1. Genetic variants uniquely identified in MODSA strains. (a) Epidemiological timeline for MSSA/MRSA surveillance of infants 1 and 2. Stays in
different units are indicated by horizontal bars shaded in grey. Results from periodic surveillance are indicated by symbols, with the two distinct
S. aureus strain types identified in each infant shown as triangles and circles, respectively. The two isolates with conflicting clinical (MRSA) and
research (MSSA) assay results are highlighted in red. Arrows connecting sequenced isolates from infant 2 denote the number of core-genome SNV dif-
ferences. (b) Variants seen in MODSA strains in infant 1 that were not present in MSSA strains from the same patient. (c) Same as (b) but for infant 2.
This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.

Table 1. Phenotypic antimicrobial susceptibility testing results

Test SC0 SC1 SC2 SC3 SC4 SC5

Infant 1 (i1)

cefoxitin (ABM) NEG POS POS NEG NEG POS

cefoxitin disc S S S S S S

oxacillin (ABM) S (1) R (>4) R (>4) S (0.5) S (0.5) R (>4)

oxacillin Etest S (1) R (8) R (8) S (0.5) S (0.5) R (8)

Infant 2 (i2)

cefoxitin (ABM) NEG NEG NEG POS NEG NEG

cefoxitin disc S S S S S S

oxacillin (ABM) S (0.5) S (�0.25) S (0.5) R* (0.5) S (�0.25) S (0.5)

oxacillin Etest S (1.5) S (0.25) S (0.19) R (8) S (0.25) S (0.25)

ABM, automated broth microdilution assays on the VitekVR or MicroScan platform; SC, subclone; S, susceptible; R, resistant; R*, converted via expert rule
to resistant; POS, positive; NEG, negative.
MIC is indicated between brackets where available.
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concurrent isolation and identification from an individual patient
of three different subclones with different gdpP mutations in the
same strain has not been described previously.

In i2, the subclone that expressed phenotypic methicillin resist-
ance had unique mutations in pbp2 and rpoB. S. aureus possesses
four PBPs that contribute to the assembly of cell wall peptidogly-
can. However, functional PBP2 has an important role in the expres-
sion of resistance to methicillin and the T552I substitution
observed in the transpeptidase domain of PBP2 has previously
been identified in mec-negative MRSA isolates.3,5 There is also evi-
dence to suggest that rpoB mutations may contribute to
MRSA.19,20 Aiba et al.19 demonstrated that introduction of an rpoB
mutation was accompanied by tolerance to bactericidal concen-
trations of methicillin. Moreover, Panchal et al.20 demonstrated
that insertion of a mutant rpoB gene into an MSSA strain led to con-
version to MRSA. Thus, mutations in both genes may contribute to
the MODSA phenotype observed in this strain.

In conclusion, we have described two different strains of
MODSA, for which resistance is mediated by two distinct mecha-
nisms. Furthermore, subpopulations of the same strain of S. aureus
in the same host but with different phenotypic and genotypic
expressions, as opposed to subpopulations of differing strains, are
not recognized commonly. Lastly, it is important to recognize that
there are multiple mechanisms leading to MRSA that might be
missed when testing only for the presence of mec genes.
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