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ABSTRACT
The study of cancer has allowed researchers to describe some biological characteristics that tumor
cells acquire during their development, known as the “hallmarks of cancer” but more research is
needed to expand our knowledge about cancer biology and to generate new strategies of
treatment. The role that RabGTPases might play in some hallmarks of cancer represents interesting
areas of study since these proteins are frequently altered in cancer. However, their participation is
not well known. Recently, Rab35was recognized as an oncogenic RabGTPase and and because of its
association with different cellular functions, distinctly important in immune cells, a possible role of
Rab35 in leukemia can be suggested. Nevertheless, the involvement of Rab35 in cancer remains
poorly understood and its possible specific role in leukemia remains unknown. In this review, we
analyze general aspects of the participation of RabGTPases in cancer, and especially, the plausible
role of Rab35 in leukemia.
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Introduction

Cancer and small GTPases

The first reference of cancer dates back to the Egyptians
(1500–1600 BCE), who identified pathological condi-
tions, tentatively, as cancer. Later, Hippocrates (c.460–
360 BC) described a disease characterized by masses
(onkos) with benign or malignant properties, for which,
he coined the terms karkinos and karkinomas, respec-
tively. Initial studies by Fibiger (1867–1928), Yamagiwa,
and Ichikawa (1915) contributed to the identification of
microorganisms and chemicals as causes of cancer. Har-
vey’s study of Ras in 1964 constituted a major break-
through in cancer research [1,2]. Ras was initially
identified in rodents and human cancer cell lines as a
viral gene with highly oncogenic properties. Subsequent
studies observed frequent mutations in Ras in a wide
spectrum of human cancers [1,3]. This prompted inten-
sive research on the Ras structure, biochemistry, and
biology. Ras was characterized as a small (molecular
weight) GTP-binding protein and as a component of dif-
ferent signaling networks, such as Akt, epidermal growth
factor receptor (EGFR), and phosphatidylinositol 3-
kinase (PI3K). The focus on Ras allowed the discovery of

the Ras superfamily, a group of related proteins compris-
ing different subfamilies: RhoGTPases, ArfGTPases,
RanGTPases, RasGTPases, and RabGTPases [1,3].

RabGTPases constitute the largest subfamily of the
Ras superfamily of proteins. They are considered master
regulators of vesicular trafficking, whose alteration is fre-
quently associated with several complex aspects of cancer
[4,5], Despite cancer’s complexity, several common bio-
logical characteristics associated with tumor develop-
ment have been defined as the hallmarks of cancer.
These include: limitless replicative potential, apoptosis
and immune destruction evasion, sustained angiogenesis,
self-sufficiency in growth signals, insensitivity to anti-
growth signals, reprogramming of energy metabolism
tissue invasion and metastasis. (For more details, see refs
[6,7]). These hallmarks of cancer address the complexity
of cancer and highlight the role of many important play-
ers, as well as providing new targets of study, as is the
case with the RabGTPases.

Cancer and RabGTPases

RabGTPases are frequently altered in cancer [4,5] and
many times such alterations are associated with the
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hallmarks of cancer, invasion and metastasis, and are
the main causes of death related to cancer [8] (see
Table 1). Invasion and metastasis allow tumor cells to
develop a motile and invasive phenotype required to
escape from the primary tumor. In this process,
migrating tumor cells use similar mechanisms to those
in normal physiological functions, such as embryonic
morphogenesis, wound healing, and immune-cell traf-
ficking [9,10], which require actin cytoskeletal dynam-
ics, vesicular transport, and recycling of adhesion
molecules to modify the cellular shape and stiffness in
the interaction with the surrounding tissue structures
[6,7,11]. Also, endocytic pathway abnormalities are
common in tumors [11] and accumulating evidence
has suggested a link among endosome dynamics, cell
migration, and invasion [12,13]. The RabGTPase
Rab35 is of interest in these processes because of its
implication in vesicular trafficking, its close link to
actin dynamics, and its recent description as an onco-
genic protein [14–17].

The RabGTPase Rab35

Rab35 was originally discovered in a search for new
RabGTPases in skeletal muscle and was described in

1994 [18]. Since then, Rab35 has been determined to be
located mainly on the plasma membrane and on endo-
somes of different cell types. Multiple regulators of its
activation and the description of many of its functions
have also been found.

Regulation of Rab35�s activation

Rab35, similar to other small GTPases, cycles between a
state of activation and inactivation regulated by different
proteins (see Table 2). It is activated (bound to GTP) by
the binding of GEF proteins (guanine-nucleotide
exchange factor). This causes a conformational change in
the GTPase structure increasing its affinity for GTP and
reducing its affinity for GDP and GEF, followed by the

Table 1. RabGTPase alterations in cancer are frequently associated with the hallmarks of cancer invasion and metastasis.
Brain Lung Bladder

Organs/RabGTPases
Rab3 [101], Rab27 [102], Rab35 [32],

Rab6 [103], Rab11 [104], Rab35 [78], Rab37 [105], (Rab11, Rab20, Rab23,
Rab27) [106], Rab25 [107],

Breast
Rab2 [108], Rab4 [109], Rab5 [110–112],
Rab6 [113,114], Rab11 [115],

Rab25 [116–118], Rab27 [119–121], Rab31 [122,123],
Rab35 [32,39,74], Rab40 [124],

Esophagus Colon/rectus Stomach

Rab25 [125], Rab1 [126], Rab3 [127], Rab5 [128], Rab25 [129], Rab23 [130],
Rab40 [131],

Liver Pancreas

(Rab1, Rab4, Rab10, Rab22, Rab24, Rab25) [132], Rab5 [133],
Rab23 [134], Rab27 [135],

Rab20 [136],

Cervix Ovary Prostate Kidney

Rab5 [137], Rab35 [76], Rab25 [116,138], Rab35 [72] Rab7 [139], Rab25 [140] Rab25 [141],

Skin Blood

Rab7 [142], Rab11 [132], Rab35 [32], Rab2 [143,144],
Rab4 [145],

Tongue Head, neck and oral squamous cell carcinoma Mesothelioma

Rab1 [146] (Rab5, Rab7, Rab11) [147], Rab25 [148,149], Rab7 [138]

Superscripts refer to reference. The table shows reports of RabGTPase alterations in different organs and tissues, many of which were reported to be related
with metastasis.

Table 2. Regulators of Rab35 activation, inactivation and func-
tion: GEFs, GAPs and Effectors.
GEFs GAPs Effectors

connecdenn1/DENND1A TBC1D10A (Epi64A) OCRL
TBC1D10B (Epi64B) Fascin

connecdenn1/DENND1B TBC1D10C (Epi64C) RUSC/NESCA
TBC1D13 MICAL1

connecdenn1/DENND1C TBC1D24 (Skywalker) MICAL-L1
ACAP2
Podocalyxin

Created from refs [14,15].
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release of both. Rab35’s new conformational state,
together with higher levels of GTP over GDP, favors the
union of GTP. Once activated, Rab35 can interact tempo-
rarily with both effector proteins that associate with other
elements. It can activate specific functional pathways and
GAP proteins (GTPase-activating protein) that bind and
increase the Rab35 GTPase activity and hence, the hydro-
lysis of GTP to GDP. Thus, Rab35 switches to the inactive
state (bound to GDP). In turn, according to the cellular
state, GEF proteins can either re-induce the activation of
Rab35 or be maintained in the inactive state [14,19].

Rab35�s functions

Figure 1 schematically summarizes many functions and
models of study so far related to Rab35, among which
are cytokinesis, and apico-basal polarity (Fig. 1a)
Rab35 participates in different processes required for cyto-
kinesis in HeLa cells. This GTPase regulates the PIP2
(Phosphatidylinositol 4,5-bisphosphate) and SEPT2 locali-
zation for bridge stability [20], as well as endocytic recy-
cling for proper completion of cytokinesis [21]. A
mechanism has even been proposed for daughter cell

separation by involving the Rab35�s participation over the
localization of OCRL and MICAL1 (effector proteins for
Rab35) in the intercellular bridge, which promoted the
hydrolysis of PIP2 [22] and actin depolymerization by oxi-
doreduction [23], respectively. Also, this GTPase is capable
of linking cytokinesis to the initiation of apico-basal polar-
ity (in MDCK cells), by controlling the localization of
intracellular vesicles containing apical determinants
(aPKC, Cdc42, Crumbs3, and podocalyxin) [24]. Recy-
cling of plasma membrane components (Fig. 1b). Rab35
participates in recycling of many membrane components,
among them, RME-2 yolk receptors [27], KCa2.3 (Ca2+
activated K+ Channel) [25], TfR, transferrin receptor (in
different cell types, such as HeLa [20], HTB-9 [28], and
Jurkat cells [26]), GLUT4 [29], M-cadherins [30], b1-
integrin, EGF receptors, and N-cadherin [32]. Also, this
GTPase is related to the recycling of plasma membrane
components of the immune response, such as Major His-
tocompatibility Complex Class I (MHC I) [31], peptide-
Major Histocompatibility Complex Class II (pMHC II)
[33], and the zeta (z) chain [26], part of the TCR (T cell
receptor) and Endocytosis (Fig. 1c). Rab35 participates in
different types of endocytosis, in clathrin-mediated

Figure 1. Summary of Cellular functions associated to Rab35. Most Rab35 functions are related to the endo/exocytic pathway (for details
see text). Cytokinesis and apico-basal polarity (a), Recycling of plasma membrane components (b), Endocytosis and exocytosis (c), Rab35
is functionally altered by different microorganisms (d), In neurite outgrowth (e).
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endocytosis (CME) and clathrin-independent endocytosis
(CIE) [34], and in Phagocytosis of several particles: for
example, E. coli by Drosophila [35], erythrocytes, by Ent-
amoeba histolytica [36] and by Raw 264.7 cells [38], Raw
cells also internalize zymosan [37]. Specifically, it is
reported that Rab35 participates in different aspects of
phagocytosis, such as phagosome formation (in E. histoly-
tica [36] and in Raw 264.7 cells [37,38]), filopodia and
lamellipodia generation [35], ROS production [39], as well
as phagolysosome fusion (HeLa, Raw 264.7 cells [40] and
in E. histolytica [36]). In addition, Rab35 participates in
Autophagy [41], Exocytosis of Willebrand factor and P-
selectin by Weibel-Palade bodies (WPB) [42], and Exo-
some release [43]. Rab35 is functionally altered by differ-
ent microorganisms (Fig. 1d) such as
Anaplasmaphagocytophilum [44], Uropathogenic E. coli
[28], Enterohaemorrhagic E. coli [45], and Legionella pneu-
mophila [46,47]. In Neurite outgrowth [48–53] (Fig. 1e)
Rab35 is capable of promoting the formation of a complex
between ACAP2 and MICAL-L1 (effector proteins for
Rab35) to promote the recruitment of EHD1, which facili-
tates vesicle formation, to favor neurite outgrowth, bristle
formation (in Drosophila S2 cells) [54], cell morphology
(in BHK cells) [48], oligodendrocyte differentiation (in
FBD-102b cells) [55], axon elongation (in rat primary neu-
rons) [56], and trafficking of synaptic vesicles (in Drosoph-
ila) [57].

Because many of these functions of Rab35play promi-
nent roles in actin dynamics and vesicular trafficking,
and we know that Rab35 is altered in some cancers and
now is recognized as an oncogenic protein, similar
behavior to Ras leads us to infer that alteration of Rab35
might be involved in cancer development in an impor-
tant way. In this paper we discuss the possible implica-
tion of Rab35 in some hallmarks of cancer, such as
invasion and metastasis, with particular emphasis on
immune evasion and leukemia.

Rab35 and cancer: Invasion and metastasis

Several Rab35 associated functions cited in this review
have been related to different aspects of cancer develop-
ment but direct implications have not been shown, such
as the alterations for clathrin-mediated/independent
endocytosis [59], apical-basal polarity [60], and cytoki-
nesis [61]. Major histocompatibility complex class I
(MHC I) [62] and II (MHC II) [63] molecules are down-
regulated in cancer [62,63]. Zeta chain expression (in the
TCR, T cell receptor) is modified in T lymphocytes taken
from cancer patients [64]. Different aspects of phagocy-
tosis, such as filopodia, lamellipodia, and ROS generation
(reactive oxygen species) [66–68] have been related to
increased cell motility and aggressiveness. Because

phagocytosis is altered in cancer [68] and is key in the
elimination of tumor cells [69] and in the intake of exo-
somes [70], this can contribute to changes in tumor
microenvironment and metastasis [71]. These studies, in
addition to the prominent roles that Rab35 play in actin
dynamics and vesicular trafficking, support the hypothe-
sis that functional abnormalities in this GTPase could
contribute to different aspects of cancer development,
perhaps in part, through membrane trafficking dysregu-
lation. For more details see ref [16].

On the other hand, few reports directly associate Rab35
alteration in cancer. In 2009, it was shown that the expres-
sion of Rab35 (mRNA) was upregulated in ovarian cancer
OVCAR3, OSEC2 cells, and in epithelial ovarian cancer
tissue under androgen treatment, which then correlates
Rab35 with androgen receptor (AR) expression [72].
Interestingly, androgens are related to changes in actin
remodeling [73]. In 2013, a functional interplay between
Rab35 and Arf6 was suggested in cell migration and cell–
cell adhesion by a mechanism whereby Rab35 negatively
regulated Arf6 activity and b1-integrin recycling by pro-
moting cadherin recycling and cell adherence. Also Rab35
was reported to be downregulated in other human tumors
(gliomas and squamous cancers) where Arf6 showed
hyperactivity [32]. Also in 2013, Rab35 was associated to
migration of tumor cells (breast cancer) by a different
mechanism, one that included the Dvl2/Rab35/Rac1 sig-
naling pathway promoted by Wnt5a [74] (the protein
involved in cancer progression) [75]. In 2015, Rab35 was
identified in ovarian cancer as a direct target of miR-720
(HeLa cells), suggesting that miR-720 promoted cell
migration by downregulating Rab35 [76], and we know
that this microRNA, miR-720, is implicated in cancer
aggressiveness [77]. Although these reports associated
Rab35�s alteration to different types of cancer cells, it was
in 2015 when Rab35 was described as an oncogenic pro-
tein, with oncogenic potential comparable to Ras in
human cancer. Some mutations found on Rab35 were
similar to those in Ras (S22N, A151T and F161L). Like-
wise, some of those mutations (A151T and F161L) were
capable of activating the PI3K/AKT pathway and were
shown to be oncogenic in the NIH-3T3 cell focus-forma-
tion assay, which is used to evaluate Ras transformation
capability. In addition, it was shown that the Q67L muta-
tion on Rab35, that turns the GTPase into a constitutively
activated state, was oncogenic too [17].

Other studies continued reporting the association
of Rab35 with cancer. In 2016, it was shown that the
silencing of this GTPase correlated to decreased cell
migration in non-small cell lung cancer, NSCLC [78].
Also, Rab35 was capable of enhancing breast cancer
cell invasion, through the activation of MICAL1 and
ROS generation [39].
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Despite several lines of evidence that relate Rab35
to cancer, many questions remain unanswered about
its implication in cancer development, particularly in
invasion and metastasis. It is possible that the Rab35�s
close link to actin dynamics, vesicular trafficking
[15,16,35,48,54,79,80], and its close functional
relationship with Rac1, Cdc42 as well asArf6
[21,32,34,35,37,38,48,50,52,53,55] could be playing
important roles in those hallmarks of cancer. Alter-
ation of Rab35 could impact tumor establishment and
the tumor microenvironment in different ways. To
begin with, actin dynamics dysfunction could cause
cellular morphological changes, which could affect
mechano-transduction signaling and how cells sense
and interact with the microenvironment and perhaps
influence invasion by means of actin protrusions
[35,48,80]. In turn, those protrusions could be favor-
ing the release of exosomes and metastasis [71,81].
Additionally, altered vesicular trafficking could sup-
port the release of tumor cells from the primary
tumor and aid their survival during migration, per-
haps by modulating the recycling of particular mem-
brane proteins (b1-integrin, EGF receptors and
cadherins), according to cellular needs. Specifically,
the altered vesicular trafficking of b1-integrin, EGF
receptors and cadherins has also been suggested
recently. For more details see Ref [16]. The crosstalk
between Rab35 and other small GTPases, such as
Rac1, Cdc42 and Arf6 could also be contributing to
developing and potentially altering actin dynamics
and vesicular trafficking. Altered vesicular trafficking
associated to Rab35 or Rac1, Cdc42 and Arf6 could
cause mutual functional abnormalities, thus potentiat-
ing important biological changes, among them; prote-
ome membrane composition and dysregulated cellular
signaling events. Dysregulation of CME and CIE
could affect the normal trafficking of proteins [34]
giving rise to increased receptor signaling through
internalized vesicles and improper recycling of pro-
teins. Additionally, those defects could be affecting
local physical membrane properties such as mem-
brane tension, which is also associated to invasion
[82].

Alterations in the phagocytic capabilities of tumor
and/or tumor related cells could be associated with mod-
ifications in exosome intake [68,70], constituting another
way to promote transformation and malignity [83,84], in
addition to immune evasion [85]. Thus, Rab35 alteration
could contribute to cancer development and aggres-
siveness (Fig. 2a). On the other hand, the presence of
Rab35 in released exosomes [86,87], its participation in
the regulation of exosome release [43], its participation
in TCR recycling [26], as well as in TCR modulation

[58] suggests that Rab35 could be playing an important
role in leukemia as well as in immune evasion.

Rab35: An outlook in leukemia and immune evasion

In our work, we point out different lines of evidence that
support the hypothesis that Rab35 could be implicated
in leukemia.

First: we found that Rab35 seems to be overexpressed
in leukemia according to our analysis in Oncomine [88].
The oncogenic mutation (A151T) on Rab35, capable of
activating the PI3K/AKT pathway, has been identified in
an acute lymphoblastic leukemia (ALL) sample and
reported in the Cosmic database [89]. The PI3K/AKT
pathway is critical for the biology of leukemia, as
reported by different studies. One study described consti-
tutive hyperactivation of that pathway in T-Acute lym-
phoblastic leukemia (T-ALL) specimens, even though
those cells expressed higher levels of the main negative
regulator PTEN (Phosphatase and tensin homolog) com-
pared to normal T cell precursors. This effect was associ-
ated, in part, to the role of Casein Kinase 2 (CK2) in
activating the PI3K/AKT pathway [90]. In another study,
the expression and activity levels of CK2 were higher
than their counterparts (in healthy thymocytes) in pri-
mary T-ALL (gd T-ALL and ab T-ALL) cells. Further-
more, it was shown that CK2 activity (modulated by
stimulating the TCR, T cell receptor) was capable of pro-
moting the AKT signaling in thymocytes (gd), all of
which suggested a link between the PI3K/AKT pathway
and TCR in leukemia [91]. The importance of upstream
regulators of the PI3K/AKT pathway in leukemia can be
concluded from this evidence and that of CK2, in accor-
dance with the last two articles cited. At the same time, it
is feasible to think that Rab35, which is an upstream acti-
vator of the PI3K/AKT pathway, in some cells [17], with
TCR modulating roles [26,58], could be contributing to
leukemia development in this way.

Second: Rab35 participates in characteristic cellular
functions associated to the immune response of lympho-
cytes, in zeta (z) chain recycling for immunological syn-
apse formation [26], TCR modulation [58], and exosome
release [43]. Specifically at the TCR level, in 1992
researchers reported alterations in TCR of lymphocytes
from tumor-bearing mice. The alteration was related to
the expression of an unusual TCR that lacked zeta chain.
Notably, that phenotype was also documented in periph-
eral blood T cells in human cancer patients. It is possible
to think that those abnormalities could have been associ-
ated to defective zeta chain recycling [64]. Later, several
works described similar alterations in the TCR for
different types of cancer, such as in infiltrating T-cells
isolated from patients with colorectal carcinomas, which
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expressed significantly less zeta chain than T-cells in the
peripheral blood of the same patients, and even less than
in the healthy controls [92]. Also, tumor-infiltrating lym-
phocytes from patients with renal cell carcinoma (in 10
of 11 cases) showed marked decrease in the expression
of the same chain [93]. Later, a similar phenotype
(decreased levels of zeta chain) in tumor-associated lym-
phocytes was reported in ascitic fluids of women with
ovarian carcinoma (OvCA) [94]. All these reports have
provided insights on the pathophysiology of leukemia,
specifically at the TCR level, and have even allowed the
suggestion that tumor growth may induce a functional
state in T cells characterized by low zeta chain content in
the TCR [95]. TCR alterations have also been described
in cancer where lymphocytes per se are transformed. The
zeta chain expression on T lymphocytes from patients
with B cell chronic lymphocytic leukemia (CLL) was sig-
nificantly reduced compared to normal controls [96], as
were the peripheral blood T lymphocytes from patients

with untreated Hodgkin‘s disease [97]. The phenotype
associated to TCR dysregulation in cancer has led to the
suggestion that the downregulation of zeta chain in T
cells in tumor-bearing patients might be a widespread
phenomenon as an escape from the immune response
against cancer [97]. In part, this suggestion came from
the observation that this chain was expressed at very low
levels in peripheral blood T cells of the patient at the
time of diagnosis, but the expression of this molecule
rose to almost normal levels after successful treatment
[95,97]. Remarkably, the phenotype described, the TCR
defects in cancer, have also has been reported in leuke-
mic T lymphocytes (T-ALL samples), which showed
marked reduction in zeta chain expression [98]. It seems
that alteration in the TCR could be a mechanism that
the transformed tumor lymphocyte cells use to evade
immune destruction.

Third: it has been reported that Rab35 participates
in TCR modulation. This alteration was related to

Figure 2. The role of the oncogenic Rab35 in cancer invasion, metastasis, immune evasion and Leukemia. Given the prominent role that
Rab35 plays in actin dynamics, vesicular trafficking, as well as in functions of lymphocytes such as TCR (T cell receptor) modulation, we
hypothesize that Rab35 could be participating in some hallmarks of cancer. These include cancer invasion, metastasis, and immune eva-
sion. In (a) we highlight; actin dynamics, vesicular trafficking, and the close functional relationship between Rab35 and other GTPases
(Arf6, Rac1, and Cdc42), as important elements in the potential role of Rab35in cancer invasion and metastasis. On the other hand, in
(b) we suggest that Rab35 could play an important role in leukemia development and immune evasion. Given that Rab35 mediates the
PI3K/AKT pathway activation and that such a pathway is important in the biology of leukemic cells, we infer that Rab35 could be medi-
ating the activation of such a pathway in lymphocytes. In addition, it is feasible that alteration of Rab35 (by mutations or dysregulated
expression) could promote leukemia development, perhaps by contributing to cell survival. Because the TCR (T cell receptor) is fre-
quently altered in diverse types of cancer (including in leukemic T cells) and considering that alterations in the TCR could be a way
whereby tumor cells evade immune response (anti-cancer immune response) and considering that Rab35 has modulating roles at the
TCR level, we hypothesize that Rab35 alteration could be contributing to leukemia development by affecting lymphocyte development,
activation, and proliferation. The role of Rab35 in exosome release as well as its identification in secreted exosomes could be another
way to limit immune response and to modify the microenvironment.

SMALL GTPASES 339



enhancement of TCR signaling in TH2 cell [58]. The
participation of Rab35 in TH2 cells supposes that this
GTPase could play different roles in different lympho-
cyte subpopulations.

Fourth: we found that in Jurkat cells, Rab35 regulates
zeta chain recycling and the immunological synapse for-
mation. These processes were altered by the S22N muta-
tion on Rab35, which takes the GTPase to the inactive
state. Those lymphocytes also showed defects at the
vesicular level related to the development of big vacuoles,
which supposed a role of such negative regulators for
Rab35 activity as Epi64C [26] (a hematopoietic restricted
Rab35 GAP) [99] that inactivates Rab35. We showed
that Epi64C caused similar defects in the same cells. In
lymphocytes, we also found that the oncogenic mutation
on Rab35 (Rab35 Q67L) was associated with the genera-
tion of membrane protrusions in those cells. This high-
lights the capacity of Rab35 to influence actin dynamics
[26], thus resembling morphological changes induced by
the overexpression of Rac1 and Cdc42 [35]. These mem-
brane protrusion could be a way to favor the release of
exosomes and malignity [83,84], as well as another path
for immune evasion [85].

Different reports relate Rab35 to exosomes. Rab35
was identified in secreted exosomes from colorectal ade-
nocarcinoma (Human CRC cells, HT29) [86] and trans-
formed B cells (human B-cell line RN; HLA-DR15) [87].
Rab35 is also reported as participating in the regulation
of exosome release (Oli-neu cells), along with its GAP
Epi64C [43], which was later related to the same process
in adenocarcinoma cells [100]. These suggest that Rab35�s
alteration could impact exosomes at different levels, such
as cargo composition and rate of release. The alteration
of Rab35 associated to abnormal rate of exosome release
[43] could affect intercellular communication and per-
haps favor the generation of bone marrow niches. Since
Rab35 is part of the content of exosome release by differ-
ent cell types [86,87], it is possible that alterations of
Rab35 could affect the levels of Rab35 in exosomes. This
is turn would alter Rab35 expression on recipient cells,
and could unbalance many functions in which Rab35
participates. Given the intracellular localization of Rab35
(plasma membrane mainly), such abnormalities could be
changing many physical plasma membrane properties,
such as membrane tension and related functions [82].

Taken together, these studies suggest a possible link
between leukemia and some Rab35 related functions,
such as the PI3K/AKT pathway, TCR modulation, and
exosomes, which could be contributing to leukemia
development and/or immune evasion. Accordingly,
some important and fundamental questions need to be
answered in order to support or reject such a hypothesis
about Rab35 and leukemia. Some of those questions are:

Is Rab35 activating the PI3K/AKT pathway in
lymphocytes? Is there and association between Rab35
and TCR alteration in leukemic samples? Is Rab35 regu-
lating exosome release in lymphocytes?

We hypothesize that Rab35 could be contributing to
leukemia development through various mechanisms. For
example, since Rab35 is capable of activating the PI3K/
AKT pathway in different cell types [17], it is possible
that the Rab35 participation in that pathway could be
operating in lymphocytes too, which could be favoring
leukemic cell survival. The TCR alteration observed in
different types of cancer, including leukemia, and the
roles of Rab35 on TCR modulation suppose Rab35 as a
protein target of study in leukemia development by
means of TCR alteration. Perhaps, the Rab35 alteration
in its expression (with or without oncogenic mutations)
might be altering proper TCR-dependent processes, such
as lymphocyte selection (during lymphocyte develop-
ment), TCR signaling associated with lymphocyte activa-
tion, and clonal expansion (proliferation). Also, TCR
defects could be related to immune evasion by an as yet
unrecognized mechanism, as suggested above. In addi-
tion, improper Rab35 function could be altering the rate
of exosome release on lymphocytes as well as their cargo
content. Perhaps, more proteins that limit the anti-leuke-
mic immune response could be present in those exo-
somes, which could contribute to the generation of bone
marrow niches and immune evasion (Fig. 2b).

Concluding remarks

The frequent alterations of RabGTPases in cancer imply
that these proteins can contribute importantly to cancer
development. Specifically, the oncogenic potential of the
RabGTPase Rab35 and its prominent roles in actin
dynamics and vesicular trafficking in the endo/exocytic
pathway, suggest that this protein might be playing
important roles in some hallmarks of cancer, including
invasion and metastasis, which are the main causes of
death in cancer patients. The possible Rab35 participa-
tion in the PI3K/AKT pathway in lymphocytes, its role
on TCR modulation, as well as its possible implication in
exosome release, in the same cells, suppose that Rab35
might be acting in leukemia development and in
immune evasion. As we proposed, Rab35 could be par-
ticipating in the hallmarks of cancer invasion, metastasis,
and immune evasion by different mechanisms, some of
which could be related to its participation on vesicular
trafficking, actin dynamics, as well as close functional
relationship with Rac1, Cdc42 and Arf6.

In spite of the stated hypothesis about Rab35 and
some hallmarks of cancer, it is necessary to investigate
important basic questions about them, such as whether it
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is known if Rab35 and its immune GAP regulator
Epi64C regulate exosome release as well as regulating the
PI3K/AKT pathway in lymphocytes. In summary, Rab35
research in the context of cancer is a novel and exciting
field where Rab35 might become a possible therapeutic
target.
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